热力学基本概念
热力学基本概念

热力学基本概念热力学是一门研究能量转化和相互转换的科学,它关注热量、能量和功的关系,以及物质在温度、压强和体积等条件下的相互作用。
在热力学中,有一些基本概念是我们必须了解和掌握的,本文将对热力学中的基本概念进行探讨。
1. 系统和环境在热力学中,我们将研究对象称为系统,而系统外部的一切都被称为环境。
系统可以是一个物体、一个化学反应器或者一个能量转换设备等等。
而环境则包括与系统相互作用的外部介质、周围的物体以及能与系统交换热量和做功的一切。
2. 状态函数和过程函数热力学的基本概念之一是状态函数与过程函数。
状态函数是系统的某一物理量,它只与系统的初始和末状态有关,与经历的过程无关。
例如温度、压强、体积、内能等都属于状态函数。
而过程函数则与系统经历的过程有关,例如热量、功等。
3. 热平衡与热力学平衡热平衡是指当两个物体接触时,它们之间没有净热量的传递。
在热平衡状态下,物体之间的温度是相等的。
而热力学平衡是指系统内部的各个部分之间达到平衡状态,它要求系统的各种宏观性质保持不变。
4. 等温过程与绝热过程等温过程是指系统与环境之间进行热交换的过程,过程中系统的温度保持不变。
绝热过程则是指系统与环境之间没有能量传递的过程,系统内部的能量不发生改变。
5. 内能和焓内能是指系统中分子和原子的热运动能量总和,它是一个状态函数。
焓是系统的内能与系统对外做的功之和,它是一个状态函数。
内能和焓在热力学中是非常重要的概念,它们描述了系统的能量转化和传递。
6. 熵和热力学第二定律熵是一个用来描述系统无序程度的物理量,它是表示分子混乱程度的度量。
热力学第二定律是关于熵变的定律,它表明一个孤立系统的熵只能增加或保持不变,而不能减小。
7. 等压、等体和等焓过程等压过程是指系统在恒定压力下发生的过程。
等体过程是指系统的体积保持不变的过程。
而等焓过程是指系统的焓保持不变的过程。
这些过程在热力学中有着重要的应用和意义。
8. 热容和热力学第一定律热容是指单位质量物质温度上升1度所需要的热量。
热力学基本概念解析

热力学基本概念解析热力学是研究物质热现象和能量转化的科学,它涉及到我们生活中许多方面,比如能源利用、环境保护和工业生产等。
本文将对热力学的基本概念进行解析,以帮助读者更好地理解和应用这一学科。
一、热力学基本概念1. 热量:热量是热力学中最基本的概念之一。
简单地说,热量是物体内部分子之间传递的能量。
在热力学中,热量的单位通常用焦耳(J)来表示。
当物体受热时,其内部的分子会发生运动,从而使得物体的温度升高。
2. 温度:温度是用来衡量物体热状况的物理量。
它表示了物体内部分子的平均动能。
在国际单位制中,温度的单位是开尔文(K)。
在热力学中,温度可以通过测量物体的热胀冷缩、压力或者其他物理现象来确定。
3. 热平衡:当两个物体之间没有能量交换时,它们处于热平衡状态。
在这种状态下,两个物体的温度相同。
当两个物体达到热平衡后,它们的热量交换将停止。
4. 热力学系统:热力学系统是指由物质和能量组成的系统。
根据系统与周围环境之间能量和物质的交换,热力学系统可以分为开放系统、封闭系统和孤立系统三种类型。
开放系统与周围环境能够进行物质和能量的交换,封闭系统只能进行能量的交换,而孤立系统则不能与外界交换任何物质和能量。
5. 状态函数:状态函数是指只与系统的初始状态和末状态有关的物理量。
在热力学中,温度、压力和体积等都是状态函数。
相反,热量和功是路径函数,它们的值取决于系统所经历的路径。
二、热力学基本定律热力学基本定律是热力学体系的基础,它们描述了物体之间能量转化的规律。
1. 第一定律:能量守恒定律,也称为热力学能量守恒定律。
根据这一定律,能量不能被创造或者销毁,只能从一种形式转化为另一种形式。
在热系统中,能量转化包括热传递和功的作用。
2. 第二定律:热力学第二定律主要表述了热量只能从高温物体传递到低温物体的方向。
即热量不会自发地从低温物体传递到高温物体。
这一定律还引申出了熵的概念,熵反映了系统的混乱程度,系统趋于混乱的方向是不可逆的。
热力学基础知识

热力学基础知识热力学是一门研究能量转化与传递的学科,是自然科学的基础。
