【配套K12】[学习]2019届高考数学总复习 高分突破复习:小题满分限时练(一)
高考数学总复习高分突破复习:小题满分限时练六

高分突破复习:小题满分限时练(六)(限时:45分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合P ={x |y =-x 2-x +2},Q ={x |ln x <1},则P ∩Q =( ) A.(0,2] B.[-2,e) C.(0,1]D.(1,e)解析 由-x 2-x +2≥0,得-2≤x ≤1,则P =[-2,1],又Q ={x |0<x <e}=(0,e),故P ∩Q =(0,1]. 答案 C2.若复数z 满足z =4-2ii -1(i 为虚数单位),则下列说法正确的是( )A.复数z 的虚部为1B.|z |=10C.z -=-3+iD.复平面内与复数z 对应的点在第二象限解析 z =4-2i i -1=12(4-2i)(-1-i)=-3-i.∴z -=-3+i ,A ,B ,D 均不正确.答案 C3.已知a =20.9,b =323,c =log 123,则a ,b ,c 的大小为( )A.b >c >aB.a >c >bC.b >a >cD.a >b >c解析 0<a =20.9<2,c =log 123=-log 23<0,又b 3=(323)3=9>8,则b >2.故b >a >c .答案 C4.如图,已知正六边形ABCDEF 内接于圆O ,连接AD ,BE ,现在往圆O内投掷2 000粒小米,则可以估计落在阴影区域内的小米的粒数大致是(参考数据:π3≈1.82,3π≈0.55)( ) A.275B.300C.550D.600解析 依题意,设AB =1,故阴影部分的面积S 1=2×34×12=32,圆O 的面积S 2=π×12=π,故落在阴影区域内的小米的粒数为2 000×32π=2 000×32π≈550.答案 C5.在某项检测中,测量结果服从正态分布N (2,1),若P (X <1)=P (X >1+λ),则λ=( ) A.0B.2C.3D.5解析 依题意,正态曲线关于x =2对称,又P (X <1)=P (X >1+λ),因此1+λ=3,∴λ=2. 答案 B6.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =3,3a =6sin A ,△ABC 的面积S =3,则a +b =( ) A.21B.17C.29D.5解析 在△ABC 中,c =3,3a =6sin A , ∴csin C =a sin A =63,则sin C =32,C =π3. 又S =12ab sin π3=3,知ab =4.由余弦定理,32=a 2+b 2-2ab cos π3=(a +b )2-3ab .∴(a +b )2=9+3ab =21,故a +b =21. 答案 A7.若执行右面的程序框图,则输出的结果为( ) A.180 B.182 C.192D.202解析 循环一次后:S =2,m =2. 循环两次后:S =7,m =3. 循环三次后:S =20,m =4. 循环四次后:S =61,m =5. 循环五次后:S =182,m =6. 不满足S <120?,退出循环体. 输出S =182. 答案 B8.如图为某几何体的三视图(图中网格纸上每个小正方形边长为1),则该几何体的体积等于( )A.π+12B.π+4C.53π+12D.53π+1 解析 由三视图知,该几何体是由一个长方体、一个半球与圆锥构成的组合体.V 长方体=3×2×2=12,V 半球=12×43π×13=23π, V 圆锥=13·π×12×1=π3.故该几何体的体积V =12+23π+π3=π+12.答案 A9.已知函数f (x )=3cos ⎝ ⎛⎭⎪⎫ωx -π2-cos ωx (0<ω<3)的图象过点P ⎝ ⎛⎭⎪⎫π3,0,若要得到一个偶函数的图象,则需将函数f (x )的图象( )A.向左平移2π3个单位长度B.向右平移2π3个单位长度C.向左平移π3个单位长度D.向右平移π3个单位长度解析 f (x )=3sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π6,又P ⎝ ⎛⎭⎪⎫π3,0在函数f (x )的图象上,∴π3ω-π6=k π(k ∈Z ),ω=3k +12,又0<ω<3,∴ω=12,f (x )=2sin ⎝ ⎛⎭⎪⎫x 2-π6.当将f (x )图象向右平移2π3个单位,得y =2sin ⎝ ⎛⎭⎪⎫x 2-π3-π6的图象,即y =2sin ⎝ ⎛⎭⎪⎫x 2-π2=-2cos x 为偶函数. 答案 B10.已知数列{a n }为等差数列,且a 1≥1,a 2≤5,a 5≥8,设数列{a n }的前n 项和为S n ,S 15的最大值为M ,最小值为m ,则M +m =( ) A.500B.600C.700D.800解析 由题意,可知公差最大值时,S 15最大;公差最小时,S 15最小.可得a 1=1,a 2=5,此时公差d =4是最大值,M =S 15=1×15+15×142×4=435.当a 2=5,a 5=8,此时d =1是最小值,a 1=4,m =S 15=4×15+15×142×1=165. M +m =435+165=600.答案 B11.