船舶阴极保护系统简述

合集下载

埋地管道及船舶的阴极保护解读

埋地管道及船舶的阴极保护解读

(四)阴极保护度
保护度: 按国标 GB/I 10123-88 中的定义,保护度是“通过防蚀 措施使特定类型的腐蚀速率减小的百分数”。这一参数可以 直观地看出阴极保护的效果。它是通过试样在阴极保护状态 下和非保护试样对比得来。在管道实践中通常用检查片来测 定。 设非保护状态下自然埋设的检查片原始质量为 WO ,试样 腐蚀后经清除腐蚀产物后的质量为 W1,试样的表面积为 SO, 埋设时间为 t ,检查腐蚀前后的质量损失 GO= WO-W1 俗称失重。 由失重法计算检查片的腐蚀速率为:

最大保护电位 定义:加到管路通电点的电位极限值。在此极限电位
下,管路上的防腐绝缘层仍不致遭到破坏,此极限电位称
为地下管路的最大保护电位。 如果通电电位大于最大保护电位(绝对值),由于氢 去极化作用及电渗现象,会使绝缘层发生分层而遭到破坏。 并且氢原子有可能渗入钢管体内,导致钢管发生氢脆。
(三)保护电流密度

阴极保护技术是电化学保护技术的一种,其原理是向被腐蚀金属结构物表 面施加一个外加电流,被保护结构物成为阴极,从而使得金属腐蚀发生的 电子迁移得到抑制,避免或减弱腐蚀的发生。 目前阴极保护技术已经发展 成熟,广泛应用到土壤、海水、淡水、化工介质中的钢质管道、电缆、码 头、舰船、储罐罐底、冷却器等金属构筑物等的腐蚀控制。
牺牲阳极与外加电流阴极保护对比
保护 方式
牺牲阳极 阴极、不需要外部电源。 1、输出电流连续可调,可 2、对临近金属构筑物 满足较大的保护电流密度要 干扰小。 求 3、管理维护工作量小 2、不受环境电阻率限制 4、工程费用与保护长 3、工程越大越经济 度成正比 4、对管道防腐覆盖层质量 5、保护电流分布均匀, 要求相对较低 5、保护装置寿命长 利用率高。

外加阴极保护原理

外加阴极保护原理
(1)保护电位
保护电位,取决于金属性质和所处介质的性质,变化不大。通常最佳保护电位(船体钢板相对于银/氯化银参比电极的电位)-0.75~-1.00V,ICCP控制仪-恒电位仪的工作电压范围±2V。
(2)保护电流密度
保护电流密度,除金属和介质的性质外,还受环境影响,变化较大,可能包括:
·船舶在静止海水中,电流密度150mA/m2时,可以很快达到保护电位(-0.80V);但若电流密度小于40mA/m2,则几乎无法达到保护电位。
·海水是流动的而且海流和风浪时大时小,船舶也有时停泊有时航行且航速有快慢,都影响最佳保护电流密度。例如恶劣气象航行和破冰航行,所需要的保护电流密度显著增高。
·不同海域海水含盐量有差别,不同季节海水温差不同,都会影响最佳保护电流密度。
保护电流密度,需要综合考虑上述各种因素,而且主要靠大量的实践才能得到比较切实的数据。船体外加电流阴极保护装置的管理者,日常应针对这些环境因素不断调节、修整装置的相关参数,以确保其充分发挥作用。
船名:——————年——月航次:———From———To———
艉系统容量:————A————V艏系统容量:————A————V

航行区域
海水温度
艉输出
电极检测保护电位(mV)
艏输出(若有)
电极检测保护电位(mV)
艉轴电压(mV)
备注
A
V
S1
S2
A
V
S3
S4
1
2

29
30
31
⑤船到淡水水域,及时停止装置工作。再次航行到海水水域,重复本节第①、②、③、④各项。
(4)阳极屏蔽层
船体外加电流阴极保护装置工作时辅助阳极电流很大,被保护对象的电位,靠近辅助阳极的相对较低,而远离辅助阳极的相对较高,致使全船阴极保护效果不均匀。

