初二几何--四边形练习题及答案.doc
四边形练习题(含答案)

四边形练习题(含答案)1、阅读下面材料,再回答问题:有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”。
解决下列问题:(1)菱形的“二分线”可以是。
(2)三角形的“二分线”可以是。
(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”.2、用配方法解方程时,原方程可变形为()A. B.C. D.3、用两块边长为a的等边三角形纸片拼成的四边形是【】A.等腰梯形 B.菱形 C.矩形 D.正方形4、在下面图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()5、下列命题中错误的是()A.两组对边分别相等的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组对边平行的四边形是梯形6、如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( )A. B.2 C. D.7、将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()8、如下图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP 的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是A.10 B.16 C.18 D.209、如图,在梯形ABCD中,AD//BC,AD=2,AB=3,BC=6,沿AE翻折梯形ABCD,使点B落在AD的延长线上,记为B′,连接B′E交CD于F,则的值为( )A. B. C. D.10、用任意两个全等的直角三角形拼下列图形:①平行四边形②矩形③菱形④正方形⑤等腰三角形⑥等边三角形其中一定能够拼成的图形是_______(只填题号).11、某陶瓷市场现出售的有边长相等的正三角形、正方形、正五边形的地板砖,某顾客想买其中的镶嵌着铺地板,则他可以选择的是.12、在一张三角形纸片中,剪去其中一个50°的角,得到如图所示的四边形,则图中∠1+∠2的度数为______________。
初二数学四边形试题答案及解析

初二数学四边形试题答案及解析1.如图,E、F分别是□ABCD的边BC、AD上的点,且BE=DF(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.【答案】(1)证明见解析;(2)BE=5.【解析】(1)首先由已知证明AF∥EC,BE=DF,推出四边形AECF是平行四边形.(2)由已知先证明AE=BE,即BE=AE=CE,从而求出BE的长;试题解析:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.(2)∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠3=90°﹣∠2,∠4=90°﹣∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=BC=5.【考点】1、平行四边形的判定与性质;2、菱形的性质2.如图,在▱ABCD中,AE⊥BC,AF⊥DC,垂足分别为E、F,∠ADC=60°,BE=4,CF=2.(1)从对称性质看,▱ABCD是_________对称图形;(2)求平行四边形ABCD的周长.【答案】(1)中心;(2)40【解析】(1)根据平行四边形的性质可知:对角线互相平分,所以O为旋转中心,即平行四边形ABCD是中心对称图形;(2)根据平行四边形中对角、对边分别相等,∠B=∠ADC=60°,再根据已知边长,由勾股定理可求出AB、AD的长,进而可求出平行四边形ABCD的周长.试题解析:1)∵四边形ABCD是平行四边形,∴对角线互相平分,∴O为旋转中心,即平行四边形ABCD是中心对称图形,(2)∵四边形ABCD是平行四边形,∴∠B=∠D=60°,AB=CD,AD=BC.∵AE⊥BC,∵BE=4,∴AB=8,∴CD=AB=8,∵CF=2,∴DF=6,∵AF⊥DC,∠D=60°∴在Rt△ADF中,AD=12,∴平行四边形ABCD的周长=2(12+8)=40.【考点】1.平行四边形的性质;2.中心对称图形3.下列性质中,正方形具有而矩形不一定具有的性质是A.对角线互相垂直B.对角线互相平分C.对角线相等D.四个角都是直角【答案】A.【解析】A、正方形的对角线互相垂直平分,矩形的对角线互相平分但不一定垂直,故本选项正确.B、正方形和矩形的对角线都互相平分,故本选项错误;C、正方形和矩形的对角线都相等,故本选项错误;D、正方形和矩形的四个角都是直角,故本选项错误.故选A.【考点】1.正方形的性质2.矩形的性质.4.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?用你学过的方法进行解释.【答案】3cm.【解析】根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到∴42+x2=(8﹣x)2,然后解方程即可.试题解析:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴BF=.∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3.∴EC的长为3cm.【考点】1.翻折变换(折叠问题);2.矩形的性质;3.勾股定理;4.方程思想的应用.5.ABCD中, ∠A比∠B小200,则∠A的度数为( )A.600B.800C.1000D.1200【答案】B.【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∠A=∠C,∴∠A+∠B=180°,∵∠B-∠A =20°,∴∠B=100°,∴∠A=80°.故选B.【考点】平行四边形的性质.6.矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是()A.6B.C.2(1+)D.1+【答案】C.【解析】本题已知条件涉及矩形的对角线和周长,可考虑用“矩形的对角线相等且相互平分”性质来解.如图所示,∠AOB=120°,AD=2∵ABCD为矩形,∴AD=BC=2,AO=B0=1(矩形的对角线相等且相互平分),∴△AOB为等腰三角形,∠BAO=30°;在Rt△ABD中,∠BAO=30°,AD=2∴AB= ,BD=1,∴矩形ABDC的周长为.