如图,已知抛物线y 2=8x ,圆C :x 2+y 2-4x +3=0,过圆心C 的直线l 与抛物线和圆分别交于P ,Q ,M ,N ,则|PN |+9|QM |的最小值为( ) A.32 B.36 C.42D.50解析 易知圆C :(x -2)2+y 2=1,圆心(2,0),半径r =1,且圆心C (2,0)是抛物线y 2=8x 的焦点,则|PN |+9|QM |=|PC |+r +9(|QC |+r )=|PC |+9|QC |+10.设点P (x 1,y 1),Q (x 2,y 2),则x 1x 2=p 24=4.故|PN |+9|QM |=|PC |+9|QC |+10 =x 1+9x 2+5p +10=x 1+9x 2+30 ≥29x 1x 2+30=42.当且仅当x 1=9x 2=6时,上式等号成立. 答案 C12.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=2x -2-1与g (x )=x 2-a e x互为“1度零点函数”,则实数a 的取值范围为( )A.⎝ ⎛⎦⎥⎤1e 2,4eB.⎝ ⎛⎦⎥⎤1e ,4e 2C.⎣⎢⎡⎭⎪⎫4e 2,2eD.⎣⎢⎡⎭⎪⎫4e 3,2e 2 解析 由f (x )=2x -2-1=0,得x =2.依题意|2-β|<1,解得1<β<3.又g (β)=β2-a e β=0,得a =β2eβ,1<β<3.设φ(x )=x 2ex ,x ∈(1,3),则φ′(x )=x (2-x )ex,当1<x <2时,φ′(x )>0;2<x <3时,φ′(x )<0, ∴φ(x )在x =2处有极大值,且φ(2)=4e 2,又φ(1)=1e ,φ(3)=9e3且φ(1)<φ(3).∴φ(x )的值域为⎝ ⎛⎦⎥⎤1e ,4e 2,故a 的取值范围为⎝ ⎛⎦⎥⎤1e ,4e 2.答案 B二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.)13.已知向量a ,b 满足a =(cos 2 018°,sin 2 018°),|a +b |=7,|b |=2,则a ,b 的夹角等于________.解析 由条件知|a |=1,|b |=2,|a +b |=7,则|a +b |2=a 2+b 2+2a ·b =7,a·b =1.故cos 〈a ,b 〉=a·b |a ||b |=12,〈a ,b 〉=π3.答案π314.已知点P 在不等式组⎩⎪⎨⎪⎧y ≤2x ,2x +y ≥2,x ≤1表示的平面区域内,A (3,2),B (2,1),则△PAB 面积的最大值为________.解析 作不等式组表示的平面区域如图阴影部分,且|AB |=2,又k AB =1<2,∴点C 到AB 所在直线的距离最大.易知直线AB 的方程为x -y -1=0.联立⎩⎪⎨⎪⎧x =1,y =2x ,得点C (1,2),∴C 点到直线AB 的距离d =|1-2-1|2=2,故△PAB 面积的最大值是12·|AB |·2=1.答案 115.点M 是双曲线x 2-y 24=1渐近线上一点,若以M 为圆心的圆与圆C :x 2+y 2-4x +3=0相切,则圆M 的半径的最小值等于________. 解析 不妨设点M 是渐近线2x -y =0上一点.∵圆C :x 2+y 2-4x +3=0的标准方程为(x -2)2+y 2=1,∴圆心C (2,0),半径R =1.若圆M 的半径最小,则圆M 与圆C 外切,且直线MC 与直线2x -y =0垂直.因此圆M 的半径的最小值r min =|MC |min -R . 由于|MC |min =|4-0|22+(-1)2=455,故r min =455-1. 答案 455-116.我国古代数学名著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱.如图为一个“堑堵”,即三棱柱ABC -A 1B 1C 1,其中AC ⊥BC ,已知该“堑堵”的高为6,体积为48,则该“堑堵”的外接球体积的最小值为________.解析 以C 为顶点,把三棱柱补成长方体,设其外接球的半径为R ,则(2R )2=AC 2+BC 2+CC 21=36+AC 2+BC 2,又V 三棱柱=12·AC ·BC ·CC 1=48,知AC ·BC =16,∴AC 2+BC 2≥2AC ·BC =32.则(2R )2的最小值为68,所以R min =17.故外接球体积的最小值为 43π(17)3=68173π. 答案 68173π。
2019届高考数学总复习高分突破复习小题满分限时练8套

1 解析 由于 an· am=an+m(m,n∈N*),且 a1= . 2 1 1 1 令 m=1,得 an=an+1,所以数列{an}是公比为 ,首项为 的等比数列. 2 2 2 因此 a5=a1q4=
1 = 1 . 2 32
3π 5 m,则 sin 2α- 2 = 5 4 D、- 5
5
答案 A 【 】4、已知角 α 的终边经过点 P(2,m)(m≠0),若 sin α= 3 A、- 5 3 B、 5
4 C、 5
解析 ∵角 α 的终边过点 P(2,m)(m≠0), ∴sin α= 答案 B 【 → → → → → → 】5、在 ABCD 中,|AB|=8,|AD|=6,N 为 DC 的中点,BM=2MC,则AM· NM= A、48 B、36 C、24 D、12 3 m 5 3 2α- π=cos 2α=1-2sin2α= . = m,则 m2=1.则 sin 2 2 5 5 4+m
解析 由 x2-6x+8<0 得 2<x<4,故 A={x|2<x<4},又 B={x∈N|y= 3-x}={x∈N|x≤3}={0,1,2,3},故 A∩B={3}.