船体外部外加电流阴极保护

船体外部外加电流阴极保护

水运是五大交通运输系统之一,船舶是水运的主要交通工具。

近年来,海运货物的增长率逐年增长8%。

然而,由于长期在海上航行,船舶受到各种腐蚀性介质的不同程度的腐蚀。

目前,船舶的主要防腐措施是涂料与阴极保护相结合。

由于涂层在涂敷和使用过程中不可避免地会出现涂层缺失、气孔等缺陷,这些地方首先会发生腐蚀,加速并引起点蚀。

阴极保护能有效抑制涂层缺陷处的点蚀,降低阴极保护的电流密度,使阴极保护更经济,保护电流分布更均匀,保护效果更好。

对于大型船舶,保护电流比较大。

在这种情况下,两套独立的保护系统可以安装在船的中部,或靠近船的头部和尾部。

电位器可以安装在机舱的主控制室或其附近。

在安装恒电位器时,应注意阴极接地和基准电极的零接地不应在同一点,并应间隔一定距离。

恒电位器的负极应接在船体上,正极应接在与船体绝缘的辅助阳极上,不得倒转。

辅助阳极一般对称布置在右舷和右舷上。

一般4-6艘为宜,超大型船舶数量可适当增加,但不超过10艘。

确定阳极数量后,即可确定阳极规格。

艉部安装的辅助阳极多为长条形,艏部多为圆盘形。

辅助阳极的垂直布置为从重水线到船底中线的弧长1 / 3左右,但必须小于轻水线0.5m以下。

船用辅助阳极的安装方式有两种,一种是附着式,另一种是凹式。

该胶黏剂的优点是目前分散性较好,缺点是容易损坏。

凹型的优点是阳极不易损坏,但分散能力不如粘着型。

凹阳极主要用于破冰船等高负荷船舶,并安装在船首。

参比电极的纵向排列取决于参比电极的数量。

如果整艘船只有两个参比电极,一个在船头,一个在船尾或船中部,最好将左右两边分开。

如果安装一个以上的参比电极,可以配置船首、中部和船尾,配置左舷和右舷。

参比电极布置在两个辅助阳极中间或离阳极最远的地方,即安装在电位最大的地方。

对于大型船舶,离阳极至少15-20米,而对于小型船舶,距离可以按比例缩小。

参比电极应与辅助阳极垂直布置在同一水平面上。

阴极保护说明

阴极保护说明

外加电流保护系统本工程需要保护的钢管桩共有729根,其中Ф1200mm的桩数333根,Ф1000mm的桩数396根。

阴极保护系统能实现全自动远程监控与微机管理。

采用外加电流阴极保护系统对码头的所有潮差区、水下区和泥下区的钢管桩提供联合保护,设计依据以下技术参数:(1)系统的设计寿命30年,阳极受到物理性破坏时可能需要更换。

(2)海水电阻率30 ohm-cm。

(3)Ф1200mm的桩数333根,Ф1000mm的桩数396根。

设计采用的泥面标高为远期标高。

潮汐变化是2.36m。

在码头施工过程中,应对所有的桩建立电连续性。

电连接接头穿过结构段间的伸缩缝以建立各个结构段之间的连接。

阳极悬吊在码头下方。

设计电流密度如下:水下区钢管桩保护电流密度100mA/m2;泥下区钢管桩保护电流密度20mA/m2。

30年的涂层破损率按50%计算。

阳极采用直径25mm,长1000mm的混合金属氧化物涂敷钛管阳极,海水部分辅助阳极导线为1×10mm2 PE/PE并适用于海水的电缆,上部辅助阳极电缆用YJV 0.6/1KV 1×10mm2。

阳极数量200支,每支阳极的输出电流为25A。

阳极在600A/m2电流密度下工作,使用寿命最少可达30年。

阳极通过阳极支架固定,支架焊接在钢桩上。

阳极分三组沿码头方向固定在码头底板上。

第一组安装在码头前沿附近;第二组安装在靠近码头后方处;第三组安装在码头中间处;阳极导线穿入阳极支架的槽钢内,沿着钢桩向上,布设在梁板下的电缆托架里,接入中间接线箱并线,然后接入控制柜中。