【考点】矩形性质.7.如图,在梯形中,为的中点,交于点.(1)求证:;(2)当,且平分时,求的长.【答案】(1)证明详见解析.(2)EF=4.【解析】根据题意构造辅助线,利用中线性质和平行四边形性质即可得出结论.(1)过D作DM∥AB,∵AD∥BC,DM∥AB,∴四边形ABMD为平行四边形,∴BM=AD∵,∴EF∥DM,又∵E为CD的中点∴F为CM中点即MF=CF,∴BF=BM+MF=AD+CF.(2)过E作EH⊥AB,∵BE平分,∴CE=EH=DE(角平分线上一点到角两边的距离相等),在Rt△ADE和Rt△AHE中,DE=EH,AE=AE∴Rt△ADE≌Rt△AHE(SH定理)∴AH=AD=1,同理可得BH=BC=7,∴AB=AH+BH=8∵四边形ABMD为平行四边形,∴DM=AB=8,又∵E、F 分别为CD、CM中点,∴.【考点】1.平行四边形性质;2.角平分线性质;3.全等三角形.8.已知O是口ABCD对角线的交点,△ABC的面积是3,则口ABCD的面积是()A.3B.6C.9D.12【答案】B.【解析】根据平行四边形的性质可知,OD=OB,OA=OC,所以平行四边形的两条对角线把平行四边形分成四个面积相等的三角形,已知△ABC的面积为3,所以平行四边形的面积可求.∵O为▱ABCD对角线的交点,且△ABC的面积为3,∴▱ABCD的面积为2×3=6.故选B.【考点】平行四边形的性质.9.矩形、菱形与正方形都具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线平分一组对角D.对角线相等【答案】B.【解析】A、矩形对角线不互相垂直,故本选项错误;B、平行四边形的对角线互相平分,以上三个图形都是平行四边形,故本选项正确;C、三个图形中,只有菱形和正方形的对角线平分一组对角,故本选项错误;D、菱形对角线不相等,故本选项错误.故选B.【考点】1.正方形的性质2.菱形的性质3.矩形的性质.10.如图,△ABC中,O是AC上的任意一点(不与点A、C重合),过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论.【答案】(1)证明见解析;(2)当O运动到AC中点.【解析】(1)根据MN∥BC,CE平分∠ACB,CF平分∠ACD及等角对等边即可证得OE=OF;(2)根据矩形的性质可知:对角线且互相平分,即AO=CO,OE=OF,故当点O运动到AC的中点时,四边形AECF是矩形.(1)证明:∵MN∥BC,CE平分∠ACB,CF平分∠ACD,∴∠BCE=∠ACE=∠OEC,∠OCF=∠FCD=∠OFC,∴OE=OC,OC=OF,∴OE=OF.(2)解:当O运动到AC中点时,四边形AECF是矩形,∵AO=CO,OE=OF,∴四边形AECF是平行四边形,∵∠ECA+∠ACF=∠BCD,∴∠ECF=90°,∴四边形AECF是矩形.【考点】矩形的判定.11.如图,在矩形ABCD中,点E、F分别在AB、DC上,BF∥DE,若AD=12cm,AB=7cm,且AE:EB=5:2,则阴影部分的面积为_______【答案】24cm2.【解析】因为AD=12cm,AB=7cm,且AE:BE=5:2,则AE=5,BE=2,则阴影部分的面积=12×7﹣12×5=24cm2.故答案是24cm2.【考点】矩形的性质.12.如图,在平行四边形ABCD中,DE是∠ADC的平分线,F是AB的中点,AB=6,AD=4,则AE∶EF∶BE为 ( )A.4∶1∶2B.4∶1∶3C.3∶1∶2D.5∶1∶2【答案】A.【解析】∵四边形ABCD是平行四边形∴∠CDE=∠DEA∵DE是∠ADC的平分线∴∠CDE=∠ADE∴∠DEA=∠ADE∴AE=AD=4∵F是AB的中点∴AF=AB=3∴EF=AE-AF=1,BE=AB-AE=2∴AE:EF:BE=4:1:2.故选A.考点: 平行四边形的性质.13.(1)如图1,△ABC的顶点坐标分别为A(-1,0),B(3,0),C(0,2).若将点A 向右平移4个单位,则A、B两点重合;若将点A向右平移1个单位,再向上平移2个单位,则A、C两点重合.试解答下列问题:①填空:将点C向下平移个单位,再向右平移个单位与点B重合;②将点B向右平移1个单位,再向上平移2个单位得点D,请你在图中标出点D的位置,并连接BD、CD,请你说明四边形ABDC是平行四边形;(2)如图2,△ABC的顶点坐标分别为A(-2,-1),B(2,-3),C(1,1).请问:以△ABC的两条边为边,第三边为对角线的平行四边形有几个?并直接写出第四个顶点的坐标.【答案】(1)①2,3;②见解析;(2)有3个,(5,-1),(-1,-5),(-3,3).【解析】(1)①根据平移的规律:上加下减,左加右减即可得出将点C向下平移2个单位,再向右平移3个单位与点B重合;②根据平移的规律:上加下减,左加右减得出将点D的坐标为(4,2),然后根据一组对边平行且相等的四边形是平行四边形证出四边形ABDC是平行四边形;(2)分别以AB,BC,AC为平行四边形的对角线,考虑第四个顶点D的坐标,有三种可能结果.试题解析:(1)①∵B(3,0),C(0,2),∴将点C向下平移2个单位,再向右平移3个单位与点B重合.故答案为2,3;②点D位置如图所示.证明:由图可知AB∥CD,AB=CD,∴四边形ABCD是平行四边形;以△ABC的两条边为边,第三边为对角线的平行四边形共有3个.①以AB、AC为边可作一平行四边形,第四个顶点的坐标为(5,-1);②以CA、CB为边可作一平行四边形,第四个顶点的坐标为(-1,-5);③以BA、BC为边也可作一平行四边形,则第四顶点的坐标为(-3,3).【考点】坐标与图形变化-平移;平行四边形的判定.14.如图所示,平行四边形ABCD的周长是18cm,对角线AC、BD相交于点O,若△AOD与△AOB的周长差是5cm,则边AB的长是_________cm.【答案】2【解析】利用平行四边形的对角线互相平分这一性质,确定已知条件中两三角形周长的差也是平行四边形两邻边边长的差,进而确定平行四边形的边长.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵△AOD的周长=OA+OD+AD,△AOB的周长=OA+OB+AB,又∵△AOD与△AOB的周长差是5cm,∴AD=AB+5,设AB=x,AD=5+x,则2(x+5+x)=18,解得x=2,即AB=2cm.