2+i (2+i)(1+2i) 2+i+4i-2 2+i 解析 法一 ∵ = = =i,∴ 的共轭复数为-i. 5 1-2i (1-2i)(1+2i) 1-2i 2+i -2i2+i i(1-2i) 2+i 法二 ∵ = = =i,∴ 的共轭复数为-i. 1-2i 1-2i 1-2i 1-2i 答案 C 【 1 】3、已知数列{an}满足:对于 m,n∈N*,都有 an· am=an+m,且 a1= ,那么 a5= 2 A、 1 32 1 B、 16 1 C、 4 1 D、 2
→ 2 → 1 → 1 → 1 → 2 2 → 2 → → → → → → 解析 AM· NM=(AB+BM)· (NC+CM)= AB+3AD· 2AB-3AD=2AB -9AD =24. 答案 C 【 】6、中国古代有计算多项式值的秦九韶算法,下面是实现该算法的程序框图.执行该程序框图,若输入的 x= 3,n=2,依次输入的 a 为 2,2,5,则输出的 s=
2019届高考数学总复习高分突破复习:小题满分限时练五

高分突破复习:小题满分限时练(五)(限时:45分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合M ={x |x -2x 2>0},N ={x |4x -1>0},则M ∩N =( )B.⎝ ⎛⎭⎪⎫14,1C.⎝ ⎛⎭⎪⎫14,12D.⎝ ⎛⎭⎪⎫14,+∞解析 ∵M =⎝ ⎛⎭⎪⎫0,12,N =⎝ ⎛⎭⎪⎫14,+∞,∴M ∩N =⎝ ⎛⎭⎪⎫14,12. 答案 C2.设复数z =3+i(其中i 为虚数单位),则复数z +1z的虚部为( ) A.-110 B.-910 C.110 D.910解析 z +1z =3+i +13+i =3+i +3-i 9+1=3310+910i ,虚部为910. 答案 D3.已知抛物线y 2=-23x 的焦点为F ,A (0,m ),B (0,-m ),若△ABF 为等边三角形,则正数m 的值为( )A.12B.32C.1D.34 解析 ∵F ⎝ ⎛⎭⎪⎫-32,0,△ABF 为等边三角形,32=|AB |sin 60°=2m sin 60°,∴m =12. 答案 A4.下图是某市统计局发布的2017年1月~7月的本市楼市价格同比增长与环比增长涨跌幅数据绘制的雷达图.(注:2017年2月与2016年2月相比较,叫同比;2017年2月与2017年1月相比较,叫环比)根据该雷达图,则下列结论错误的是( )A.2017年1月~7月该市楼市价格有涨有跌B.2017年1月~7月分别与2016年1月~7月相比较,1月该市楼市价格涨幅最大C.2017年2月~7月该市楼市价格涨跌波动不大,变化比较平稳D.2017年1月~7月分别与2016年1月~7月相比较,该市楼市价格有涨有跌解析 这是2017年1月~7月某市楼市价格同比增长与环比增长涨跌幅数据绘制的雷达图,2017年1月~7月同比都是正增长,只是增长的幅度有大有小,同比增长最大是1月,环比增长幅度不大,1月~7月该市楼市价格变化不大,相对稳定.答案 D5.按下列程序框图运算:若输入的x 为2,则输出的x 为( )A.13B.15C.17D.19解析 循环一次后,x =3,循环两次后,x =5,循环三次后,x =9,循环四次后,x =17.满足x >10,退出,输出x =17.答案 C6.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +y -2≥0,x -2≤0,则使目标函数z =4x -y 取得最小值时的最优解为( )A.(0,2)B.(2,4)C.(2,0)D.(1,1)解析 作出不等式组表示的可行域,如图阴影部分所示,由图可知,当直线z =4x -y 经过点A (0,2)时,取得最小值,故使目标函数z=4x -y 取得最小值时的最优解为(0,2).答案 A7.已知数列{a n }是等比数列,且公比q 不为1,S n 为数列{a n }的前n项和,则下列结论中一定正确的为( )A.S 8S 4=S 12S 8B.2S 8≠S 4+S 12C.S 8-S 4S 4=S 12-S 8S 8-S 4D.(S 2n -S n )2=S n (S 3n -S 2n )(n ∈N *)解析 当q =-1时,S 4=S 8=S 12=0,则A ,B ,C 不正确;对于D 项,(S 2n -S n )2=(q n S n )2=q 2n S 2n ,S n (S 3n -S 2n )=S n ·q 2n ·S n =q 2n S 2n ,因此D 正确. 答案 D8.某封闭几何体的正视图与俯视图如下图所示,则侧视图可能是( )解析 由正视图和俯视图知该几何体为一个底面边长与高均为4的正四棱锥中挖去一个底面半径为2,高为2的圆锥,所以侧视图为C.答案 C9.在△ABC 中,已知AC +BC =10,C =60°,且4AB sin A =AC sin C .若点D 为AC 边上一点,且AD =BD ,则CD =( )A.4B.307C.5D.387解析 设角A ,B ,C 的对边分别为a ,b ,c ,则4AB sin A =AC sin C ,即4c sin A =b sin C ,由正弦定理得,4ac =bc ,∴b =4a .因为AC +BC =10,即b +a =10,所以a =2,b =8.设CD=x ,则BD =8-x ,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos C ,则(8-x )2=22+x 2-4x ×12,∴x =307,∴CD =307. 答案 B10.在同一直角坐标系中,函数f (x )=sin ax (a ∈R )与g (x )=(a -1)x 2-ax 的部分图象不可能为( )解析 选项A 对应的a =2;选项B 对应的a =4;选项D 对应的a =1;选项C 的图象中,由f (x )=sin ax (a ∈R )图象可知,a =-1,故g (x )=-2x 2+x ,则g (x )=(a -1)x 2-ax 的图象的对称轴在y 轴右侧,而图中的对称轴在y 轴左侧,选项C 的图象不可能成立.答案 C11.已知F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点,P 是椭圆C 上动点,O 为椭圆的中心,若|OP |+|PF |的取值范围是[3,5],则椭圆C 的离心率为( )A.13B.12C.22D.23解析 设左焦点为F ′,则|OP |+|PF |=|PO |+2a -|PF ′|,又||PO |-|PF ′||≤|OF ′|=c .