阳极电缆穿入独立的套管内,套管与码头方向垂直安装在码头底,接入电缆托架内。

从主电缆托架到控制柜的电缆应安装在另一条垂直于主托架的电缆托架内。

控制柜安装在码头后方的合适位置上。

负极电缆、参比电缆和监测电缆也通过电缆托架从控制柜布置到指定位置。

阳极和阴极电缆为YJV型。

阳极电缆的连接应采用环氧树脂浇筑电缆接头。

船体外加电流阴极保护系统设计与应用

船体外加电流阴极保护系统设计与应用

船体外加电流阴极保护系统设计与应用发布时间:2021-03-15T11:20:19.240Z 来源:《基层建设》2020年第27期作者:李伟[导读] 摘要:海航船舶受到海水冲刷侵蚀。

海水作为一种很强的腐蚀性介质,对船舶钢质外板有很强的腐蚀性。

武汉三通船舶技术工程有限公司湖北武汉 430000摘要:海航船舶受到海水冲刷侵蚀。

海水作为一种很强的腐蚀性介质,对船舶钢质外板有很强的腐蚀性。

对于长期处于海水中的船体而言,腐蚀问题更显突出。

本文首先对船舶的腐蚀机理进行分析;然后,对船体阴极外加电流保护系统进行相关计算,为该类型船舶在船体设计中采用阴极保护装置提供参考。

关键词:船舶腐蚀外加电流阴极保护1船舶腐蚀与腐蚀防护1.1腐蚀的基本原理船体腐蚀的基本原理就是金属原电池反应。

船体金属在海水电解质溶液中,形成微电池,在电池阴极发生还原反应,阳极发生氧化反应,导致金属的电化学腐蚀。

由于船舶船体金属不是纯净金属铁,存在多种金属元素。

两种金属之间存在电位差,两种金属处于同一电解质中,形成电池腐蚀。

腐蚀的基本过程可表示如下:阳极金属,发生氧化反应,发生腐蚀:Fe→ Fe2++2e-阴极金属,发生还原反应,无腐蚀。

1.2船体腐蚀的常见防护措施船舶的腐蚀防护直接关系到船舶的使用寿命和航行安全。

船体腐蚀防护最基本的手段就是油漆涂装。

通常在船舶建造中,船体金属表面经过表面处理工艺处理,然后选用合适的船体涂装油漆,以多次喷涂等涂装工艺技术,使油漆以一定厚度均匀覆盖在船体金属表面,形成连续的、完整的、致密的涂层,将船体金属表面与外界腐蚀环境相隔离,达到防腐蚀的目的。

另外,船舶长期在海水中航行,油漆涂覆有破损等的情况。

所以在船体防腐中,只有油漆涂覆是不够的,通常会在船舶设计中增加阴极保护措施。

阴极保护的基本原理,就是采用比船体金属电位更负(化学性更加活泼)的金属或合金,与被保护的船体金属连接,依靠该金属或合金不断地腐蚀融解所产生的电流使被保护的船体金属获得阴极极化,从而得到保护;或者给船体金属持续强加一个与金属腐蚀时产生的腐蚀电流方向相反的直流电,同样可使其在整体上构成阴极,便可使船体免受腐蚀。

浅析外加电流阴极保护系统的原理及操作须知

浅析外加电流阴极保护系统的原理及操作须知

海洋工程装备种类繁多,主要有:船舶、海洋钻井平台、浮式生产系统等装备。

海洋工程装备体积庞大,且主体多是钢结构制成,他们服役期间长,多达20多年,而且海水腐蚀性很强,海洋工程设备腐蚀破坏,污染海洋环境,甚至出现安全事故,严重危害工作人员安全,海洋工程装备防腐工作越来越多的引起人们的重视。