【考点】平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.15.在等腰梯形ABCD中,AD∥BC,∠B=45°,若AD=4cm,AB=8cm,试求出此梯形的周长和面积.【答案】(8+20)cm,(48+32)cm2【解析】过A、D点作梯形的高AE、DF,根据等腰直角三角形性质可求得BE、AE的长,从而可以求得结果.过A、D点作梯形的高AE、DF∵等腰梯形ABCD中,∠B=45°,AB=8cm∴BE=AE=4cm∵AD=4cm∴BC=4+8cm∴梯形的周长=(8+20)cm,面积=(AD+BC)×AE=(48+32)cm2.【考点】等腰梯形的性质点评:等腰梯形的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.16.在梯形ABCD中,AB∥CD,EF为中位线,则△AEF的面积与梯形ABCD的面积之比是______________【答案】1:4【解析】解:过A作AG⊥BC,交EF与H,∵EF是梯形ABCD的中位线,∴AD+BC=2EF,AG=2AH,设△AEF的面积为xcm2,即EF•AH=xcm2,∴EF•AH=2xcm2,∴S梯形ABCD=(AD+BC)•AG=×2EF×2AH=2EF•AH=2×2xcm2=4xcm2.∴△AEF的面积与梯形ABCD的面积之比为:1:4.【考点】梯形的中位线定理点评:本题考查了梯形的中位线定理,比较简单,注意掌握梯形的中位线定理即是梯形的中位线等于上下底和的一半.17.如图所示,在平行四边形ABCD中,BD=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.【答案】【解析】因为BD=CD,所以∠DBC=∠C=70°,又因为四边形ABCD是平行四边形,所以AD∥BC,所以∠ADB=∠DBC=70°,因为AE⊥BD,所以在直角△AED中,∠DAE即可求出.∵DB=CD,∠C=70°,∴∠DBC=∠C=70°,又∵在▱ABCD中,AD∥BC,∴∠ADB=∠DBC=70°,又∵AE⊥BD,∴∠DAE=90°-∠ADB=90°-70°=20°.【考点】平行四边形的性质,等腰三角形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.18.如图所示,矩形的边,,它的两条对角线交于点,以、为邻边作平行四边形,平行四边形的对角线交于点,同样以、为邻边作平行四边形,……,依次类推,平行四边形的面积为.【答案】【解析】先根据平行四边形的面积公式分别计算,得到规律,再根据所得的规律求解即可.由题意得平行四边形的面积为平行四边形的面积为所以平行四边形的面积为.【考点】找规律-图形的变化点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题. 19.如图在平行四边形ABCD的对角线AC的延长线上取两点E、F,使EA=CF,求证:四边形EBFD是平行四边形.【答案】连接BD,交AC于点O,由四边形ABCD为平行四边形可得AO=CO,BO=DO,又AE=CF,所以EO=FO,即可证得结论.【解析】连接BD,交AC于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO又∵AE=CF∴EO=FO∴四边形EBFD是平行四边形.【考点】平行四边形的判定和性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.20.如图,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:(填一个即可)【答案】AB=CD或AD∥BC【解析】两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形. 由题意可补充AB=CD或AD∥BC.【考点】平行四边形的判定点评:本题属于基础应用题,只需学生熟练掌握平行四边形的性判定方法,即可完成.21.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC=BD时,它是正方形C.当AC⊥BD时,它是菱形D.当∠ABC=900时,它是矩形【答案】B【解析】根据矩形、菱形、正方形的判定方法依次分析各项即可判断.A.当AB=BC时,它是菱形,C.当AC⊥BD时,它是菱形,D. 当∠ABC=900时,它是矩形,均正确,不符合题意;B. 当AC=BD时,无法判定它是正方形,故错误,本选项符合题意.【考点】矩形、菱形、正方形的判定点评:本题属于基础应用题,只需学生熟练掌握矩形、菱形、正方形的判定方法,即可完成. 22.已知EF是梯形ABCD的中位线,且EF=9,上底AB=6,那么下底CD= .【答案】12【解析】因为梯形的中位线长等于上底加下底的和除以2,根据题意,9×2-6=12【考点】梯形的中位线点评:基础题目,学生需要掌握梯形的中位线的运算公式,代入得出答案。
初中数学几何动点训练题--四边形类(含答案)

几何动点训练题1一、单选题(共8题;共16分)1.(2020·绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B移动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为( )A. 平行四边形→正方形→平行四边形→矩形B. 平行四边形→菱形→平行四边形→矩形C. 平行四边形→正方形→菱形→矩形D. 平行四边形→菱形→正方形→矩形2.(2020八下·泰兴期末)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A. 平行四边形→正方形→平行四边形→矩形B. 平行四边形→菱形→平行四边形→矩形C. 平行四边形→正方形→菱形→矩形D. 平行四边形→菱形→正方形→矩形3.(2020八下·杭州期末)如图,在正方形ABCD中,点E是CD边上的一个动点(不与点C、D重合),BE的垂直平分线分别交AD,BC于点F,G。