∴-c ≤|PO |-|PF ′|≤c ,则2a +c =5且2a -c =3,解之得a =2,c =1.所以椭圆C 的离心率e =12. 答案 B12.已知f (x )=A sin(ωx +φ)(A >0,ω>0),已知:①在(t 1,t 2)上不单调,且f (t 1)+f (t 2)=0;x ∈R ,f (x )=f ⎝ ⎛⎭⎪⎫x -π6+f ⎝ ⎛⎭⎪⎫x +π6,则t 2-t 1的最小值为( )A.πB.π2C.π4D.π8解析 ∵f (x )=f ⎝ ⎛⎭⎪⎫x -π6+f ⎝⎛⎭⎪⎫x +π6① ∴f ⎝ ⎛⎭⎪⎫x +π6=f (x )+f ⎝⎛⎭⎪⎫x +π3② 由①+②得f ⎝ ⎛⎭⎪⎫x -π6=-f ⎝⎛⎭⎪⎫x +π3, 即f (x )=-f ⎝⎛⎭⎪⎫x +π2,从而f (x +π)=f (x ),所以f (x )的最小正周期T =π,结合①知,t 2-t 1的最小值为π2. 答案 B二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.)13.二项式⎝ ⎛⎭⎪⎫ax +1x 27的展开式中x 的系数为-21,则实数a 的值为________. 解析 T r +1=C r 7(ax )7-r (x -2)r =C r 7·a 7-r ·x 7-3r ,令7-3r =1,得r =2.则T 3=C 27·a 5x =-21x ,解得a =-1.答案 -1 14.在△ABC 中,AB →=(3,0),AC →=(1,2),AP →=13AB →+λAC →,若点P 在△ABC 内,则λ的取值范围是________.解析 作△ABC ,并取AB 上靠近A 的三等分点D ,作DE ∥AC 交BC 于E ,作EF ∥AB 交AC 于F ,则有AF AC =BE BC =BD BA ,由向量的三角形法则得出AP →=13AB →+λAC →,如图.又∵P 在线段DE (不含端点)上,结合平行四边形法则可知λ的取值范围为⎝ ⎛⎭⎪⎫0,23. 答案 ⎝ ⎛⎭⎪⎫0,2315.如图,已知三棱锥C -ADB 中,BC =2AD =23,AB =1且AD ⊥AB ,CB ⊥DB .当三棱锥C -ADB 的外接球的表面积最小时,三棱锥的体积为________.解析 三棱锥C -ADB 的外接球的表面积最小时,外接球的半径最小,设外接球球心为O ,解决此题需要把球心确定下来.设DB ,DC 的中点分别为M ,N ,连接MN ,则MN ⊥BD .注意到三棱锥的两个侧面△ABD 和△DBC 为直角三角形,过M ,N 分别作两条与ABD。
2019届高考数学总复习 高分突破复习:小题满分限时练(四)

高分突破复习:小题满分限时练(四)(限时:45分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设全集U =R ,集合A ={x |x ≤-2},B ={x |x ≥-1},则∁U (A ∪B )=( ) A.[-2,-1] B.(-2,-1)C.(-∞,-2]∪[-1,+∞)D.(-2,1)解析 A ∪B =(-∞,-2]∪[-1,+∞),∁U (A ∪B )=(-2,-1). 答案 B2.已知复数z =5i1-2i (i 为虚数单位),则z 的共轭复数对应的点位于复平面的( )A.第一象限B.第二象限C.第三象限D.第四象限解析 因为复数z =5i 1-2i =5i (1+2i )(1-2i )(1+2i )=-2+i , 所以z -=-2-i ,其对应的点为(-2,-1),在第三象限. 答案 C3.空气质量指数AQI 是检测空气质量的重要参数,其数值越大说明空气污染状况越严重,空气质量越差.某地环保部门统计了该地区12月1日至12月24日连续24天的空气质量指数AQI ,根据得到的数据绘制出如图所示的折线图,下列说法错误的是( )A.该地区在12月2日空气质量最好B.该地区在12月24日空气质量最差C.该地区从12月7日到12月12日AQI 持续增大D.该地区的空气质量指数AQI 与这段日期成负相关解析 12月2日空气质量指数最低,所以空气质量最好,A 正确;12月24日空气质量指数最高,所以空气质量最差,B 正确;12月7日到12月12日AQI 在持续增大,所以C 正确;在该地区统计这段时间内,空气质量指数AQI 整体呈上升趋势,所以空气质量指数与这段日期成正相关,D 错误. 答案 D4.已知锐角△ABC 的三个内角分别为A ,B ,C ,则“sin A >sin B ”是“tan A >tan B ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 根据正弦定理asin A=bsin B,知sin A >sin B a >b A >B ,而正切函数y =tan x 在⎝ ⎛⎭⎪⎫0,π2上单调递增,所以A >B an A >tan B .答案 C5.右面程序框图是为了求出满足3n -2n>1 000的最小偶数n ,那么在◇和两个空白框中,可以分别填入( ) A.A >1 000和n =n +1 B.A >1 000和n =n +2 C.A ≤1 000和n =n +1 D.A ≤1 000和n =n +2解析 因为题目要求的是“满足3n-2n>1 000的最小偶数n ”,所以n 的叠加值为2,所以内填入“n =n +2”.由程序框图知,当◇内的条件不满足时,输出n ,所以◇内填入“A ≤1 000”. 答案 D6.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其意是:现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里.若该匹马按此规律继续行走7天,则它这14天内所走的总路程为( ) A.17532里 B.1 050里 C.22 57532里D.2 100里解析 由题意,该匹马每日所行路程构成等比数列{a n },其中首项为a 1,公比q =12,S 7=700,则700=a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1271-12,解得a 1=350×128127,那么S 14=a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12141-12=22 57532.