热力学的概念源于研究热与功之间的相互转化关系,以及能量在物质之间的传递过程。
本文将通过介绍热力学的基本概念、热力学定律和热力学过程,帮助读者了解热力学的基础知识。
1. 热力学的基本概念热力学研究的对象是宏观体系,即指由大量微观粒子组成的物质系统。
热力学通过对体系的宏观性质进行观察和测量,来揭示物质和能量之间的关系。
热力学的基本概念包括系统、热、功、状态函数等。
系统是热力学研究的对象,可以是孤立系统、封闭系统或开放系统。
孤立系统与外界不进行物质和能量交换,封闭系统与外界可以进行能量交换但不进行物质交换,开放系统则可以进行物质和能量的交换。
热是能量的一种传递方式,是由高温物体向低温物体传递的能量。
热的传递方式有导热、对流和辐射。
功是对系统做的物质微观粒子在宏观层面的效果,是由于力的作用而引起物体位移的过程中所做的功。
例如,当一个物体被推动时,根据物体受力和运动方向的关系,可以计算出所做的功。
状态函数是由系统的状态决定的宏观性质,不依赖于热力学过程的路径,只与初态和终态有关。
常见的状态函数有温度、压力、体积等。
2. 热力学定律热力学定律是热力学基础知识的核心内容,揭示了宏观物质之间相互作用的规律。
第一定律:能量守恒定律,能量既不能被创造,也不能被消灭,只能从一种形式转化为另一种形式。
热力学第一定律表达了能量的守恒关系,即系统的内能变化等于吸收的热量与做的功的差。
第二定律:热力学第二定律描述了自然界的能量传递过程中不可逆的方向。
它说明热量会自发地从高温物体传递到低温物体,而不会反向传递。
热力学第二定律还提出了热力学箭头的概念,即自然界中某些过程的方向是不可逆的。
第三定律:热力学第三定律说明在绝对零度(0K)下,熵(系统的无序程度)将趋于最低值。
此定律进一步阐述了热力学中的温标和熵的概念。
3. 热力学过程热力学过程描述了系统由一个状态转变为另一个状态的过程。
热力学的基本概念

热力学的基本概念热力学是研究能量转化和能量转移的学科,它旨在理解和描述物质中能量的行为。
以下是热力学的基本概念,帮助我们深入了解这个领域。
一、能量能量是热力学的核心概念之一。
简而言之,能量是物质的一种属性,它使物质能够产生变化、产生工作或产生热。
能量可以存在于不同的形式,包括热能、机械能、电能、化学能等。
根据能量守恒定律,能量不会被创造或销毁,只能从一种形式转化为另一种形式。
二、系统和周围环境在热力学中,我们将研究对象称为系统。
系统是我们所关注的物质或物体,可以是一个小的实验室装置、一个汽车引擎或者一个大型天体。
与系统相对应的是周围环境,它是系统外的一切。
系统和周围环境之间可以发生能量和物质的交换。
三、状态变量状态变量是用来描述系统状态的参数。
常见的状态变量有温度、压力、体积和物质的组成等。
状态变量的值决定了系统所处的状态,也决定了系统内能量与周围环境的交换方式。
四、热平衡和温度热平衡是指系统与周围环境之间没有能量交换的状态。
在热平衡状态下,系统和周围环境的温度相等。
温度是描述物质热运动强度的物理量,决定了热量在系统与周围环境之间的传递方式。
五、热力学循环和过程热力学循环是指系统经历一系列过程后回到初始状态的过程。
在热力学循环中,系统的状态变化会导致能量的转化和传递,从而实现一定的工作输出。
过程是系统从一个状态变化到另一个状态的过程。
六、热力学定律热力学定律是热力学研究的基石,它描述了能量在系统和环境之间的行为。
著名的热力学定律包括:1. 第一定律:能量守恒定律,能量不会被创造或销毁,只能从一种形式转化为另一种形式。
2. 第二定律:热力学不可逆定律,能量在自然界中总是朝着更高熵的方向转化,即能量的转化会产生不可逆的损失。
3. 第三定律:热力学温标定律,描述了温度与热量之间的关系,提供了温标的定义。
七、熵熵是热力学中一个重要的概念,表示系统的无序程度。
熵增加代表系统无序程度的增加,而熵减少则代表系统向有序状态靠近。
热力学基本概念

19
第一节 热力学基本概念
• 热力系统(热力系):人为分割出来作为 热力学分析对象的有限物质系统。 • 外 界:热力系统以外的部分。 • 边 界:系统与外界之间的分界面。