若FD=5AF,则CE:ED的值为( )A. 6-2B.C. -1D.4.如图,正方形的边长为,动点P,Q同时从点A出发,在正方形的边上,分别按,的方向,都以的速度运动,到达点C运动终止,连接,设运动时间为xs,的面积为,则下列图象中能大致表示y与x的函数关系的是()A. B. C. D.5.(2019九上·遵义月考)如图,正方形边长为4个单位,两动点、分别从点、处,以1单位/ 、2单位/ 的速度逆时针沿边移动.记移动的时间为,面积为(平方单位),当点移动一周又回到点终止,同时点也停止运动,则与的函数关系图象为()A. B. C. D.6.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC 边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q 也停止),在这段时间内,线段PQ有()次平行于AB?A. 1B. 2C. 3D. 47.(2019八下·滦南期末)如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB 的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A. ②③B. ②⑤C. ①③④D. ④⑤8.(2019九下·江阴期中)如图,在菱形ABCD中,点P是BC边上一动点,连结AP,AP的垂直平分线交BD于点G,交AP于点E,在P点由B点到C点的运动过程中,∠APG的大小变化情况是()A. 变大B. 先变大后变小C. 先变小后变大D. 不变二、填空题(共8题;共9分)9.(2020·嘉兴·舟山)如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm。
初二几何--四边形练习题及答案

6.以下图形中既是轴对称图形,又是中心对称图形的是〔 〕
-
1、基于北方的经济地理条件和契丹族的经济社会开展 的在逻辑。契丹所处的北方,较之宋朝所处南方,以及辽帝 所辖汉族农耕区〔"辽史"中谓"汉城〞〕气候特点是四季清 楚,所谓干旱、半干旱地区,降雨较少。由于开发晚,人口 稀少,多为草原,整体上属于植根于草原文化的渔猎文化。 与之相适应的,是契丹族部社会构造还没有进入农耕阶段, 游牧部落为主要治理构造。这种情况在辽初尤为明显。从太 祖开场,所经略、并兼的主要是南方的汉人辖区,以俘掠汉 人,兴建汉城,采农耕制度等方式来加强政权建立,稳固部 统治和边防,而战争频仍,俘户迁民,斩杀无辜等行为又对 人口与经济的开展形成巨大的破坏力。"辽史•兵卫上"导语 局部,把契丹的兴起,人口的俘获,不从者的斩杀,攻城掠 州的过程做了很好的、很全面的记述。在这种情况下,经济 社会的开展必然要受到迟滞。渔猎文化,从根本上是取之于 自然的原生态经济构造,其利在对环境的破坏相对较小,尤 其是带有休养生息、轮作轮牧性质的捺钵,所表达的是有限、 顺势、因时索取资源,但从负面来看,资源的加工、流通方 面利用率低,生活资料的积累率低,在一定程度上压扁了文 明进步的阶梯。在这种情况下,逐水草而居,车马为家,纵 马于野,弛兵于民等,都反映了生产力水平和财富积累的局 限,也在客观上使得渔猎文化得以在相当长的时间保存下来。 而南北分治的契丹治理文化,又使得北方契丹渔猎经济构造
EO=1/2BO=1/2DO=GO ∴BG=BO+GO=DO+EO=DE 而 AB∥CD ∴∠HBE=∠FDG 在△BFH 和△DEF 中, BH=DF〔已证〕 ∴△BGH≌△DEF ∠HBE=∠FDG〔已证〕 〔SAS〕
BG=DE〔已证〕
八年级平行四边形专题练习(含答案)

中考专题复习平行四边形知识考点:理解并掌握平行四边形的判定和性质 精典例题:【例1】已知如图:在四边形ABCD 中,AB =CD ,AD =BC ,点E 、F 分别在BC 和AD 边上,AF =CE ,EF 和对角线BD 相交于点O ,求证:点O 是BD 的中点。
分析:构造全等三角形或利用平行四边形的性质来证明BO =DO 略证:连结BF 、DE在四边形ABCD 中,AB =CD ,AD =BC ∴四边形ABCD 是平行四边形 ∴AD ∥BC ,AD =BC 又∵AF =CE∴FD ∥BE ,FD =BE ∴四边形BEDF 是平行四边形∴BO =DO ,即点O 是BD 的中点。
【例2】已知如图:在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形EFGH 是平行四边形。
分析:欲证四边形EFGH 是平行四边形,根据条件需从边上着手分析,由E 、F 、G 、H 分别是各边上的中点,可联想到三角形的中位线定理,连结AC 后,EF 和GH 的关系就明确了,此题也便得证。
(证明略)变式1:顺次连结矩形四边中点所得的四边形是菱形。
变式2:顺次连结菱形四边中点所得的四边形是矩形。
变式3:顺次连结正方形四边中点所得的四边形是正方形。
变式4:顺次连结等腰梯形四边中点所得的四边形是菱形。
变式5:若AC =BD ,AC ⊥BD ,则四边形EFGH 是正方形。
变式6:在四边形ABCD 中,若AB =CD ,E 、F 、G 、H 分别为AD 、BC 、BD 、AC 的中点,求证:EFGH 是菱形。
娈式6图娈式7图变式7:如图:在四边形ABCD 中,E 为边AB 上的一点,△ADE 和△BCE 都是等边三角形,P 、Q 、M 、N 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形PQMN 是菱形。
例1图 O F E D CB A 例2图探索与创新:【问题】已知如图,在△ABC 中,∠C =900,点M 在BC 上,且BM =AC ,点N 在AC 上,且AN =MC ,AM 和BN 相交于P ,求∠BPM 的度数。
四边形测试题(含答案)

八年级数学试题(考试时间:90分钟 满分:100分)一、填空:(每小题2分,共24分)1、对角线_____平行四边形是矩形。
2、如图⑴已知O 是□ABCD 的对角线交点,AC =24,BD =38,AD =14,那么△OBC 的周长等于_____。
3、在平行四边形ABCD 中,∠C =∠B+∠D,则∠A =___,∠D =___。
4、一个平行四边形的周长为70cm ,两边的差是10cm ,则平行四边形各边长为____cm 。
5、已知菱形的一条对角线长为12cm ,面积为30cm 2,则这个菱形的另一条对角线长为__________cm 。
6、菱形ABCD 中,∠A =60o ,对角线BD 长为7cm ,则此菱形周长_____cm 。
7,那么它的面积______。
8、如图2矩形ABCD 的两条对角线相交于O,∠AOB =60o ,AB =8,则矩形对角线的长___。
9、如图3,等腰梯形ABCD 中,AD ∥BC ,AB ∥DE ,BC =8,AB =6,AD =5则△CDE 周长___。