答案 C 7.已知sin α=1010,α∈⎝ ⎛⎭⎪⎫0,π2,则cos ⎝⎛⎭⎪⎫2α+π6的值为( )A.43-310 B.43+310 C.4-3310D.33-410解析 ∵sin α=1010,α∈⎝⎛⎭⎪⎫0,π2,∴cos α=31010,sin 2α=2sin αcos α=2×1010×31010=610=35, cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫10102=1-15=45, ∴cos ⎝ ⎛⎭⎪⎫2α+π6=45×32-35×12=43-310.答案 A8.如图,已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0),长方形ABCD 的顶点A ,B分别为双曲线E 的左、右焦点,且点C ,D 在双曲线E 上,若|AB |=6,|BC |=52,则此双曲线的离心率为( )A. 2B.32C.52D. 5解析 因为2c =|AB |=6,所以c =3.因为b 2a =|BC |=52,所以5a =2b 2.又c 2=a 2+b 2,所以9=a 2+5a 2,解得a =2或a =-92(舍去),故该双曲线的离心率e =c a =32.答案 B9.已知S ,A ,B ,C 是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB=2,BC =23,则球O 的表面积为( )A.103πB.18πC.20πD.93π解析 法一 由题意知,S ,A ,B ,C 是如图所示三棱锥S -ABC 的顶点,且SA ⊥平面ABC ,AB ⊥BC ,AC =22+(23)2=4,SC =22+42=2 5.取AC 的中点E ,SC 的中点F ,连接EF ,EB ,BF ,FA ,则FS =FC =FA =12SC =5,BE =12AC =2,FB =BE 2+EF 2=22+12=5,故FS =FC =FA =FB ,即点F 就是三棱锥的外接球的球心,且其半径为5,故球的表面积S =4π·(5)2=20π.法二 由题意可知,S ,A ,B ,C 为如图所示长方体的四个顶点,连接SC ,且SA =AB =2,BC =23,设球O 的半径为R ,则2R =SC =SA 2+AB 2+BC 2=25,即R =5,故球O 的表面积S =4πR 2=20π. 答案 C10.已知定义在R 上的奇函数f (x )满足f (x +2)+f (x )=0,且当x ∈[0,1]时,f (x )=log 2(x +1),则下列不等式正确的是( ) A.f (log 27)<f (-5)<f (6) B.f (log 27)<f (6)<f (-5) C.f (-5)<f (log 27)<f (6) D.f (-5)<f (6)<f (log 27)解析 由f (x +2)+f (x )=0,得f (x +2)=-f (x ), ∴f (x +4)=f (x ),f (x )的周期T =4. 又f (-x )=-f (x ),且有f (2)=-f (0)=0,所以f (-5)=-f (5)=-f (1)=-log 22=-1,f (6)=f (2)=0. 又2<log 27<3,所以0<log 27-2<1,即0<log 274<1,∵x ∈[0,1]时,f (x )=log 2(x +1)∈[0,1], ∴f (log 27)=-f (log 27-2)=-f ⎝ ⎛⎭⎪⎫log 274 =-log 2⎝ ⎛⎭⎪⎫log 274+1=-log 2⎝ ⎛⎭⎪⎫log 272,又1<log 272<2,所以0<log 2⎝⎛⎭⎪⎫log 272<1,所以-1<-log 2⎝ ⎛⎭⎪⎫log 272<0, 所以f (-5)<f (log 27)<f (6). 答案 C11.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.若x 1x 2<0,且f (x 1)-f (x 2)=0,则|x 2-x 1|的取值范围为( )A.⎝ ⎛⎭⎪⎫π6,+∞B.⎝ ⎛⎭⎪⎫π3,+∞C.⎝⎛⎭⎪⎫2π3,+∞D.⎝⎛⎭⎪⎫4π3,+∞解析 如图,画出f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的大致图象,记M ⎝⎛⎭⎪⎫0,32,N ⎝ ⎛⎭⎪⎫π6,32,则|MN |=π6.设点A ,A ′是平行于x 轴的直线l 与函数f (x )图象的两个交点(A ,A ′位于y 轴两侧),这两个点的横坐标分别记为x 1,x 2,结合图形可知,|x 2-x 1|=|AA ′|∈(|MN |,+∞),即|x 2-x 1|∈⎝ ⎛⎭⎪⎫π6,+∞.答案 A12.已知函数f (x )=x +x ln x ,若k ∈Z ,且k (x -2)<f (x )对任意的x >2恒成立,则k 的最大值为( ) A.3B.4C.5D.6解析 先画f (x )=x +x ln x 的简图,设y =k (x -2)与f (x )=x +x ln x 相切于M (m ,f (m ))(m >2), 所以f ′(m )=f (m )m -2,即2+ln m =m +m ln mm -2,化为m -4-2ln m =0,设g (x )=x -4-2ln x (x >2),则g ′(x )=1+2x>0,故g (x )在(2,+∞)上单调递增.因为g (e 2)=e 2-8<0,g (e 3)=e 3-10>0,且g (m )=0,所以e 2<m <e 3,又k <f ′(m )=2+ln m ∈(4,5),且k ∈Z ,所以k max =4. 答案 B二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.)13.(x +2y )5的展开式中含x 3y 2项的系数为________.解析 展开式的通项公式T r +1=C r 5x5-r(2y )r.依题意,r =2,故含x 3y 2项的系数22C 25=40. 答案 4014.若实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y +2≥0,x +y -1≤0,y ≥m ,且x -y 的最大值为5,则实数m 的值为________.