目前,海洋工程装备防腐方式主要用防腐涂层、牺牲阳极和外加电流保护系统等方法。

防腐涂层可以有效隔绝海水与装备金属面的接触,进而实现防腐。

但在船舶航行、海洋工程设备安装施工过程中涂层会受到破坏,金属表面开始腐蚀。

牺牲阳极保护方法对于海洋工程装备来说,外部悬挂的牺牲阳极增加其航行的阻力,也增加了结构物的重量和额外费用。

在牺牲阳极消耗过程中,其释放的金属离子也会污染周围环境,最主要的是牺牲阳极设计寿命较短,难以满足长期服役装备的需要。

外加电流阴极保护系统具有使用寿命长、保护效果好、维护费用低,可以通过一个AC-DC电源转换产生电压电流,干扰船体金属与海水发生化学反应,从而保护船体不被腐蚀。

一、外加阴极保护原理阴极保护的定义:通过外加直流电源或者比船体表面金属更活跃的金属,将想要保护的金属电位降低至不受腐蚀的电位,使得发生氧化还原化学反应所需的电子通过外加电源的电流或活泼金属给出。

当船体表面金属处于比此电位更低的电位时,该金属就不会参加氧化还原反应了,也就不再受到海水腐蚀。

电化学腐蚀是由于活泼金属与电解质溶液在一起发生氧化还原反应所引起的,与原电池的原理相同。

因为船体是由活泼金属—铁构成的,而海水便是电解质溶液,他们之间发生了氧化还原反应。

由以上化学公式可得:铁失去电子后与氧、水发生反应形成铁锈而溶解在水中,这样周而复始船体就会腐蚀掉。

从正极公式可知得到电子形成氢氧根,那么通过外加电流提供给保护的船体电子,这样船体就不会因为失去电子而被腐蚀,这就是外加电流阴极保护的原理依据。

船体ICCP系统原理如下:二、W轮的外加电流阴极保护系统组成W轮外加电流阴极保护系统由恒电位仪、辅助阳极和阳极屏蔽层、参考电极组成。

内河船舶船体阴极保护系统的应用研究

内河船舶船体阴极保护系统的应用研究

内河船舶船体阴极保护系统的应用研究文章从船舶阴极保护分析入手,论述了内河船舶船体阴极保护系统的应用。

期望通过本文的研究能够对船舶使用寿命的进一步延长有所帮助。

标签:船舶;恒电位仪;阴极保护1船舶阴极保护在内河上行驶的船舶,不可避免地会受到水体的腐蚀,一旦船体遭受腐蚀,不但会缩短船舶的使用寿命,而且还会导致安全风险增大。

所以必须采取行之有效的措施,对船体进行防蚀处理。

防腐涂层与阴极保护是船舶腐蚀防护较为常用的方法,通过在船体上涂刷防腐涂层,能够有效降低船体腐蚀的几率,而阴极保护系统则是对防腐涂层的补充。

不同的金属有着不同的电势,阴极保护系统就是通过对这些不同电势的合理运用,对船体上的金属起到保护效果。

船舶可以采用的阴极保护方式有两种,一种是外加电流,另一种是牺牲阳极。

外加电流是以直流电源对电流进行输出,由于电源本身的输出具有可调的特性,加之阴极数量相对较少,整个系统的使用寿命更长,故此在船体防蚀中应用的阴极保护系统基本上采用的方式都是外加电流。

阴极保护系统中,外加电流方式的结构如图1所示。

2内河船舶船体阴极保护系统的应用2.1系统设计思路对于船体阴极保护系统而言,保护电位是非常重要的指标之一,该指标除了能够对系统的性能进行评估之外,还能对整个系统起到一定的控制作用。

实践表明,内河船舶采用阴极保护系统时,只有保护电位达到一定范围时,船体才能够得到有效保护。

通过对现有外加电流阴极保护系统的构成情况进行分析后发现,系统中保护电位的检测是相关工作人员以手动的方式完成。

同时,根据检测到的结果,对保护状态进行判断。

当发现保护电位超出预先设定好的范围时,需要以人为的方式对电源的输出进行调节,从而达到改变保护效果的目的。

针对现有系统的不足,并在充分考虑船舶运行需要的基础上,在系统设计开发过程中,增加一个监测模块,借助该模块对保护电位进行实时监测,确保阴极保护的评估效果更加准确。

同时还能减轻工作人员的劳动强度。

基于这一思路,本次设计开发的船体阴极保护系统由两个部分组成:一部分是保护控制,另一部分是监测。

船体阴极保护工作原理

船体阴极保护工作原理

1.船体阴极保护工作原理?
答:这种船舶阴极保护系统是一种非常好用的电化学腐蚀原理的设备,这种设备在铁制成的船舶中架设,当船舶接触到海水的时候,就会发生电腐蚀的情况,所以才需要我们尽量减少海水和船舶之间的接触,很多人选择使用油漆隔离的方式来达到防腐的效果,但是船尾轴系却不那么好做防腐,这些地方与海水接触的时间很长,而且接触到海水的部分,就会出现电化学腐蚀的情况,这时就需要使用船舶阴极保护系统了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