10、正方形的对称轴有___条11、如图4,BD 是□ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边形,还需增加的一个条件是______12、要从一张长为40cm ,宽为20cm 的矩形纸片中,剪出长为18cm ,宽为12cm 的矩形纸片,最多能剪出______张。
二、选择题:(每小题3分,共18分)13、在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A 、1:2:3:4B 、1:2:2:1C 、2:2:1:1D 、2:1:2:1 14、菱形和矩形一定都具有的性质是( ) A 、对角线相等 B 、对角线互相垂直 C 、对角线互相平分 D 、对角线互相平分且相等 15、下列命题中的假命题是( )A 、等腰梯形在同一底边上的两个底角相等B 、对角线相等的四边形是等腰梯形C 、等腰梯形是轴对称图形D 、等腰梯形的对角线相等16、四边形ABCD 的对角线AC 、BD 交于点O ,能判定它是正方形的是( ) A 、AO =OC ,OB =OD B 、AO =BO =CO =DO ,AC ⊥BD C 、AO =OC ,OB =OD ,AC ⊥BD D 、AO =OC =OB =OD 17、给出下列四个命题⑴一组对边平行的四边形是平行四边形 ⑵一条对角线平分一个内角的平行四边形是菱形⑶两条对角线互相垂直的矩形是正方形 ⑷顺次连接等腰梯形四边中点所得四边形是等腰梯形。
专题24 四边形综合练习题-冲刺2020年中考几何专项复习(解析版)

四边形综合练习题1.如图,矩形ABCD中,AB=8,AD=3.点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG.同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,当经过多少秒时.直线MN和正方形AEFG开始有公共点?()A B.C D【解答】A【解析】过点F作FQ⊥CD于点Q,∵在正方形AEFG中,∠AEF=90°,AE=EF,∴∠1+∠2=90°,∵∠DAE+∠1=90°,∴∠DAE=∠2,在△ADE和△EQF中,,∴△ADE≌△EQF(AAS),∴AD=EQ=3,当直线MN和正方形AEFG开始有公共点时:DQ+CM≥8,∴t+3+2t≥8,解得:t,秒时.直线MN和正方形AEFG开始有公共点.故选:A.2.如图,在矩形ABCD中,AB=,AD=3,点E从点B出发,沿BC边运动到点C,连结DE,点E 作DE的垂线交AB于点F.在点E的运动过程中,以EF为边,在EF上方作等边△EFG,则边EG的中点H所经过的路径长是()A B C D【解答】C【解析】如图,连接FH,取EF的中点M,连接BM,HM,在等边三角形EFG中,EF=FG,H是EG的中点,∴∠FHE=90°,∠EFH=∠EFG=30°,又∵M是EF的中点,∴FM=HM=EM,在Rt△FBE中,∠FBE=90°,M是EF的中点,∴BM=EM=FM,∴BM=EM=HM=FM,∴点B,E,H,F四点共圆,连接BH,则∠HBE=∠EFH=30°,∴点H在以点B为端点,BC上方且与射线BC夹角为30°的射线上,如图,过C作CH'⊥BH于点H',∵点E从点B出发,沿BC边运动到点C,∴点H从点B沿BH运动到点H',在Rt△BH'C中,∠BH'C=90°,∴BH'=BC•cos∠CBH'=,∴点H所经过的路径长是.故选:C.3.如图,正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB边的中点,则△EDM的面积是.【解析】如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=6﹣x,EQ=6﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF(AAS),∴DE=EF,∵DE⊥EF,∴△DEF是等腰直角三角形,∵DC=BC,∠DCE=∠BCE=45°,CE=CE,∴△DEC≌△BEC(SAS),∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ BF,∵AB=AD=6,F是AB的中点,∴BF=3,∴FQ=BQ=PE,∴CE=,PD=∴,∴EF=DE=,如图2,过点F作FH⊥AC于点H,∵AD=CD=6,∴AC =6∵DC ∥AB ,∴△DGC ∽△FGA , ∴∴CG =2AG ,∴AG ,∴GE =AC ﹣AG ﹣CE∵∠F AC =45°,HF ⊥AC ,∴∠F AC =∠AFH =45°,∴AH =HF ,且AF =3,∴AH =HF∴HG ,∵S △EFG =GE ×FH∴S△EFG =,∵将△EFG 沿EF 翻折,得到△EFM ,∴S △EFM =,FM =GF ,∠DFE =∠EFM =45°,∴∠DFM =90°,,∴S △DFM∵△EDM 的面积=S 四边形DFME ﹣S △DFM =S △DEF +S △EFM ﹣S △DFM ,∴△EDM的面积=.4.如图,正方形ABCD中,E为AB边上一点,过点E作EF⊥AB交对角线BD于点F.连接EC交BD于点G.取DF的中点H,并连接AH.若AH,EG=,则四边形AEFH的面积为.【解答】S四边形AEFH【解析】如图,连接HE,HC,作HM⊥AB于M.,延长MH交CD于N.∵四边形ABCD是正方形,∴DA=DC,∠ADH=∠CDH=45°,∵DH=DH,∴△ADH≌△CDH(SAS),∴AH=CH,∵EF⊥AB,HM⊥AB,DA⊥AB∴EF∥HM∥AD,∵HF=HD,∴AM=EM,∴HA=HE=HC,∵∠AMN=∠∠ADN=90°,∴四边形AMND是矩形,∴AM=DN,∵DN=HN,AM=EM,∴EM=HN,∴Rt△HME≌Rt△CNH(HL),∴∠MHE=∠HCN,∵∠HCN+∠CHN=90°,∴∠MHE+∠CHN=90°,∴∠EHC=90°,∴EC==2,∵EG=,∴GC=2=,∵EF∥BC,∴EF=BE=4a,则BC=AB=10a,AE=6a,AM=ME=3a,∵EF∥HM,∴,∴,∴HM=7a,∴S四边形AEFH=S△AMH+S梯形EFHM=3a×7a+4a+7a)×3a=27a2,在Rt△BEC中,∵BE2+BC2=EC2,∴16a2+100a2=4,∴a2=,∴S四边形AEFH=.5.如图,正方形ABCD中,E、F分别在AB、AD上(AE<BE),DE⊥CF于G,M在CG上,且MG=DG,连BM,N是BM的中点,连结CN,若CN=,EG=13,则CF=.