解析 画出约束条件的可行域,如图中阴影部分所示:x -y 的最大值为5,由图形可知,z =x -y 经过可行域的点A 时取得最大值5.由⎩⎪⎨⎪⎧x -y =5,x +y =1⟹A (3,-2)是最优解,直线y =m 过点A (3,-2),所以m =-2. 答案 -215.在长方体ABCD -A 1B 1C 1D 1中,已知底面ABCD 为正方形,P 为A 1D 1的中点,AD =2,AA 1=3,点Q 是正方形ABCD 所在平面内的一个动点,且QC =2QP ,则线段BQ 的长度的最大值为________.解析 以D 为坐标原点,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,则P (1,0,3),C (0,2,0),B (2,2,0),Q (x ,y ,0),因为QC =2QP ,所以x 2+(y -2)2=2(x -1)2+y 2+3⟹(x -2)2+(y +2)2=4,所以(y +2)2=4-(x -2)2⟹|y +⟹-4≤y ≤0,|BQ |=(x -2)2+(y -2)2=4-8y ,又4≤4-8y ≤36,则2≤|BQ |≤6,故线段BQ 的长度的最大值为6. 答案 616.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =ekx +b(e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.解析 由已知条件,得192=e b, 又48=e22k +b=e b ·(e 11k )2,∴e 11k=⎝ ⎛⎭⎪⎫4819212=⎝ ⎛⎭⎪⎫1412=12,设该食品在33 ℃的保鲜时间是t 小时,则t =e33k +b=192e 33k =192(e 11k )3=192×⎝ ⎛⎭⎪⎫123=24.答案 24。
2019届高考数学总复习高分突破复习:小题满分限时练

高分突破复习:小题满分限时练(三)(限时:45分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|x2+2x-3≤0},B={x|y=ln(x+2)},则A∩B=( )A.(-2,-1]B.(-2,3]C.(-2,1]D.[-2,1]解析A={x|x2+2x-3≤0}=[-3,1],B={x|y=ln(x+2)}=(-2,+∞),∴A∩B=(-2,1].答案 C2.设复数z满足(1+i)z=2i,则|z|=( )A.12B.22C. 2D.2解析z=2i1+i=2i(1-i)(1+i)(1-i)=2i+22=i+1,则|z|=12+12= 2.答案 C3.下列命题中正确的是( )A.命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1<0”B.若p为真命题,q为假命题,则(綈p)∨q为真命题C.为了了解高考前高三学生每天的学习时间情况,现要用系统抽样的方法从某班50名学生中抽取一个容量为10的样本,已知50名学生的编号为1,2,3,…,50,若8号被选出,则18号也会被选出D.已知m,n是两条不同的直线,α,β是两个不同的平面,α∩β=m,则“nα,n⊥m”是“α⊥β”的充分条件解析选项A,需要先换量词,再否定结论,故命题“存在x∈R,使得x2+x+1<0”的否定为“对任意x∈R,均有x2+x+1≥0”,选项A错误;选项B,∵綈p为假命题,q为假命题,∴(綈p)∨q为假命题,选项B错误;选项C,根据系统抽样的特点,从50名学生中抽取10人,需间隔5人抽取1人,8+2×5=18,18号会被选出,故选项C正确;选项D,根据线面垂直的判定定理可知,一条直线垂直于一个平面内的两条相交直线才能得出该直线与该平面垂直,故由n⊥m不能得到n⊥β,进而不能得到α⊥β,故选项D错误.答案 C4.在如图所示的正方形中随机投掷10 000个点,则落在阴影部分(曲线C 的方程为x 2-y =0)的点的个数约为( ) A.3 333 B.6 667 C.7 500D.7 854解析 题图中阴影部分的面积为⎠⎛01(1-x 2)=⎝ ⎛⎭⎪⎫x -x 33⎪⎪⎪10=23,正方形的面积为1,设落在阴影部分的点的个数为n ,由几何概型的概率计算公式可知,231=n10 000,n ≈6 667.答案 B 5.⎝⎛⎭⎪⎫2x 2-x 43的展开式中的常数项为( ) A.-3 2 B.3 2C.6D.-6解析 通项T r +1=C r3⎝ ⎛⎭⎪⎫2x 23-r(-x 4)r=C r3(2)3-r(-1)r x-6+6r,当-6+6r =0,即r =1时为常数项,T2=-6. 答案 D6.某几何体的三视图如图所示,则这个几何体的体积是( )A.13B.14C.15D.16解析 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD -A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V=4×2×3-2×12×3×32×2=15.答案 C7.已知奇函数f (x )满足f (x +1)=f (1-x ),若当x ∈(-1,1)时,f (x )=lg 1+x1-x,且f (2 018-a )=1,则实数a 的值可以是( )A.911B.119C.-911D.-119解析 ∵f (x +1)=f (1-x ),∴f (x )=f (2-x ),又函数f (x )为奇函数,∴f (-x )=-f (2-x ),∴f (2+x )=-f (x ),∴f (x +4)=-f (x +2)=f (x ),∴函数f (x )为周期函数,周期为4.当x ∈(-1,1)时,令f (x )=lg 1+x 1-x =1,得x =911.又f (2 018-a )=f (2-a )=f (a )=1,∴a 可以是911.答案 A8.执行如图所示的程序框图,输出的S 值为-4时,条件框内应填写( )A.i >3?B.i <5?C.i >4?D.i <4?解析 由程序框图可知,S =10,i =1;S =8,i =2;S =4,i =3;S =-4,i =4.由于输出的S =-4.故应跳出循环,条件为i <4?. 答案 D9.