边界可以是实在的,也可以是假想的;可 以是固定的,也可以是移动的。
20
第一节 热力学基本概念
系统与边界:
系统
系统
以空间为系统,进、 出口边界均为假想 边 界,系统与外界 有物 质交换
48
第一节 热力学基本概念
容积功
气缸 飞轮
可 逆 过 程 的 容 积 功 在 p — v 图 中 的 表 示
49
热 源
左止点 右止点
p
1
2
w pdv
1
2
v
第一节 热力学基本概念
p 1 可 逆 过 程 的 容 积 功 在 p — v 图 中 的 表 示
50
2
w
2
1
pdv
v
*强调:1. p v 图上曲线下面的面积代表容积功
26
第一节 热力学基本概念
热力平衡状态满足: 热平衡:组成热力系统的各部分之间没有热量的 传递。 力平衡:组成热力系统的各部分之间没有相对位 移。 自然界的物质实际上都处于非平衡状态, 平衡只是一种极限的理想状态。工程热力学通 常只研究平衡状态。
27
第一节 热力学基本概念
1.3 基本状态参数
一. 温度
燃烧室
废 气
燃料泵
压 气 机 空 气
燃 料
燃 气 轮 机
17
第一节 热力学基本概念
压缩制冷装置系统简图
18
第一节 热力学基本概念
1.1 工质及热力系 • 工 质:实现热能和机械能相互转化的媒介 物质。 • 热源(高温热源) :工质从中吸取热能的 物系。 • 冷源(低温热源) :接受工质放出热能的 物系。 为了研究问题方便,热力学中常把分析 对象从周围物体中分割出来,研究它与周围 物体之间的能量和物质的传递。
热力学知识:热力学中热力学的基本概念和热力学的法则

热力学知识:热力学中热力学的基本概念和热力学的法则热力学是研究热和能量转移的学科,应用广泛,涉及到机械工程、化学工程、环境科学、生物学等领域。
本文将从热力学的基本概念和热力学的法则两个方面进行解析。
一、热力学的基本概念1.热:是物质内部分子的运动状态的表现,是能量的形式之一。
2.温度:是物质内部分子运动状态的一种量化描述,是热的量度单位。
3.热量:是在物体之间传递的能量。
4.功:是物体克服外部阻力所做的能量转移工作。
5.内能:物体中分子的运动状态的总和,包括分子的动能和势能。
6.热力学第一定律:能量守恒定律,能量在系统内可以相互转化,但总能量不变。
7.热力学第二定律:热量只能从高温物体向低温物体传递,不可能实现温度无限制提高或降低的过程。
同时,系统中的熵量增加,在孤立系统中不可逆过程的熵增加定律,表明自然界趋向于混沌无序的趋势。
二、热力学的法则1.热力学第一定律热力学第一定律又称为能量守恒定律,表明在任何物理或化学变化中,能量都必须得到守恒。
能够实现一个系统的内部能量的增加或减少,但能量不会被消失或产生。
因此,热力学第一定律是所有热力学问题的基础。
2.热力学第二定律热力学第二定律又称为热力学不可能定律,是热力学领域最基本的性质之一。
这个定律表明,热会自然地从高温物体流向低温物体,而不会自然地从低温物体流向高温物体。
这就是为什么人们需要用加热器加热房间,在使用机器的内部需要用冷却器来降温的原因。
这个定律还表明,任何热量转换为功的过程都是不完美的,因为它们都会产生一些热量。
3.熵增定律热力学第二定律中提出的熵增定律是热力学的基本法则之一。
熵是一种物理量,表示系统的混乱程度。
热力学第二定律表明,系统内的熵总是增加,系统始终趋向于混沌无序。
例如,一杯水细心地倒入一匀净的玻璃杯中,水会保持有序结构,但是把水撒到桌子上,水会漫无目的地散云化开来,这就是熵增的过程。
总之,热力学是一个研究热和能量转移的学科,这些热力学的基本概念和热力学的法则是全球科学研究和工业实践的基础。
热力学基本概念

准静态过程: 状态变化过程进行得非常缓慢, 以至于过 程中的每一个中间状态都近似于平衡态.
p
准静态过程的过程曲线可以用 p-V图来描述,图上的每一点分 别 表示系统的一个平衡态.
(pA,VA,TA) ( PC,VC,TC )
(pB,VB,TB)
O
V
➢ 理想气体状态方程
在任何情况下严格遵守“波-马定律” 、 “盖-吕定律”以 及“查理定律”的气体称为理想气体.