船舶阴极保护系统简述
牺牲阳极装置
由于船舶在水中运动,影响船舶保护的因素很多,主要有流速、温度、盐分等,所以每当有条件变化时,均应及时检验阴极保护的有效性。

对于船舶的牺牲阳极装置,有的是直接焊到船壳上或用螺栓拧到船壳上,有的是通过导线与船壳连接。

它的管理维护和埋地金属构筑物一样,测试程序也一样。

通常船壳上的阳极寿命应能满足船舶进坞大修周期,每次进坞都应检查阳极的腐蚀过程及形态、阳极与船壳的连接是否松动。

并将代表性阳极取下,用钢丝刷洗掉表面疏松腐蚀产物,然后称重。

检测的数量,每侧至少4支阳极。

如果阳极是焊在船壳上的,难以取下,可用钢丝刷掉腐蚀产物,就地测量其尺寸。

在日常管理中,可定期测量船壳对水电位,如一个月一次或两个月一次,当发现电位参数异常,应查找原因,如连接是否断掉或松动,阳极是否丢失或阳极已腐蚀完等。

强制电流系统
强制电流系统的调试
强制电流阴极保护系统安装完毕后,下水前要检查每只阳极及参比电极的绝缘水密封情况,核对所有接线是否正确。

下水时应及时调试。

在接通电源以前,将所有开关均放在断开状态,电位器调至最小,然后接通电源,调节阳极输出电流大小,将给定全船壳的保护电位。

-0.80V~-0.90V(Ag/AgCl)或+0.25V~+0.15V(Zn),然后测定全船壳的保护电位。

当船艏的电位差≤50mV时,表明电位分布均匀,处于保护范围内,也说明系统中的阳极和参比电极布置是适当的。

当船舶在航行时,可将转换的开关旋至相应位置,利用附近的参比电极测量船壳的保护电位。

如果采用了铅银合金,那么通电应在海水中进行,并应手控每支阳极的输出电流,处在最佳工作范围内,以便阳极表面形成较好的导电膜后,再全部接通阳极并采用自动控制。

航行中,若海区、航速等发生变化时,应观察自控装置运行情况,记录电流和电压的变化数据。

必要时,重新调整给定电位值,以使全船各部位都处于最佳
保护状态。

阴极保护系统的管理与维护
强制电流阴极保护系统通常设两个电流档:海港内是一档,海上又是一档。

因为船在航行时所需保护电流大,约为停泊时两倍。

每次调节,应等待数小时,使电流重新分布。

每天应抄报电源设备的电流、电压值,并监测船壳/海水的电位值,根据电位值调节其电流值。

管理工作中,要定期使用便携式参比电极在水下600mm以下各种深度范围内,测试船壳/海水电位。

时间间隔为1-3个月,在船舶停靠在港口内进行。

船舶强制电流阴极保护系统的维护内容有,检查绝缘和覆盖层、检查密封位置的渗漏、检测各连接部位的电阻、校验参比电极。

对于发生覆盖层剥离的地方重新防腐绝缘。

应断开强制电流系统的电路。

在管理工作中应注意的几个可能的故障:
①正、负极严禁接反,接反将使船壳加速腐蚀,通过电位测试桩就可以判断出。

②阴、阳极电缆的绝缘护套有破损,如对此有怀疑,通过断开电路,测试线与船壳之间的反电动势加以判断。

③参比电极的故障可以通过多支电极比较或用便携式参比电极校对发现,更换和废止坏的参比电极。

④进入淡水,含盐量变少,电阻率升高,可能限制了阳极的电流输出和分布,需要调节电源的输出电压,满足电流的要求。

当船返回海洋后,应将电源电压调回,避免过保护造成覆盖层剥离。

相关文档
最新文档