七年级数学一元一次方程6
兴隆台区五中七年级数学下册 第6章 一元一次方程6.2 解一元一次方程 2解一元一次方程第2课时 去

七年级数学下册第一章整式的乘除4整式 的乘法第3课时多项式与多项式相乘课件 新版北师大版3
同学们,下课休息十分钟。现在是休
息时间,你们休息一下眼睛,
看看远处,要保护好眼睛哦~站起来 动一动,久坐对身体不好哦~
(2) (ax + b)(cx + d) = ax·cx + ax·d + b·cx + bd = acx2 + (ad + bc)x + bd
3 2
2.商店降价销售某种商品 , 每件降5元 , 售出 60件后 , 与按原价销售同样数量的商品相比 , 销售额有什么变化 ?
解 : -5×60 =-300 答 : 销售额下降300元.
随堂演练
1.假设a、b互为相反数 , 假设x、y互为倒数 ,
那么a-xy +-b=1
.
2.相反数等于它本身的数是 0 ; 倒数等于 它本身的数是 1 , -1; 绝対值等于它本身 的数是 非负数.
例3 用正负数表示气温的变化量 , 上升为正 , 下降为负.登山队攀登一座山峰 , 每登高1 km气温的变化量为-6 ℃ , 攀登3 km后 , 气 温有什么变化 ?
解 : 〔-6〕×3 =-18
答 : 气温下降18℃.
强化练习 1.计算 :
〔﹣6〕×0 = 0
1 3
1 4
1 12
2 3
9 4
7 4 28 , …………__把__绝__対___值__相__乘___
所以 (7) 4 —-—28——.
思考: 通过上题,你认为:非零两数相乘,关键是 什么?
有理数乘法的步骤 :
两个有理数相乘 , 先确定积的__符_号__ , 再确定积的_绝__対_值__.
七年级数学上册 第五章 一元一次方程 6 应用一元一次方程—追赶小明课件

答:火车的长度为300 m,速度为30 m/s.
2021/12/5
第七页,共三十八页。
知识点 行程问题
1.甲、乙两人练习赛跑,甲每秒跑7 m,乙每秒跑6.5 m,甲让乙先跑5 m,设
x s后甲可追上乙,则下列(xiàliè)四个方程中不正确的是 ( ) A.7x=6.5x+5 B.7x+5=6.5x C.(7-6.5)x=5 D.6.5x=7x-5
解得x=1. 答:队伍长1千米.
2021/12Βιβλιοθήκη 5第十九页,共三十八页。2.隧道长300米,火车(huǒchē)通过隧道用时25秒,全车都在隧道内的时间为5秒,
求车长和车速.
解析 设火车车身长x长,根据题意,得
3 0 0= x , 3 0 0 x
25
5
300+x=5(300-x),
x=200,
车速为 300=2020m0/s.
4.甲、乙两站相距180 km,一辆速度为40 km/h的货车(huòchē)从甲站开出,一辆
速度为48 km/h的客车从乙站开出.
(1)若两辆车同时同向而行,客车在货车后方,则几小时后客车可以追上 货车? (2)若客车开出40分钟后货车开出,两车同向而行,客车在货车后方,则货
车开出几小时客车可以追上货车?
答案(dáàn) B 题中的相等关系为:甲x秒跑的路程=乙x秒跑的路程+5 m,根 据题意得7x=6.5x+5,故A正确;C、D选项都是通过A选项变形而来的,故
C、D正确.故选B.
2021/12/5
第八页,共三十八页。
2.(2016广东肇庆端州西区期末)轮船沿江从A港顺流行驶到B港,比从B 港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港 相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是 (
七年级数学下册第6章一元一次方程6.3实践与探索第1课时体积和面积问题教案华东师大版

第1课时体积和面积问题1.使学生能够找出简单应用题中的已知量、未知量和相等关系,然后列出一元一次方程来解简单应用题,并会根据应用题的实际意义,检查求得的结果是否合理.2.能够利用一元一次方程解决图形面积、体积等相关问题.重点利用一元一次方程解决图形面积、体积等相关问题.难点找问题中的等量关系.一、创设情境、复习引入我们学过一些图形的相关公式,你能回忆一下,有哪些公式?回忆一些图形的有关公式,为本节课学习用一元一次方程解决图形相关问题,找等量关系起到帮助作用.二、探索问题,引入新知问题:用一根长60厘米的铁丝围成一个长方形:(1)如果长方形的宽是长的错误!,求这个长方形的长和宽;(2)如果长方形的宽比长少4厘米,求这个长方形的面积;(3)比较(1),(2)所得两个长方形面积的大小.还能围出面积更大的长方形吗?解:(1)设长方形的长为x厘米,则宽为错误!x厘米.根据题意,得2(x+错误!x)=60,解这个方程,得x=18,所以长方形的长为18厘米,宽为12厘米.(2)设长方形的长为x厘米,则宽为(x-4)厘米,根据题意,得2(x+x-4)=60,解这个方程,得x=17,所以S=13×17=221(平方厘米).(3)在(1)的情况下S=12×18=216(平方厘米);在(2)的情况下S=13×17=221(平方厘米).还能围出面积更大的长方形,当围出的长方形的长宽相等时,即为正方形,其面积最大,此时其边长为15厘米,面积为225平方厘米.讨论:在第(2)小题中,能不能直接设面积为x平方厘米?如不能,怎么办?如果直接设长方形的面积为x平方厘米,则如何才能找出相等关系列出方程呢?诱导学生积极探索:不能直接设面积为未知数,则需要设谁为未知数呢?那么设未知数的原则又是什么呢?结论:在周长一定的情况下,长方形的面积在长和宽相等的情况下最大;如果可以围成任何图形,则圆的面积最大.【例】将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0。
2024年人教版七年级数学上册《实际问题与一元一次方程(6)表格问题》课堂重难点精练

实际问题与一元一次方程
(6)表格问题
1.在某月的月历中圈出相邻的3个数,其和为43.这3个数的位置可能是
(D)
A
B
C
D
2.某电视台组织知识竞赛,共设20道选择题,每题都要作答,如表记
录了3位参赛者的得分情况.