一般气体看作理想气体: 压力不太大(与大气压比较)
温度不太低(与室温比较)
由三定律:
p 1V1 = p 2V2 = … = 恒量
T1
T2
(质量不变)
p,V,T → p 0,V 0,T0 (标准状态)
标准状态: p 0 = 1.01325 ×105 Pa V mol = 22.4 × 10-3 m 3 • mol -1
一种基本的科学温标. 水三相点(气态、液态、固态的共存状态) 为273.16 K .
摄氏温标和绝对温标的换算: T = 273.15 + t
➢ 平衡态和准静态过程 平衡态: 在不受外界影响的条件下, 无论初始状态如何,
系统的宏观性质在经充分长时间后不再发生变化的状态.
热力学过程: 热力学系统的状态随时间发生变化的过程.
大学物理
热力学基础
第1讲 热力学的基本概念
➢ 热力学系统 在热力学中把有大量分子组成的宏观物体( 气体、
液 体、固体) 称为热力学系统, 简称系统.
系统以外与系统有着相互作用的环境称为外界.
孤立系统: 与外界不发生任何能量和物质交换 的热力学系统.
封闭系统: 与外界只有能量交换而没有物质交 换的系统. 绝热系统: 与外界没有热量交换的系统.
热力学基本概念

定温变化, T1 = T2, (ii) 定压过程
过程中温度可不恒定。
p1=p2=psu 过程中压力恒定。dp=0, p=0 。
定压变化, p1 = p2
(iii)定容过程 (iv) 绝热过程 (v) 循环过程 V1=V2 Q=0
过程中压力可不恒定。
过程中体积保持恒定。dV=0, V=0 。 仅可能有功的能量传递形式。
1 3 N 2 H 2 NH 3 2 2
1 3 1mol的意思是: 1mol N 2 和1mol H 2 反应,生成 1molNH3 。 2 2
8. 系统变化的途径与状态函数法 途径:始态 - - - - - 终态 系统所经历过程的总和。 途径I C
d
def
dnB
1 B
1 或 B nB
(1-3)
— 反应进度, 其单位为mol。
Δ =1mol,叫发生了1mol反应进度(若说成“发生了1mol 反应”,则是错误的)。应用反应进度概念时,必须指明相应的 计量方程。如: N2+3H2=2NH3 Δ =1mol 的意思是:1molN2 和 1mol(3H2) 反应,生成1mol (2NH3);
6.热力学平衡态
定义:系统在一定环境条件下,经足够长的时间,其各部分 可观测到的宏观性质都不随时间而变,此后将系统隔离,系统
的宏观性质仍不改变,此时系统所处的状态叫热力学平衡态。 热力学平衡态应同时有:
(i)热平衡:系统各部分T 相等;若不绝热,则T系统= T环境。 (ii)力平衡:系统各部分p 相等;边界不相对位移。
(i) 对于一定量组成不变的均相流体系统,系统的任意宏观
性质是另外两个独立的宏观性质的函数: Z=f(x,y),如 nRT V 理想气体 p (ii) 状态函数的改变量只决定于系统的始态和终态,而与
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项目
检查
检查情况巡视、检查小组讨论法3min
评估与讨论1.评估总结任务实施过
程;
2.分析任务完成结果
语言总结问题引导法2min
课后
作业
P58 3-1,
化学热力学基本概念
化学热力学的任务
•一定条件下,过程(反应)能否自动进行;
•一定条件下,过程(反应)的限度及最大产量;
•过程(反应)的能量(热、功)转换及其规律。
热力学(Thermodynamics)内容
•热力学第一定律:
第一类永动机不可能,对过程能量转换进行计算。
•热力学第二定律:
第二类永动机不可能,判断过程进行方向、限度(化学平衡、相平衡)。
•热力学第三定律:
解决化学平衡有关计算(规则)问题。
1、体系与环境
体系(System)在科学研究时必须先确定研究对象,把一部分物质与其余分开,这种分离可以是实际的,也可以是想象的。
这种被划定的研究对象称为体系,亦称为物系或系统。
环境(surroundings)与体系密切相关、有相互作用(或影响所能及)的部分称为环境。
体系分类
根据体系与环境之间能量和物质交换的特点,把体系分为三类:
(1)敞开体系(open system)
体系与环境之间既有物质交换,又有能量交换。
(2)封闭体系(closed system)
体系与环境之间无物质交换,但有能量交换。
3)孤立体系(isolated system)
体系与环境之间既无物质交换,又无能量交换,故又称为隔离体系。