【解答】FC=17【解析】如图,过点B作BH∥FC,连接GN并延长交BH于点H,连接CH,∵BH∥FC,∴∠BHN=∠MGN,∠HBC=∠GCB,∵N是BM的中点,∴BN=MN,∵∠BHN=∠MGN,BN=MN,∠BNH=∠GNM,∴△BHN≌△MGN(AAS)∴BH=GM,HN=GN,∵DG=GM,∴BH=GD,∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠DCG+∠BCG=90°,∵DE⊥CF,∴∠DCG+∠CDG=90°,∴∠BCG=∠CDG=∠HBC,且BC=CD,DG=BH,∴△DGC≌△BHC(SAS)∴CH=CG,∠BCH=∠DCG,∴∠BCH+∠BCG=∠DCG+∠BCG=90°,∴∠GCH=90°,且CG=CH,HN=NG,∴CN=NH=NG,CN⊥HF,,∵∠A=∠FGD=90°,∴∠AED+∠ADE=90°,∠ADE+∠DFG=90°,∴∠DFG=∠AED,且AD=CD,∠A=∠ADC=90°,∴△ADE≌△DCF(AAS)∴CF=DE,∠ADE=∠DCF,∵∠ADE=∠DCF,∠DGF=∠DGC,∴△DGF∽△CGD,∴,∴DG2=FG•GC∴(DE﹣EG)2=(FC﹣EG)2=(16+FG﹣13)2=16•FG∴FG=9(不合题意舍去),FG=1,∴FC=FG+GC=17,6.如图,正方形ABCD的边长为6,E、F分别是边CD、AD上的动点,AE和BF交于点G.(1)如图(1),若E为边CD的中点,AF=2FD,求AG的长;(2)如图(2),若点F在AD上从A向D运动,点E在DC上从D向C运动.两点同时出发,同时到达各自终点,求在运动过程中,点G运动的路径长;(3)如图(3),若E、F分别是边CD、AD上的中点,BD与AE交于点H,求∠FBD的正切值.【解答】(1)AG(2)点G运动的路径长=(3)∴tan∠FBD【解析】(1)如图(1),延长BF、CD交于点H,∵E为边CD的中点,∴DE==3,由勾股定理得,,∵四边形ABCD为正方形,∴AB∥CD,∴△AFB∽△DFH,∴=2,∵AB=6,∴DH=3,∴EH=6,∴AB∥CD,∴△AGB∽△EGH,∴=1,∴AG==(2)如图(2),取AB的中点O,连接OG,由题意得,AF=DE,在△BAF和△ADE中,,∴△BAF≌△ADE(SAS)∴∠ABF=∠DAE,∵∠BAG+∠DAE=90°,∴∠BAG+∠ABG=90°,即∠AGB=90°,∵点O是AB的中点,∴OG AB=3,当点E与点C重合、点F与得D重合时,∠AOG=90°,∴点G(3)如图(3),作FQ⊥BD于Q,设正方形的边长为2a,∵点F是边AD上的中点,∴AF=DF=a,∵四边形ABCD为正方形,∴BD==2a,∠ADB=45°,∴QF=QD a,∴BQ=BD﹣DQ=a,∴tan∠FBD.7.如图,在平面直角坐标系xOy中,AB∥OC,A(0,3),B(a,b),C(c,0),且a,c满足.点P从点A出发,以每秒1个单位长度的速度向点B运动,点Q从点O同时出发,以每秒2个单位长度的速度向点C运动,当点Q到达点C时,点P随之停止运动.设运动时间为t(秒).(1)B,C两点的坐标为:B,C;(2)当t为何值时,四边形PQCB是平行四边形?(3)D为线段AB的中点,求当t为何值时,△ADQ是等腰三角形?【解答】(1)B(10,3),C(14,0);(2)t=4;(3)或或2【解析】(1)∵,∴,∴a=10,c=14,∴B(10,3),C(14,0).(2)由题意:BP=10﹣t,CQ=14﹣2t,当BP=CQ时,四边形PQCB是平行四边形,此时10﹣t=14﹣2t,解之得t=4,∴当t=4时,四边形PQCB是平行四边形.(3)∵D为线段AB的中点,∴AD=5,当DA=DQ时,△ADQ是等腰三角形,此时OQ=1或9,∴t=当QA=QD时,△ADQ是等腰三角形,此时OQ∴t=,当AQ=AD时,△ADQ是等腰三角形此时OQ=4,∴t=2.综上所述:当t为2或ADQ是等腰三角形.8.问题发现:(1)如图1,在等腰直角三角形ABC中,∠C=90°,点O为AB的中点,点M为AC上一点,将射线OM 绕点O顺时针旋转90°交BC于点N,则OM与ON的数量关系为;问题探究:(2)如图2,在等腰三角形ABC中,∠C=120°,点O为AB的中点,点M为AC上一点,将射线OM绕点O顺时针旋转60°交BC于点N,则OM与ON的数量关系是否改变,请说明理由;问题解决:(3)如图3,点O为正方形ABCD对角线的交点,点P为DO的中点,点M为直线BC上一点,将射线OM绕点O顺时针旋转90°交直线AB于点N,若AB=4,当△PMN BN的长.【解答】(1)OM=ON;(2)不变;(3)BN的值为﹣1+2【解析】(1)如图1中,结论:OM=ON.理由:连接OC.∵CA=CB,∠ACB=90°,AO=OB,∴CO=OA=OB,OC⊥AB,∠A=∠B=45°,∠BCO=∠ACO=45°∴∠AOC=∠MON=90°,∴∠AOM=∠CON,∵∠A=∠CON,∴△AOM≌△CON(ASA),∴OM=ON.(2)数量关系不变.理由:如图2中,过点O作OK⊥AC于K,OJ⊥BC于J,连接OC.∵∠ACB=120°,∠OKC=∠OJC=90°,∴∠KOJ=60°=∠MON,∴∠MKO=∠NOJ,∵CA=CB,OA=OB,∴OC平分∠ACB,∵OK⊥CA,OJ⊥CB,∴OK=OJ,∵∠OKM=∠OJN=90°,∴△OKM≌△OJN(AAS),∴OM=ON.(3)如图3中,过点P作PG⊥AB于G,PH⊥BC于H.∵四边形ABCD是正方形,∴AB=AD=4,∠BAD=90°,∴BD==4,∴OD=OB=2,PD=OP=,∴PB=3,∵四边形PGBH是正方形,∴PG=PH=3,∵∠MON=∠COB=90°,∴∠MOC=∠NOB,∵OM=ON,OC=OB,∴△MOC≌△NOB(SAS),∴CM=BN,设CM=BN=m,∵S==S△PBM+S△BMN﹣S△PBN,∴4+m)••m•(4+m)﹣m•3=∴整理得:m2+4m﹣13=0,解得m=﹣2或﹣﹣2(舍弃),∴BN=﹣2.当点M在CB的延长线上时,同法可得BN+2.综上所述,满足条件的BN的值为﹣1+2.9.在平行四边形ABCD中,AF平分∠BAD交BC于点F,∠BAC=90°,点E是对角线AC上的点,连结BE.(1)如图1.若AB=AE,BF=3,求BE的长;(2)如图2,若AB=AE,点G是BE的中点,∠F AG=∠BFG,求证:AB=FG;(3)如图3,以点E为直角顶点,在BE的右下方作等腰直角△BEM,若点E从点A出发,沿AC运动到点C停止,设在点E运动过程中,BM的中点N经过的路径长为m,AC的长为n,请直接写出的值.