参赛者
答对题数
答错题数
总Байду номын сангаас分
甲
20
0
100
乙
19
1
设小明答对了x道题,则答错了(20-x)道题.由题意,得
5x-(20-x)=80.
解得x= .
因为x为整数,所以参赛者小明不可能得80分.
3.如表为某篮球比赛过程中部分球队的积分榜(篮球比赛没有平局).
球队
A
B
C
D
E
比赛场次
12
12
12
11
11
胜场
10
9
7
6
…
(1)观察积分榜,请直接写出球队胜一场积
积
1
分;
负场
2
3
5
5
…
2
积分
22
21
19
17
13
分,负一场
3.如表为某篮球比赛过程中部分球队的积分榜(篮球比赛没有平局).
球队
A
B
C
D
E
比赛场次
12
12
12
11
11
胜场
10
9
7
6
…
负场
2
3
5
5
…
积分
22
七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。
华师版七年级数学下册优秀课件 第6章 一元一次方程 解一元一次方程 第2课时 用方程的变形规则解方程

知识点❸ 将未知数的系数化为 1 4.由 2x-1=0 得到 x=12 ,可分两步,按步骤完成下列填空: 第一步:根据方程的变形规则__1__,方程两边_都__加__上__1_,得到 2x=1;
第二步:根据方程的变形规则__2__,方程两边都__乘 ___以__12__(或__都__除__以___2_),得到 x =12 .
11.小红在解关于x的方程3a=2x+15时,在移项的过程中2x没有改变符号, 得到的方程的解为x=3,求a的值及原方程的解.
解:由题意得3a+2x=15,把x=3代入得3a+6=15,解得a=3,所以原方程 为9=2x+15,解得x=-3
C.由12 y=2,得 y=4
D.由14 x+1=0,得 x=3
7.(教材 P6 例 1、例 2 变式)解方程:
(1)4x=3x-5; (2)-32 x=32 .
解:x=-5解:x=-1源自8.方程3x-4=1+2x,移项,得3x-2x=1+4,也可以理解为方程两边同时
( A) A.加上(-2x+4) B.减去(-2x+4) C.加上(2x+4) D.减去(2x+4) 9.(南阳邓州市期中)如果3ab2m-1与9abm+1是同类项,那么m等于(A ) A.2 B.1 C.-1 D.0
10.已知方程12 x=-2 的解比关于 x 的方程 5x-2a=0 的解大 2,求 a 的值.
解:由12 x=-2,得 x=-4,因为方程12 x=-2 的解比关于 x 的方程 5x- 2a=0 的解大 2,所以方程 5x-2a=0 的解为 x=-6,所以 5×(-6)-2a=0, 所以 a=-15
5.下列解方程过程中“系数化为 1”正确的是( D ) A.由 4x=-5,得 x=-45 B.由 3x=-12 ,得 x=-32 C.由 0.3x=1,得 x=130 D.由-0.5x=-12 ,得 x=1
七年级数学下册 第6章 一元一次方程电子课本 华东师大版 教案
第6章一元一次方程 (2)§6.1 从实际问题到方程 (2)§6.2 解一元一次方程 (4)1. 方程的简单变形 (4)2. 解一元一次方程 (6)阅读材料 (10)方程史话 (10)§6.3 实践与探索 (10)阅读材料 (14)2=3? (14)小结 (14)复习题 (15)第6章一元一次方程一队师生共328人,乘车外出旅游,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租多少辆客车?44×?+64=328§6.1 从实际问题到方程问题1某校初中一年级328名师生乘车外出春游,已有2辆校车可乘坐64人,还需租用44座的客车多少辆?回忆小学里已经学过列方程的解法,我们不妨回顾一下:设需租用客车x 辆,共可乘坐44x 人,加上乘坐校车的64人,就是全体 328人.可得44x +64=328.①解这个方程,就能得到所求的结果.问题2在课外活动中,X 老师发现同学们的年龄大多是13岁.就问同学:“我 今年45岁,几年以后你们的年龄是我年龄的三分之一?”“三年!”小敏同学很快发现了答案.他是这样算的:1年后,老师的年龄是46岁,同学的年龄是14岁,不是老师年龄的31; 2年后,老师的年龄是47岁,同学的年龄是15岁,也不是老师年龄的 31; 3年后,老师的年龄是48岁,同学的年龄是16岁,恰好是老师年龄的31. 也有的同学说,我们可以列出方程来解:设x 年后同学的年龄是老师年龄的31,而x 年后同学的年龄是(13+x ) 岁,老师的年龄是(45+x )岁,可得13+x =31(45+x ). ② 这个方程不像问题1中的方程①那样容易求出它的解.但小敏同学的方法 启发我们,可以用尝试、检验的方法找出方程②的解,即只要将x =1,2,3, 4,…代入方程②的左右两边,看哪个数能使两边的值相等.这样得到x =3是 方程的解.思 考如果未知数可能取到的数值较多,或者不一定是整数,该从何试起?如果 试验根本无法入手又该怎么办?练 习根据题意设未知数,并列出方程(不必求解):1. 某班原分成两个小组活动,第一组26人,第二组22人,根据学校活动器材的数量,要将第一组人数调整为第二组人数的一半,应从第一组调多少人到第二组去?2. 小明的爸爸三年前为小明存了一份3000元的教育储蓄.今年到期时取出,得到的本息和为3243元.