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )A.15万元B.16万元C.17万元D.18万元解析 设该企业每天生产x 吨甲产品,y 吨乙产品,可获得利润为z 万元,则z =3x +4y ,且x ,y 满足不等式组⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0.画出可行域如图中阴影部分所示,直线z =3x +4y 过点M 时,z =3x +4y 取得最大值,由⎩⎪⎨⎪⎧3x +2y =12,x +2y =8,得⎩⎪⎨⎪⎧x =2,y =3,∴M (2,3),故z =3x +4y 的最大值为18. 答案 D10.已知函数f (x )=1+2cos x cos(x +3φ)是偶函数,其中φ∈⎝⎛⎭⎪⎫0,π2,则下列关于函数g (x )=cos(2x -φ)的正确描述是( )A.g (x )在区间⎣⎢⎡⎦⎥⎤-π12,π3上的最小值为-1B.g (x )的图象可由函数f (x )的图象向上平移2个单位长度,向右平移π3个单位长度得到C.g (x )的图象的一个对称中心是⎝ ⎛⎭⎪⎫-π12,0D.g (x )的一个单调递减区间是⎣⎢⎡⎦⎥⎤0,π2解析 ∵f (x )=1+2cos x cos(x +3φ)是偶函数,∴y =cos(x +3φ)是偶函数,3φ=k π,k ∈Z .又φ∈⎝⎛⎭⎪⎫0,π2,因此φ=π3.∴g (x )=cos ⎝⎛⎭⎪⎫2x -π3.当-π12≤x ≤π3时,-π2≤2x -π3≤π3,cos ⎝⎛⎭⎪⎫2x -π3∈[0,1],故A 错误;f (x )=1+2cos x cos(x +π)=1-2cos 2x =-cos 2x ,显然B 错误;当x =-π12时,g (x )=cos ⎝ ⎛⎭⎪⎫-π2=0,故C 正确;当0≤x ≤π2时,-π3≤2x -π3≤2π3,g (x )=cos ⎝ ⎛⎭⎪⎫2x -π3有增有减,故D 错误. 答案 C11.设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,直线4x -3y +20=0过点F 且与双曲线C在第二象限的交点为P ,|OP |=|OF |,其中O 为原点,则双曲线C 的离心率为( ) A.5B. 5C.53D.54解析 在直线4x -3y +20=0中,令y =0,得x =-5,故c =5,取右焦点为F ′,由|OF |=|OP |=|OF ′|,可得PF ⊥PF ′.由直线4x -3y +20=0,可得tan∠F ′FP =43,又|FF ′|=10,故|PF |=6,|PF ′|=8.∴|PF ′|-|PF |=2=2a ,∴a =1,又∵2c =10,c =5, 故双曲线C 的离心率e =c a=5. 答案 A12.在正整数数列中,由1开始依次按如下规则,将某些数染成红色.先染1;再染两个偶数2,4;再染4后面最邻近的3个连续奇数5,7,9;再染9后面的最邻近的4个连续偶数10,12,14,16;再染此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个红色子数列中,由1开始的第2 018个数是( ) A.3 971B.3 972C.3 973D.3 974解析 由题意,设第1组的数为1;第2组的数为2,4;第3组的数为5,7,9,…,根据等差数列的前n 项和,前n 组共有n (n +1)2个数.由于2 016=63×(63+1)2<2 018<64×(64+1)2=2 080,因此,第2 018个数是第64组的第2个数.由于第1组最后一个数是1,第2组最后一个数是4,第3组最后一个数是9,……,第n 组最后一个数是n 2,因此,第63组最后一个数为632,632=3 969,第64组为偶数组,其第1个数为3 970,第2个数为3 972. 答案 B二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.)13.如果点P 1,P 2,P 3,…,P 10是抛物线y 2=2x 上的点,它们的横坐标依次为x 1,x 2,x 3,…,x 10,F 是抛物线的焦点,若x 1+x 2+x 3+…+x 10=5,则|P 1F |+|P 2F |+|P 3F |+…+|P 10F |=________.解析 由抛物线的定义可知,抛物线y 2=2px (p >0)上的点P (x 0,y 0)到焦点F 的距离|PF |=x 0+p2,在y 2=2x 中,p =1,所以|P 1F |+|P 2F |+…+|P 10F |=x 1+x 2+…+x 10+5p =10.答案 1014.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3,若sin C +sin(B -A )=2sin 2A ,则A =________.解析 在△ABC 中,由sin C +sin(B -A )=2sin 2A , 得sin(A +B )+sin(B -A )=4sin A cos A , ∴cos A sin B =2sin A cos A , 即cos A (sin B -2sin A )=0. 则cos A =0或sin B =2sin A . ①若cos A =0,则A =π2;②若sin B =2sin A ,则b =2a .由余弦定理,c 2=a 2+b 2-2ab cos C ,且c =2,C =π3.∴a 2+b 2-ab =4,联立b =2a ,得a =233,b =433,则b 2=a 2+c 2,B =π2,从而A =π6.答案π2或π615.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,点E 和点F 分别在线段BC 和DC 上,BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________. 解析 法一 由题意,得AD =CD =BC =1,AB =2, ∴AE →·AF →=(AB →+BE →)·(AD →+DF →) =(AB →+λBC →)·⎝⎛⎭⎪⎫AD →+19λDC →=AB →·AD →+λBC →·AD →+19λAB →·DC →+19BC →·DC →=|AB →||AD →|·cos 60°+λ|BC →||AD →|cos 60° +19λ|AB →||DC →|cos 0°+19|BC →||DC →|cos 120° =2×1×12+λ2+29λ-118=1718+λ2+29λ≥178+2λ2×29λ=2918(当且仅当λ=23时,等号成立). 