【解答】(1)BE=3;(2)见解析;(3)【解析】(1)如图1中,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠AFB,∵AF平分∠BAD,∴∠DAF=∠BAF,∴∠BAF=∠AFB,∴AB=BF=3,∵AB=AE,∠BAE=90°,∴BE=AB=.(2)证明:连接EF,过点G作GH⊥EF交EF的延长线于H.设BG=a,FG=b.∵AB=AE,∠BAE=90°,BG=GE,∴AG⊥BE,AG=GB=GE,∴AB=BG=a,∵BF=AB=,∴BF2=2a2,BG•BE=2a2,∴BF2=BG•BE,∴∵∠FBG=∠EBF,∴△GBF∽△FBE,∴BFG=∠BEF,∴EF=GF=b,∵∠BAF=∠BF A,∠GAF=∠BFG,∴∠AFG=∠BAG=45°,∠GAF=∠GEF,∴∠AGE=∠AFE=90°,∴∠GFH=45°,∵GH⊥EH,∴GH=FH b,∴EH=FH+EF,,∴AB=AE==b,∴AB=GF.(3)如图3中,在AC上取一点T,使得AT=AB,连接BT,TM,取BT的中点J,连接NJ.∵△ABT,△BEM都是等腰直角三角形,∴BT=AB,BM=,∠ABT=∠EBM=45°,∴,∠ABE=∠TBM,∴△ABE∽△TBM,∴,∠AEB=∠BMT,∵∠AEB+∠BET=180°,∴∠BMT+∠BET=180°,∴∠EBM+∠ETM=180°,∵∠EBM=∠ETB=45°,∴∠ETM=135°,∠BTM=90°,∵BJ=JT,BN=NM,∴NJ∥TM,NJ=,∴∠BJN=∠BTM=90°,∴点N的运动轨迹是线段JN,JN TM=AE,∵点E从A运动到C时,AE=AC=n,∴m=n,∴.10.如图,在△ABC中,AB=BC=15,sin B=,动点P从点B出发,以每秒3个单位长度的速度沿BA向终点A运动,过点P作PD⊥AB,交射线BC于点D,E为PD中点,以DE为边作正方形DEFG,使点A、F在PD的同侧,设点P的运动时间为t秒(t>0).(1)求点A到边BC的距离.(2)当点G在边AC上时,求t的值.(3)设正方形DEFG与△ABC的重叠部分图形的面积为S,当点D在边BC上时,求S与t之间的函数关系式.(4)连结EG,当△DEG一边上的中点在线段AC上时,直接写出t的值.【解答】(1)AH=12;(2)t;(3)见解析;(4【解析】(1)如图1,过点A作AH⊥BC于点H,在Rt△ABH中,∠AHB=90°,AB=15,∴sin B=,∴AH=×15=12.(2)如图2,在Rt△BDP中,∠BPD=90°,BP=3t,∴sin B=∴cos B,∴BD=5t,PD=4t,∴DE=DG=2t,CD=15﹣5t.∴15﹣5t=2t,∴t=.(3)①当0<t≤时,重叠部分为正方形DEFG,∴S=(2t)2=4t2;②当<t3,重叠部分为五边形DEFMN,∴S=S正方形DEFG﹣S△MGN=4t2[2t﹣(15﹣5t)]2=﹣45t2+210t﹣225;③当t≤3时,如图4,重叠部分为梯形DEMN,∴S=×2t(15﹣4t+15﹣5t)=﹣9t2+30t.(4)①当DG的中点O在线段AC上时,如图5,∵AB=BC,∴∠A=∠C,∵DG∥AB,∴∠COD=∠A∴∠C=∠COD,∴DC=DO,∴15﹣5t=t,解得t=②当EG的中点O在线段AC上时,如图6,此时NC=NO,∴15×5t=t t,解得t=;③当DE的中点O在线段AC上时,如图7,此时NC=NO,∴15×5t t,解得t=,综上,t的值为或.。
四边形的几何变换-练习与解答

走进四边形的几何变换在近几年的各地中考中,几何变换作为一种数学思想与方法,不断地被命题者青睐与关注,在现行的初中数学课本中,主要存在平移、旋转和轴对称(即翻折)三种几何变换. 它们最大的特征都是不改变图形的形状和大小,只改变图形位置的变换。
而四边形作为初中阶段最核心最重要的内容,越来越被作为呈现知识和能力的载体。
为此,让我们结合年各地中考试题,一同走进四边形中的变换世界,感受它的魅力与亮点。
一、在平移中构造与发现例:(年咸宁市)如图,将矩形ABCD 沿对角线AC 剪开,再把ACD △沿CA 方向平移得到A C D '''△.()证明A AD CC B '''△≌△;()若30ACB ∠=°,试问当点C '在线段AC 上的什么位置时,四边形ABC D ''是菱形,并请说明理由.思路点拨:在平移过程中对应的边与角的大小不变,仅仅是位置发生改变,借助边角边可证出两个三角形全等;同时与′′始终平行且相等,可知四边形′′平行四边形,要使其为菱形,需满足′,而∠°,∠°,可得21,即点′是线段的中点。
解析:()矩形ABCD 沿对角线AC 剪开,再把ACD △沿CA 方向平移得到A C D '''△ 得A D '',A D ''∥∥,′′,∴∠′′′∠,∴⊿′′≌⊿′。
()当点′是线段的中点时,四边形′′是菱形,理由如下:∵四边形是矩形, A C D '''△由ACD △平移得到,′′,由()知′′,∴四边形是平行四边形。
在⊿中,点′是线段的中点,∴′21,而∠°,∴21,∴′,∴四边形′′是菱形。
点评:决定平移后图形位置的两个基本因素是平移的方向和距离,本题通过“平移不改变图形的形状和大小”的性质,再结合平移前后图形的相应位置进行分析、综合、探究与解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二几何---四边形
一.选择题 (本大题共 20 分)
1.梯形中位线长15cm,一条对角线把中位线分成两线段之比为2:3,则此梯形的两底长分别是()
(A)14cm,16cm (B)12cm,18cm (C)12cm,20cm (D)8cm,22cm
2.下列说法不正确的是()
(A)正方形的对角线互相垂直且相等
(B) 对角线相等的菱形是正方形
(C)邻边相等的矩形是正方形
(D)有一个角是直角的平行四边形是正方形
3.菱形具有而平行四边形不具有的性质是()
(A)对角线互相平分(B)邻角互补(C)每条对角线平分一组对角(D)对角相等
4.有两个角相等的梯形一定是()
(A)等腰梯形(B)直角梯形(C)等腰梯形或直角梯形(D)以上都不对
5.如图已知:矩形ABCD中,CE⊥BD于E,∠DCE:∠ECB=3:1,则∠ACE=()
(A)30°(B)45°(C)60°(D)40°
6.下列图形中既是轴对称图形,又是中心对称图形的是()