请你帮小明算一算这种储蓄的年利率.1. 检验下列方程后面大括号内所列各数是否为相应方程的解:2. (1) 1815-=+x x ,⎭⎬⎫⎩⎨⎧-3,23; 3. (2) 2(y -2)-9(1-y )=3(4y -1), {-10,10}.4. 根据班级内男、女同学的人数编一道应用题,和同学交流一下.5. 小赵去商店买练习本,回来后问同学:“店主告诉我,如果多买一些就给我八折优惠.我就买了20本,结果便宜了 1.60元.你猜原来每本价格多少?”你能列出方程吗?§6.2 解一元一次方程1. 方程的简单变形联 想测量一些物体的质量时,我们经常将它们放在天平的左盘内,在右盘内放 上砝码,使天平处于平衡状态,这时两边的质量相等,我们就可测得该物体的 质量.如果我们在两边盘内同时添上(或取下)相同质量的物体,可以发现天平 依然平衡;如果我们将两边盘内物体的质量同时扩大到原来相同的倍数(或同时缩小到原来的几分之一),也会看到天平依然平衡.图~3反映了由天平联想到的几个方程的变形.x+2=5 ⇒x=5-2图3x=2x+2 ⇒3x-2x=2图2x=6 ⇒x=6÷2图归纳我们可以看到,方程能够这样变形:方程两边都加上或都减去同一个数或同一个整式,方程的解不变.方程两边都乘以或都除以同一个不为零的数,方程的解不变.通过对方程进行适当的变形,可以求得方程的解.例1解下列方程:(1)x-5=7;(2)4x=3x-4.解(1)由x-5=7,两边都加上5,得x=7+5 ,即x=12.(2)由4x=3x-4,两边都减去3x ,得 4x -3x =-4,即x =-4.概 括像这样,将方程中的某些项改变符号后,从方程的一边移到另一边的变形 叫做移项(transposition ).例2 解下列方程:(1) -5x =2; (2)23x =31. 解 (1) 方程两边都除以-5,得x =52-. (2) 方程两边都除以23(或乘以32),得 x =31×32 , 即 x =92. 这里的变形通常称作“将未知数的系数化为1”.概 括以上例1和例2解方程的过程,都是对方程进行适当的变形,得到x =a 的 形式.练 习1.列方程的变形是否正确?为什么?(1) 由3+x =5,得x =5+3; (2)由7x =-4,得x =-47; (3) 由021=y ,得y =2; (4)由3=x -2,得x =-2-3. 2. (口答)求下列方程的解:(1)x -6=6; (2)7x =6x -4;(3)-5x =60; (4)2141=y .§6.1中问题1所列出的方程.做一做利用方程的变形,求方程2x +3=1的解,并和同学讨论与交流.例3 解下列方程:(1) 8x =2x -7; (2) 6=8+2x ;(3) 321212-=-y y 解 (1) 8x =2x -7,8x -2x =-7,6x =-7,x =67-. (2) 6=8+2x ,8+2x =6,2x =-2,x =-1.(3) 321212-=-y y , 213212+-=-y y 2523-=y , y =35- 练 习解下列方程:1. 3x +4=0 .2. 7y +6=-6y3. 5x +2=7x +84. 3y -2=y +1+6y .5.x x 2.041852-=-. 6. 1-21x =x +31习题1. 解下列方程:(1)18=5-x ; (2)x x 413243-=+; (3)3x -7+4x =6x -2; (4)10y +5=11y -5-2y ;(5)a -1=5+2ax +1.2-2xx .2. 解下列方程:(1)2y +3=11-6y (2)2x -1=5x +7(3)31x -1-2x =-1; (4)21x -3=5x +41 3. 已知y 1=3x +2,y 2=4-x .(1)当x 取何值时,y 1=y 2? (2)当x 取何值时,y 1比y 2大4?2. 解一元一次方程前面我们遇到的一些方程,例如44x +64=328,13+x =31(45+x ) 等等,有一个共同特点,它们都只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程(linearequationwithoneunknown ).我们再一起来解几个一元一次方程.例4 解方程: 3(x -2)+1=x -(2x -1).解 原方程的两边分别去括号,得3x -6+1=x -2x +1,3x -5=-x +1,3x +x =1+5,4x =6, x =23. 练 习1.解下列方程:(1)5(x +2)=2(5x -1);(2)(x +1)-2(x -1)=1-3x ;(3)2(x -2)-(4x -1)=3(1-x ).2.列方程求解:(1)当x 取何值时,代数式3(2-x )和2(3+x )的值相等?(2)当y 取何值时,2(3y +4)的值比5(2y -7)的值3?3.解§6.1中问题2所列出的方程.例5 解方程:解 由原方程得3(x -3)-2(2x +1)=6,3x -9-4x -2=6,3x -4x =6+9+2,-x =17,x =-17.在上述解方程的过程中,第一步是方程的两边都乘以同一个数6,使方程中的系数不出现分数.这样的变形通常称为“去分母”.讨 论在以上各例解一元一次方程时,主要进行了哪些变形?如何灵活运用这些变形合理、简洁地解一元一次方程?练 习1.