有时把封闭体系和体系影响所及的环
境一起作为孤立体系来考虑
注意:
可见,体系与环境的划分并不是绝对的,实际上带有一定的人为性。
原则上说,对于同一问题,不论选哪个部分作为体系都可将问题解决,只是在处理上有简便与复杂之分。
因此,要尽量选便于处理的部分作为体系。
一般情况下,选择哪一部分作为体系是明显的,但是在某些特殊场合下,选择方便问题处理的体系并非一目了然。
2 、状态函数
体系的一些性质,其数值仅取决于体系所处的状态,而与体系的历史无关;它的变化值仅取决于体系的始态和终态,而与变化的途径无关。
具有这种特性的物理量称为状态函数(state function)。
状态函数的特性可描述为:异途同归,值变相等;周而复始,数值还原。
状态函数在数学上具有全微分的性质。
体系的性质-状态函数性质
用宏观可测性质来描述体系的热力学状态,故这些性质又称为热力学变量。
可分为两类:
广延性质(extensive properties)
又称为容量性质,它的数值与体系的物质的量成正比,如体积、质量、熵等。
这种性质有加和性,在数学上是一次齐函数。
强度性质(intensive properties)
它的数值取决于体系自身的特点,与体系的数量无关,不具有加和性,如温度、压力等。
它在数学上是零次齐函数。
指定了物质的量的容量性质即成为强度性质,如摩尔热容。
3.过程与途径
(1)体系状态的任何变化称过程(process)。
始态————————————————→终态
过程(具体可通过不同的途径来实现)
(2) 实现状态变化的具体步骤称为途径(path)。
根据过程有无相变及化学反应分:
简单状态变化过程:T,p,V变化
化学变化过程
相变过程
常见的变化过程
◆恒温过程:T始=T终=T外=常数
◆恒压过程: p始=p终=p外=常数
◆恒容过程: 在变化过程中容积始终不变
◆绝热过程: 在变化过程中,体系与环境不发生热的传递
◆循环过程:体系从始态出发,经过一系列变化后又回到了始态的变化过程。
在这个过程中,所有状态函数的变量等于零。
可逆过程(reversible process)
体系经过某一过程从状态(1)变到状态(2)之后,如果能使体系和环境都恢复到原来的状态而未留下任何永久性的变化,则该过程称为热力学可逆过程。
否则为不可逆过程。
在热力学中,我们将这种由一系列无限接近于平衡的状态所组成的,中间每一步都可以向相反方向进行而不在环境中留下任何痕迹的过程称为可逆过程。
简单的说,就是某一过程发生之后,若能找到一种过程使体系和环境都恢复原状,则原过程就称为。
可逆过程的特点
(1)过程无限缓慢,整个过程是由一连串无限接近于平衡的状态所构成。
(准静态过程)
(2)没有任何耗散,过程沿着原途径反向进行时,体系与环境都可以恢复原状,即实现“双复原”。
(Q r= - Q逆;W r = - W逆)
(3)若做功则最大;若耗功则最小。
(4)一种理想过程温差无限小的传热过程;压力差无限小的体积变化过程;相变点进行的相变。
4.热力学基本概念——热力学平衡 (equilibrium state)
热力学平衡态:在一定条件下,系统性质不随时间变化,且将系统与环境隔离,系统的性质仍不改变的状态。
系统处于平衡态所满足的条件:系统内部处于
①热平衡:系统有单一的温度;
②力平衡:系统有单一的压力;
③相平衡:宏观上(处于动态平衡,微观上不满足)没有任何一种物质从一个相转移到另一个相;
④化学平衡:宏观上系统内的化学反应停止。
5.热和功
体系与环境之间因温差而传递的能量称为热,用符号Q表示。
Q的取号:体系吸热,Q>0;体系放热,Q<0 。
功(work)
体系与环境之间传递的除热以外的其它能量都称为功,用符号W表示。
功可分为体积功和非体积功两大类。
W的取号:环境对体系作功,W>0;体系对环境作功,W<0 。
Q和W都不是状态函数,其数值与变化途径有关。
•Q 不是状态函数, 微小变化过程的热, 用δQ 表示,不能用全微分d Q 表示。
•W不是状态函数, 微小变化过程的功,用δW表示,不能用全微分d W表示。
体积功 (W) 膨胀功W = 压强 体积变化
注意:1)热和功不是状态函数,而是过程的属性,是过程的产物,其数值与途径有关。
因此,如果体系处于指定的状态时,说“体系有多少热”或者“体系有多少功”都是错误的。
2)体系反抗的外压越大,体系所做的功也越大。
3)功(热)大小的比较,只看绝对值的大小。
4)W总=∑w i ; Q总=∑Q i
6.体积功的计算
常见过程的功计算。