(A)平行四边形(B)等腰直角三角形(C)等边三角形(D)菱形
7.下列语句中不一定正确的是()
(A)对角线相等的梯形是等腰梯形
(B)梯形最多有两个内角是直角
(C)梯形的一组对角不能相等
(D)一组对边平行的四边形是梯形
8.如图,E、F是□ABCD两对边的中点,则图中平行四边形的个数是()
(A)4 (B)6 (C)7 (D)8
9.下列说法正确的是()
(A)对角相等的四边形是矩形
(B)有一个角是直角的四边形是矩形
(C)对角互补的平行四边形是矩形
(D)三个角相等的四边形是矩形
10.顺次连结下列四边形各边中点所得的四边形是矩形的是()
(A)等腰梯形(B)矩形(C)平行四边形(D)菱形
二.填空题 (本大题共 30 分)
1.直角梯形一内角为120°,它的高与上底长都是√3cm,则它的腰长cm、cm,为中位线长cm。
2.□ABCD的周长为56cm,对角线AC、BD交于O,ΔABO与ΔBCO的周长之差4cm,则AD= cm。
3.对角线的四边形是矩形。
对角线的四边形是菱形。
4.在□ABCD中,AB=6cm,BC=10cm,∠B=30°,则S□ABCD= cm。
5.若梯形的上底长为6cm,中位线长8cm,则此梯形的下底线长cm;连结两条对角线的中点的线段长cm。
6.平行四边形一边长为10,一条对角线长12,则它的另一条对角线的取值范围是。
7.等腰梯形的一条对角线分中位线为4cm和10cm两部分,腰长为12cm,则此梯形不在同一底的两内角为度、度,其面积为cm2。
8.顺次连结四边形各中点所得的四边形是形。
如果新四边形的两邻边分别长3cm、4cm,那么原四边形的两条对角线之和为cm。
9.梯形一腰长4cm,这腰和底所成的角是30°,则另一腰长为cm。
10.如图已知:四边形ABCD中,AC、BD交于O,AC=BD,E、F为AB、CD中点,EF交BD、AC于MN。
求证:OM=ON
11.对角线的四边形是矩形。
对角线的四边形是菱形。
12.矩形ABCD中,对角线交于O,∠AOD=120°,AB=4cm,则AD= cm。
13.梯形ABCD中,AD∥BC,过D作DE∥AB交BC于E,梯形周长为42cm,AD=6cm,则△CDE的周长是cm。
14.如图已知:四边形ABCD中,AC、BD交于O,AC=BD,E、F为AB、CD中点,EF交BD、AC于MN。
求证:OM=ON
15.已知是菱形的边长为5cm,一对角线长8cm,则此菱形的另一条对角线长cm,它的面积为cm2。
三.判断题 (本大题共 5 分)
1.两条对角线相等的四边形是矩形。
()
2.四边形的内角和等于外角和。
()
3.一个直角既是中心对称图形,也是轴对称图形。
()
4.两条对角线互相垂直的四边形是菱形。
()
5.两条对角线互相垂直的矩形是正方形。
()
四.作图题 (本大题共 5 分)
1.已知线段a、b,求作矩形ABCD,使AB=a,BC=b。
五.证明题 (本大题共 40 分)
1.等腰梯形一底角为60°,一条长为2 √3cm的对角线平分这个角。
求此梯形的周长。
2.Rt△ABC中,∠C=90°。
CD是AB边上的中线,过A作CD的平行线,过C作AB的平行线,两线交于E。
求证:四边形ADCE是菱形
3.如图已知:梯形ABCD中,AB∥CD,E为AD中点,且BC=AB+CD。
求证:BE⊥CE。
4.□ABCD中,对角线AC、BD交于O,E、F、G、H分别是BO、DC、DO、AB的中点。
求证:四边形DFGH是平行四边形
初二几何---四边形——答案
一.选择题 (本大题共 20 分)
1.:B
2.:D
3.:C
4.:C
5.:B
6.:D
7.:D
8.:C
9.:C
10.:D
二.填空题 (本大题共 30 分)
1.:√3,2;
2.:2
3.:互相平分且相等,互相垂直平分
4.:30
5.:10,2
6.:大于8但小于32
7.:60,120,84√3
8.:平行四边形,14
9.:2
10.:证明:取AD中点G,连结EG、FG,则:EG∥BD,
且EG=1/2BD,FG∥AC,
且:FG=1/2AC
∵AC=BD
∴EG=FG,∠GEF=∠GFE
又∵EG∥BD
∴∠GEF=∠OMN
FG∥AC,∠GFE=∠ONM
∴∠OMN=∠ONM,∴OM=ON
11.:互相平分且相等,互相垂直平分
12.:4√3
13.:30
14.:解:过A作AE⊥BC于E,过D作DF⊥BC于F,则:AE=DF,
∵AB⊥AC,AB=AC
∴△ABC是等腰直角三角形
∴AE=BE=BC
又∵BD=BC,∴AE=1/2BD
即:DF=BD,∴∠DBC=30°
15.:6,24
三.判断题 (本大题共 5 分)
1.:×
2.:√
3.:×
4.:×
5.:√
四.作图题 (本大题共 5 分)
1.:作法:(1)作∠MBN=90°
(2)在MB上截取AB=a,在NB上截取BC=b
(3)过A作EA⊥MB于A,过C作FC⊥BN于C,EA、FC交于D。
四边形ABCD即为所求作的矩形。
五.证明题 (本大题共 40 分)
1.:解:∵∠ABC=60°,BD平分∠ABC,
∴∠DBC=∠ABD=30°,
又∵∠C=∠ABC=60°
∴∠BDC=90°
在Rt△BDC中,BD=2 √3
∴CD=BC=2,BC=4
AB=CD=2
而AD∥BC,∠ADB=∠DBC=30°
∴AD=AB=2
∴AB+BC+CD+DA=2+4+2+2=10,答:此梯形的周长为10cm。
2.:证明:∵AECD,CEAD,
∴四边形ADCE是平行四边形,在Rt△ABC中,CD是斜边AB上的中线。
∴CD=1/2AB=AD
∴四边形ADCE是菱形
3.:证明:延长CE交BA的延长线于F,
∵AB∥CD
∠F=∠DCE
∴在△AFE和△DCE中
∠F=∠DCE
∠AEF=∠DEC
AE=DE
∴△AFE≌△DCE(AAS)
∴FA=CD FE=CE
E为FC中点
又∵BC=AB+CD,BF=AB+AF
∴BC=BF,即:FBC是等腰三角形。
∵E为FC中点,∴BE⊥FC
即:BE⊥CE
4.:证明:□ABCD中,AB=CD,BO=DO
∵H、F分别为AB、CD中点
∴BH=AB=DC=DF
又∵E、G分别为BO、DO中点,∴EO=1/2BO=1/2DO=GO
∴BG=BO+GO=DO+EO=DE
而AB∥CD ∴∠HBE=∠FDG
在△BFH和△DEF中,
BH=DF(已证)∴△BGH≌△DEF ∠HBE=∠FDG(已证)(SAS)
BG=DE(已证)
∴HG=EF,∠HGB=∠FED
∴HG∥EF
∴四边形EFGH是平行四边形。