指出下列方程求解过程中的错误,并给予纠正:(1)解方程:1524213-+=-x x (2)解方程:246231x x x -=+-- 解: 15x -5=8x +4-1, 解: 2x -2-x +2=12-3x15x -8x=4-1+5, 2x-x +3x =12+2+27x =8 4x =1687=x x =4.2.解下列方程:(1);47815=-a (2)15334--=-x x 例6 如图,天平的两个盘内分别盛有51 g 、45 g 盐,问应该从盘A 内拿出多少盐放到盘B 内,才能使两者所盛盐的质量相等?图6.2.4分析 设应从盘A 内拿出盐xg ,可列出表.表6.2.1解 设应从盘A 内拿出盐x g 放到盘B 内,则根据题意,得 51-x =45+x .解这个方程,得x =3.经检验,符合题意.答: 应从盘A 内拿出盐3 g 放到盘B 内.例7 学校团委组织65名新团员为学校建花坛搬砖.女同学每人搬6块,男同学每人搬8块,每人搬了4次,共搬了1800块.问这些新团员中有多少名男同学?分析 设新团员中有x 名男同学,可列出表.解设新团员中有x名男同学,则根据题意,得32x+24(65-x)=1800.解这个方程,得x=30.经检验,符合题意.答:新团员中有30名男同学.练习1. 学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺阶段花了多少时间?2. 将上题的分析和列得的方程与例7相比较,看看是否相似.将你的想法和同学交流一下.3.第1题中,若问“小刚在离终点多远时开始冲刺”,你该如何求解?归纳用一元一次方程解答实际问题,关键在于抓住问题中有关数量的相等关系,列出方程.求得方程的解后,经过检验,就可得到实际问题的解答.这一过程也可以简单地表述为:其中分析和抽象的过程通常包括:(1)弄清题意和其中的数量关系,用字母表示适当的未知数;(2)找出能表示问题含义的一个主要的等量关系;(3)对这个等量关系中涉及的量,列出所需的表达式,根据等量关系,得 到方程.在设未知数和解答时,应注意量的单位.习题1.解下列方程:(1))4(213x +-=; (2)1)34(2)52(3++=+x x2.解下列方程:(1)353235x x -=-; (2)x x 613211-=-; (3)161242=--+y y . 3.(1)在等式S =2)(b a n +中,已知S =279,b =7,n =18,求a 的值. (2)已知梯形上底a =3,高h =5,面积S =20,根据梯形的面积公式S =h b a )(21+,求下底b 的长. 4.球的表面是由一些呈多边形的黑、白皮块缝合而成的,共计有32块,已知黑色块数比白色块数的一半多2,问两种皮块各有多少?5.学校大扫除,某班原分成两个小组,第一组26人打扫教室,第二组22人打扫包干区.这次根据工作需要,要使第二组人数是第一组人数的2倍,那么应从第一组调多少人到第二组去?6.学校所在地的出租车计价规则如下:行程不超过3千米李老师和三位学生去探望一位病假的学生,坐出租车付了17.60元,他们共乘坐了多少路程?阅读材料方程史话你知道吗?现存世界上最古老的方程出现在英国考古学家兰德1858年找到的一份古埃及人的“纸草书”“啊哈,它的全部,它的71,是19”;“一堆,它的71,21,32,居然是33”.译得更明白一点就是:.33712132;1971=+++=+x x x x x x 在我国,“方程”一词最早出现于东汉初年(公元前后)的数学经典著作《九章算术》的第八章“方程”“天元术”解题,从设未知数到列方程都和现代数学十分相似.也就是在这段时期,方程的知识从中国传入日本.古希腊数学家丢番图(Diophantus ),是以研究一类方程(不定方程)著称于世的数学家.在他的墓碑上,刻写着这样一段墓志铭:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.请你列出方程算一算,丢番图去世时的年龄.§6.3 实践与探索问题1用一根长60厘米的铁丝围成一个长方形.(1) 使长方形的宽是长的32,求这个长方形的长和宽. (2) 使长方形的宽比长少4厘米,求这个长方形的面积.(3) 比较(1)、(2)所得两个长方形面积的大小.还能围出面积更大的 长方形吗?讨 论每小题中如何设未知数?在第(2)小题中,能不能直接设面积为x 平方 厘米?如不能,该怎么办?探 索将题(2)中的宽比长少4厘米改为3厘米、2厘米、1厘米、0厘米(即 长与宽相等),长方形的面积有什么变化?练 习1.一块长、宽、高分别为4厘米、3厘米、2厘米的长方体橡皮泥,要用它来捏一个底面半径为的圆柱,它的高是多少?(精确到,π取3.14)2.在一个底面直径5厘米、高18厘米的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离.读一读本节问题1中,通过探索我们发现,长方形的周长一定的情况下,它的长 和宽越接近,面积就越大.当长和宽相等,即成为正方形时,面积最大,通过以后的学习,我们就会知道其中的道理.有趣的是:若把这根铁丝围成任何封闭的平面图形(包括随意七凹八凸的不规则图形),面积最大的是圆.这里面的道理需要较为高深的学问.将来你有兴趣去认识它吗?小常识本章§6.1练习中讨论过的教育储蓄,是我国目前暂不征收利息税的一种储蓄.国家对其他储蓄所产生的利息,征收20%的个人所得税,即利息税.问题2小明爸爸前年存了年利率为2.43%的二年期定期储蓄.今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.60元的计算器.问小明爸爸前年存了多少元?讨论扣除利息的20%,那么实际得到利息的多少?你能否列出较简单的方程?练习填空:1. (1)学校图书馆原有图书a册,最近增加了20%,则现在有图书_______册;(2)某煤矿预计今年比去年增产15%,达到年产煤60万吨,设去年产煤x万吨,则可列方程__________________;(3)某商品按定价的八折出售,售价14.80元,则原定价是_________元.2.肖青的妈妈前年买了某公司的二年期债4500元,今年到期,扣除利息税后,共得本利和约4700元.问这种债券的年利率是多少(精确到0.01%)?习题1. 一个角的余角比这个角的补角的一半小40°,求这个角的度数.2. 一X覆盖在圆柱形罐头侧面的商标纸,展开是一个周长为88厘米的正方形(不计接口部分),求这个罐头的容积(精确到1立方厘米,π取3.14).3. 有一批截面是长11厘米、宽10厘米的长方形铁锭,现要铸造一个42. 9千克的零件,应截取多长的铁锭(铁锭每立方厘米重)?4. 某市去年年底人均居住面积为11平方米平方米.求今年的住房年增长率(精确到0.1%).5. 某银行设立大学生助学贷款,分3~4年期,5~7年期两种.贷款年利率分别为6.03%、6.21%,贷款利息的50%由国家财政贴补.某大学生预计6年 后能一次性偿还2万元,问他现在大约可以贷款多少(精确到0.1万元)?问题3小X 和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小X 向司机询问行车时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议小X 和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是30千米/时,问小X 家到火车站有多远?吴小红同学给出了一种解法:设小X 家到火车站的路程是x 千米,由实际乘车时间比原计划乘公共汽车提前了41小时,可列出方程 4160230230=⎪⎪⎪⎪⎭⎫ ⎝⎛+-x x x 解这个方程:411206030=--x x x , 4x -2x -x =30,x =30.经检验,它符合题意.答: 小X 家到火车站的路程是30千米.X 勇同学又提出另外一种解法:设实际上乘公共汽车行驶了x 千米,则从小X 家到火车站的路程是2x 千米,乘出租车行驶了x 千米.注意到提前的41小时是由于乘出租车而少用的,可列出方程416030=-x x 解这个方程,得x =15.2x =30.所得的答案与解法一相同.讨 论试比较以上两种解法,它们各是如何设未知数的?哪一种比较方便?是不是还有其他设未知数的方法?试试看.练 习加制作,每天制作40面.完成了三分之一以后,全班同学一起参加,结果比原计划提前一天半完成任务,假设每人的制作效率相同,问共制作小旗多少面?2. 将上题与问题3比较,你发现了什么?3. 编一道联系实际的数学问题,使所列的方程是3x +4(45-x )=150.并与同学交流、比较一下.习题1. 师徒两人检修一条长180米的自来水管道,师傅每小时检修15米,徒弟每小时检修10米.现两人合作,多少时间可以完成整条管道的检修?2. 学校准备添置一批课桌椅,原订购60套,每套100元.店方表示:如果多购,可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.3. 师徒两人检修一条煤气管道,师傅单独完成要10小时,徒弟单独完成要15小时.现两人合作,需多少小时完成?4. 中国民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票.一名旅客带了35千克行李乘机,机票连同行李费共付1 323元,求该旅客的机票价.5. 小王每天去体育场晨练,都见到一位田径队的叔叔也在锻炼.两人沿400米跑道跑步,每次总是小王跑2圈的时间,叔叔跑3圈.一天,两人在同地反向而跑,小明看了一下记时表,发现隔了32秒钟两人第一次相遇.求两人的速度.第二天小王打算和叔叔在同地同向而跑,看叔叔隔多少时间再次与他相遇.你能先给小王预测一下吗?问题4课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”,就因校长叫他听一个而离开教室.调皮的小X说:“让我试一试.”上去添了“两人合作需几天完成?”有同学反对:“这太简单了!”但也引起了大家的兴趣,于是各自试了起来:有添上一人先做几天再让另一人做的,有两人先合作再一人离开的,有考虑两人合作完成后的报酬问题的……李老师回教室后选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元.如果按各人完成的工作量计算报酬,那么该如何分配?试解答这一问题,并与同学们一起交流各自的做法.习题1.试将下题内容改为与我们日常生活、学习有关的问题,使所列得的方程相同或相似:食堂存煤若干吨,原来每天烧煤3吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天,求原存煤量.2.试对以下情境提出问题,并讨论解答(必要时可对情境作适当补充):3.某班级组织去风景区春游,大部分同学先坐公共汽车前往,平均速度为24千米/时;4名负责后勤的同学晚半小时坐校车出发,速度为60千米/时,同时到达山脚下.到达后发现乘坐缆车上山费用较大,且不能游览沿途风景.于是商定:大部队步行上山,4名后勤改为先遣队,乘缆车上山,做好在山顶举行活动的准备.缆车速度是步行的3倍,步行同学中途在一个景点逗留了10分钟,到达山顶时比先遣队晚了半小时.阅读材料2=3?小红和小兵一起讨论方程2+xx的解法.=332+小红说,移项求解:+xx=22+33-xx=322-3-x1-=x=1小兵边听边想,只见他写下了如下的式子:+x=x3232+-x3=x2-32-xx=(3)1)1(2-2=3小红一看,怎么,2=3?!你能帮助他们解开这个谜吗?小结一、知识结构二、注意事项1.对一元一次方程的认识,要联系生活实际,在学习中体会:方程是反映现实世界中数量相等关系的一个有效的数学模型.2.解一元一次方程时,要注意合理地进行方程的变形,也要注意根据方程的特点灵活运用.3.意,将实际问题转化为数学问题,特别是寻求主要的数量相等关系,列出方程.求得方程的解后,要注意检验所得结果是否符合实际问题的要求.复习题A组1.解下列方程:(1);321132+=-x x (2);0)12(2)5(5=-+-x x (3)4x +3=2(x -1)+1; (4);3221y y -=+ (5);232)73(72x x -=+ (6).1823652=--+x x 2.(1)x 取何值时,代数式4x -5与3x -6的值互为相反数?(2)k 取何值时,代数式31+k 的值比213+k 的值小1? 3.课外活动中一些学生分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少2组.问这些学生共有多少人?4.一种药品现在售价每盒56.10元,比原来降低了15%,问原售价多少元?5.用一根直径12厘米的圆柱形铅柱,铸造10只直径12厘米的铅球,问应截取多长的铅柱(球的体积为π34R 3)? 6.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1 171,求这个三位数.7.一年级三个班为希望小学捐赠图书.1班捐了152册,2班捐书数是三个班级的平均数,3班捐书数是年级总数的40%,三个班共捐了多少册?B 组8.(1);532)21(223x x =⎥⎦⎤⎢⎣⎡+- (2);5174732+-=--x x (3);535.244.2x x =--(4).22)141(34=---x x 9.已知x =32是方程x x x m 523)43(3=+-的解,求m 的值. 10.当k 取何值时,方程2(2x -3)=1-2x 和 8-k =2(x +1)的解相同?11.(1) 阅读以下例题:解方程 |3x |=1.解:① 当3x ≥0时,原方程可化为一元一次方程3x =1,它的解是 31=x ; ② 当3x <0时,原方程可化为一元一次方程-3x =1,它的解是 31-=x . 所以原方程的解是311=x ,312-=x . (2) 解下列方程:① |x -3|=2; ② |2x +1|=5.12.学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,杉树的棵数比总数的三分之一少14棵.两类树各种了多少棵?13.一家商店将某型号彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投诉后,执法部门按已得非法收入的10倍处以每台2 700元的罚款.求每台彩电的原售价.C 组14.从甲地到乙地公共汽车原需行驶7个小时,开通高速公路后,路程近了30千米,而车速平均每小时增加了30千米,只需4个小时即可到达。
七年级数学下册第6章一元一次方程6.2解一元一次方程6.22解一元一次方程第1课时课件新版华东师大版
所以a+2=0,m-3=1,故a=-2,m=4.
答案:-2 4
4.观察下列各式,哪几个是方程?哪几个是一元一次方程?
①5x2+2=3;②7+6=13;③3x-1=x-4;④2x+3;
⑤x+5=y+6;⑥ 1 -2x=8x+3.
x
【解析】①③⑤⑥是方程;③是一元一次方程.
5.已知(m-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式 199(m+x)(x-2m)+m的值. 【解析】因为(m-1)x2-(m+1)x+8=0是关于x的一元一次方 程,所以m-1=0,即m=1. 当m=1时,方程变形为-2x+8=0,因此x=4, 所以原式=199(1+4)(4-2×1)+1=1991; 所以所求代数式的值为1991.
但并不是解每一个方程都需要这五个步骤,这五个步骤的先后 顺序并非固定不变,要根据方程的特点,确定恰当的步骤,灵 活解方程.
题组一:一元一次方程
1.下列方程中,是一元一次方程的是( )
A.x-3
B.x2-1=0
C.2x-3=0
D.x-y=3
【解析】选C.选项A不是方程,选项B未知数的次数不是1,选
【互动探究】结合本例说明:一元一次方程中,未知数的系数 应满足什么条件?为什么? 提示:m-1≠0.当m-1=0时,就会得到0×x+5=0,即5=0,不是 一元一次方程. 【总结提升】一元一次方程具备的三个条件 1.一元:只含有一个未知数. 2.整式:含有未知数的式子是整式. 3.一次:未知数的次数是1.
项D含有两个未知数,只有选项C符合一元一次方程的定义.
七年级数学上册一元一次方程应用题常用公式
七年级数学上册一元一次方程应用题常用公式
一元一次方程是数学中一个重要的概念,它在解决实际问题中有着广泛的应用。
对于一元一次方程的应用题,我们通常需要使用一些常用的公式来简化计算过程。
下面是一元一次方程应用题中常用的几个公式:
1. 路程=速度×时间
这个公式是解决行程问题的基础,它表示物体在一定时间内移动的距离与速度和时间的关系。
2. 工作量=工作效率×工作时间
这个公式用于解决工作问题,它表示完成一项工作所需的总工作量与工作效率和时间的关系。
3. 利润=售价-进价
这个公式用于解决利润问题,它表示商家在销售商品时所获得的利润与商品的售价和进价的关系。
4. 利息=本金×利率×时间
这个公式用于解决利息问题,它表示在一定时间内,本金产生的利息与本金、利率和时间的关系。
5. 面积=长×宽
这个公式用于解决几何图形面积问题,它表示矩形面积与长和宽的关系。
6. 周长=4×半径
这个公式用于解决圆的周长问题,它表示圆的周长与半径的关系。
7. 体积=底面积×高
这个公式用于解决几何图形体积问题,它表示立方体体积与底面积和高度的关系。
这些公式是一元一次方程应用题中常用的,掌握它们可以帮助我们更快地解决问题。
七年级数学下册第6章一元一次方程6.3实践与探索工程类应用问题2
件,甲需
小时完成。我思考我收获。—————。片刻后,同学们带着疑问的目光
No (mùguāng),窃窃私语:“这个题目没有呀。李老师开口了:“同学们的疑问是有道理的。解:设剩
下的部分需要x小时完成,根据题意,得。解:设两人合做这项工做需x小时,根据题意得,。已知 量、未知量、等量关系。教师寄语
Image
剩下(shènɡ xià)的部分由甲、乙合做。剩下(shènɡ xià) 的部分需要几小时完成?
2、学校准备安装无线网络,请来两名工人。 已知师傅单独完成需10天,徒弟单独完成需15 天,现由徒弟先做5天,然后两人合作(hézuò)完成, 得到报酬3000元,如果按各人完成工作量计算报
酬,那么该如何分配?
当堂闯关
我学习我快乐
比一比,看谁 又快又好
4、整理(zhěnglǐ)一批数据,由一个人做需80小时完
成。现在计划由一些人做2小时,再增加5人做8小时
,完成这项工作的 体人数?
。怎样安3 排参与整理数据的具
4
解:设计划(jìhuà)先由X 人做两小时。
2x 8(x5)
3
80
80
4
解得: x 2
经检验,符合题意
2、现由徒弟先做1天,再两人合作,完成后共得
到报酬450元.如果按各人完成的工作量计算(jì suàn)
报酬,那么该如何分配?
分析:
全部工作量“1”
&相等(xiāngděng)关 系全:部工作量
= 徒弟独做工
作量+徒弟合
徒弟先
做1天完
成的工 做量 1
6
合做x天徒 弟完成的工
作量 1 x 6
合做x天师傅完成的工
徒弟、师傅工作每天均得报酬: 450 90(元)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
爱玩大连麻将手机版下载
[问答题]某建筑工程,地下1层,地上16层。总建筑面积28000m2,首层建筑面积2400m2,建筑红线内占地面积6000m2。该工程位于闹市中心,现场场地狭小。施工单位为了降低成本,现场只设备了一条3m宽的施工道路兼作消防通道。现场平面呈长方形,在其斜对角布置了两个临时消火栓,两者之 [单选]公安机关消防机构在消防监督检查中发现建筑消防设施不符合消防安全要求,存在影响公共安全的重大火灾隐患的,应当。()A、口头报告本级人民政府B、书面报告本级人民政府C、书面报告本级公安机关D、书面报告上级公安机关消防机构 [单选]患者,男,50岁。自觉两目模糊,视物不清,伴有头痛,眩晕,舌红少苔,脉细弦。治疗应首选()A.升麻B.葛根C.薄荷D.柴胡E.菊花 [单选]医疗机构处方管理正确的是()A.急诊处方3日有效,每张处方不超过3日量B.门诊处方3日有效,普通药每张处方不超过7日量C.麻醉药品注射剂每张处方不超过3日量D.二类精神药品每张处方不超过3日量E.普通药品处方保存1年,特殊管理的药品处方保存3年 [多选]产生深度知觉的线索有()A.线条透视B.相对亮度C.双眼视差D.运动视差 [单选]中国特色社会主义法律体系的核心是()。A.宪法B.刑法C.民法 [填空题]一般照明电路的电压为()。 [问答题,简答题]如何制定企业培训计划? [单选]炉水中二氧化硅的危害是()。A、易结垢B、易降低pH值,对金属有腐蚀C、易产生微生物D、无危害 [单选]采用新工艺、新方法、新材料等无定额可循的工程项目应选用的持续时间计算方法是()。A.经验估计法B.定额计算法C.定性分析法D.定量分析法 [单选]下列关于传染源的描述不正确的是()A.感染病原体后,当病原体在机体内繁殖并排出体外即成为传染源B.不同传染病中,临床类型不同,流行病学意义却是一样的C.传染病急性期的一些症状,如咳嗽可促进病原体的播散D.在脊髓灰质炎中,隐性感染者是重要传染源E.某些动物间的传染病 [单选]下列有关肺癌的描述中,哪项是正确的()A.肺癌患者有同侧和隆突下淋巴结转移约占75%B.胸腔积液一般为淡黄色C.鳞癌一般位于肺门周围,对射线不敏感D.腺癌恶性程度高,对射线敏感E.肺癌女性多见 [单选]当路堤基底横坡陡于()时,基底坡面应挖成台阶。A.1:0.5B.1:1.5C.1:5D.1:10 [单选]下列项目中,不属于支付结算的基本原则的是()。A.恪守信用,履约付款B.谁的钱进谁的账,由谁支配C.信息保密D.银行不垫款 [单选,A1型题]动脉导管未闭脉压增大的主要原因是()A.心脏存在着异常的通道B.主动脉的血分流至肺动脉C.肺循环血流量的明显增多D.体循环血流量的明显减少E.收缩压的明显升高 [填空题]化验室内有危险性的试剂可分为()(毒品)和()三类. [单选]上消化道大出血是指数小时出血量达到()A.大于500mlB.大于1000mlC.大于1250mlD.大于1500mlE.大于2000ml [单选]某生产企业2012年度借款利息费用为18万元,其中包括以年利率6%向银行借入的200万元生产用资金的全年借款利息12万元;剩余的利息为以年利率8%向其他非金融企业借入的75万元生产用资金的借款利息(银行同期同类贷款年利率为6%)。该企业在计算2012年度企业所得税应纳税所得额 [单选]仪表系数为单位体积流体流过流量计时,流量计发出的信号脉冲数,其表示符号为()。A、KB、LC、WD、R [单选]《建设工程质量管理条例》规定,建设工程质量保修期限应当由()。A.法律直接规定B.发包人与承包人自主决定C.法律规定和发承包人双方约定D.发包人规定 [配伍题]内容同住院病历,但重点更突出、更简要的是()</br>病人住院期间的全部病情经过应记录在()A.会诊记录B.入院记录C.病程记录D.出院记录E.死亡记录 [单选,A1型题]有严重肝病的糖尿病患者禁用哪种降血糖药()。A.氯磺丙脲B.甲苯磺丁脲C.苯乙双胍D.胰岛素E.二甲双胍 [单选]下列哪一项符合高血压的治疗原则().A.联合用药,达到降压目标后停药B.症状不重者不宜使用降压药C.联合用药,达到降压目标后短期服用维持量D.联合用药,达到降压目标后长期服用维持量E.间断用药,避免产生抗药性 [单选]在白细胞分类计数中,正常中性粒细胞的比例为A.0.5%~1%B.50%~70%C.3%~8%D.80%~85%E.20%~40% [多选]需求价格弹性是()。A.需求随价格变化的数量B.市场需求变化量与价格变化量之比C.市场需求对于价格变化的反应程度D.价格变化量与市场需求变化量之比E.市场需求变化百分比与价格变化百分比之比 [单选,A2型题,A1/A2型题]治疗鼻出血的最佳方法是()。A.全身应用止血药物B.局部用肾上腺素棉片填塞C.用油纱行前鼻孔填塞D.在鼻内镜下寻找出血部位行电凝、微波、激光止血术E.结扎血管 [单选,A型题]患者女性,25岁,阵发性心悸6年。平时心电图显示为预激综合征,心电图如图3-16-4所示,旁路可初步定位在()。A.右侧壁B.左侧壁C.左后壁D.右后壁E.右后间隔 [单选]能保证柴油机在全工况范围内,在设定的转速下稳定工作的调速器是()。A.极限调速器B.定速调速器C.双制式调速器D.全制式调速器 [单选]下列哪一项不是胎儿十二指肠闭锁的超声表现A.双泡征B.双泡征中大的无回声区是胃泡C.双泡征中小的无回声区是十二指肠D.羊水过多E.结肠扩张 [单选,A2型题,A1/A2型题]侧卧后前位是指()A.仰卧于摄影床上,X线从腹侧射入,背侧射出B.侧卧于摄影床上,X线从右或左侧射入,左或右侧射出C.仰卧于摄影床上,X线从背侧射入,腹侧射出D.侧卧于摄影床上,X线从背侧射入,腹侧射出E.侧卧于摄影床上,X线从腹侧射入,背侧射出 [填空题]档板“三对应”的内容:()、()、()三者之间对应。 [单选]在计算责任成本时,对于不能直接归属于个别责任中心的费用,应该()。A.优先按责任基础分配B.优先按受益基础分配C.优先归入某一个特定的责任中心D.不进行分摊 [单选]出炉操作力求()A.按计划B.抢时间多出C.无所谓 [单选,A2型题,A1/A2型题]分化是指肿瘤细胞生长成熟的程度()A.分化程度越高则恶性程度越高B.分化程度越低则恶化程度越低C.未分化细胞越少则恶性程度越高D.分化程度越低则越接近其相应的发源组织E.未分化细胞越少则越接近其相应的发源组织 [问答题,简答题]请写出《国家电网公司电费抄核收工作规范》中抄表段划分的法正确的是()。A.仅有抗炎作用B.既有抗炎作用又有防止骨破坏的作用C.缓解关节症状的速度较其他慢作用抗风湿药慢D.不会诱发或加重感染E.不宜与其他慢作用药物联用 [单选]会计核算中产生权责发生制和收付实现制两种记账基础的前提是()。A.会计主体B.持续经营C.货币计量D.会计分期 [单选,A1型题]关于血栓闭塞性脉管炎,不恰当的是()A.病变一般自动脉开始B.早期主要是细菌感染引起C.主要侵袭四肢D.受累血管发硬而缩窄E.间歇性跛行是早期症状之一 [单选]输煤系统落煤筒与水平面的倾角不应小于()。A、35°B、55°C、60°D、45° [单选]女性,65岁,发现左侧肢体活动不能3小时,患者意识清楚,瞳孔等大等圆,肌力2级,脑CT检查正常。诊断为急性脑梗塞。目前下列哪项处理最应该考虑()A.抗血小板治疗和抗凝治疗B.甘露醇等药物降颅压,抗脑水肿治疗C.蛇毒类降纤药物D.钙离子拮抗剂等神经保护剂E.尿激酶等溶栓药