法二 如图,以A 为坐标原点建立平面直角坐标系,过点D 作DG ⊥AB 交AB 于点G ,过点C 作CH ⊥AB 交AB 于点H ,由题意得,AB ∥DC ,AB =2,AD =BC =1,∠ABC =60°, ∴AG =BH =AD cos 60°=12,同理,DG =CH =32, ∴A (0,0),B (2,0),C ⎝ ⎛⎭⎪⎫32,32,D ⎝ ⎛⎭⎪⎫12,32,∴BC →=⎝ ⎛⎭⎪⎫-12,32,DC →=(1,0),AB →=(2,0),AD →=⎝ ⎛⎭⎪⎫12,32.∵BE →=λBC →=⎝ ⎛⎭⎪⎫-λ2,3λ2,DF →=19λDC →=⎝ ⎛⎭⎪⎫19λ,0,∴AE →=AB →+BE →=⎝ ⎛⎭⎪⎫2-λ2,3λ2,AF →=AD →+DF →=⎝ ⎛⎭⎪⎫12+19λ,32,∴AE →·AF →=⎝ ⎛⎭⎪⎫2-λ2,3λ2·⎝ ⎛⎭⎪⎫12+19λ,32=1718+29λ+λ2≥178+2λ2×29λ=1718+23=2918(当且仅当λ=23时等号成立). 答案291816.已知函数f (x )=x +a ln x (a >0),若x 1,x 2∈⎝ ⎛⎭⎪⎫12,1(x 1≠x 2),|f (x 1)-f (x 2)|>⎪⎪⎪⎪⎪⎪1x 1-1x 2,则正数a 的取值范围是________.解析 由f (x )=x +a ln x (a >0),得当x ∈⎝ ⎛⎭⎪⎫12,1时,f ′(x )=1+a x >0,f (x )在⎝ ⎛⎭⎪⎫12,1上单调递增,不妨设x 1>x 2,则|f (x 1)-f (x 2)|>⎪⎪⎪⎪⎪⎪1x 1-1x 2,即f (x 1)-f (x 2)>1x 2-1x 1,f (x 1)+1x 1>f (x 2)+1x 2,令g (x )=f (x )+1x ,则g (x )在⎝ ⎛⎭⎪⎫12,1上单调递增, 所以g ′(x )=1+a x -1x 2≥0在⎝ ⎛⎭⎪⎫12,1上恒成立,a x ≥1x 2-1,即a ≥1x -x 在⎝ ⎛⎭⎪⎫12,1上恒成立, 令h (x )=1x -x ,x ∈⎝ ⎛⎭⎪⎫12,1,则h ′(x )=-1-1x2<0,h (x )单调递减,h (x )<h ⎝ ⎛⎭⎪⎫12=32,则a ≥32,故正数a 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞. 答案 ⎣⎢⎡⎭⎪⎫32,+∞。
(最新)2019届高考数学总复习 高分突破复习:小题满分限时练(六)

高分突破复习:小题满分限时练(六)(限时:45分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合P ={x |y =-x 2-x +2},Q ={x |ln x <1},则P ∩Q =( ) A.(0,2] B.[-2,e) C.(0,1]D.(1,e)解析 由-x 2-x +2≥0,得-2≤x ≤1,则P =[-2,1],又Q ={x |0<x <e}=(0,e),故P ∩Q =(0,1]. 答案 C2.若复数z 满足z =4-2ii -1(i 为虚数单位),则下列说法正确的是( )A.复数z 的虚部为1B.|z |=10C.z -=-3+iD.复平面内与复数z 对应的点在第二象限解析 z =4-2i i -1=12(4-2i)(-1-i)=-3-i.∴z -=-3+i ,A ,B ,D 均不正确.答案 C3.已知a =20.9,b =323,c =log 123,则a ,b ,c 的大小为( )A.b >c >aB.a >c >bC.b >a >cD.a >b >c解析 0<a =20.9<2,c =log 123=-log 23<0,又b 3=(323)3=9>8,则b >2.故b >a >c .答案 C4.如图,已知正六边形ABCDEF 内接于圆O ,连接AD ,BE ,现在往圆O 内投掷2 000粒小米,则可以估计落在阴影区域内的小米的粒数大致是(参考数据:π3≈1.82,3π≈0.55)( )A.275B.300C.550D.600解析 依题意,设AB =1,故阴影部分的面积S 1=2×34×12=32,圆O 的面积S 2=π×12=π,故落在阴影区域内的小米的粒数为2 000×32π=2 000×32π≈550.答案 C5.在某项检测中,测量结果服从正态分布N (2,1),若P (X <1)=P (X >1+λ),则λ=( ) A.0B.2C.3D.5解析 依题意,正态曲线关于x =2对称,又P (X <1)=P (X >1+λ),因此1+λ=3,∴λ=2. 答案 B6.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =3,3a =6sin A ,△ABC 的面积S =3,则a +b =( )A.21B.17C.29D.5解析 在△ABC 中,c =3,3a =6sin A , ∴csin C =a sin A =63,则sin C =32,C =π3. 又S =12ab sin π3=3,知ab =4.由余弦定理,32=a 2+b 2-2ab cos π3=(a +b )2-3ab .∴(a +b )2=9+3ab =21,故a +b =21. 答案 A7.若执行右面的程序框图,则输出的结果为( ) A.180 B.182 C.192D.202解析 循环一次后:S =2,m =2. 循环两次后:S =7,m =3. 循环三次后:S =20,m =4. 循环四次后:S =61,m =5. 循环五次后:S =182,m =6. 不满足S <120?,退出循环体.输出S =182. 答案 B8.如图为某几何体的三视图(图中网格纸上每个小正方形边长为1),则该几何体的体积等于( )A.π+12B.π+4C.53π+12D.53π+1 解析 由三视图知,该几何体是由一个长方体、一个半球与圆锥构成的组合体.V 长方体=3×2×2=12,V 半球=12×43π×13=23π, V 圆锥=13·π×12×1=π3.故该几何体的体积V =12+23π+π3=π+12.答案 A9.已知函数f (x )=3cos ⎝ ⎛⎭⎪⎫ωx -π2-cos ωx (0<ω<3)的图象过点P ⎝ ⎛⎭⎪⎫π3,0,若要得到一个偶函数的图象,则需将函数f (x )的图象( ) A.向左平移2π3个单位长度B.向右平移2π3个单位长度C.向左平移π3个单位长度D.向右平移π3个单位长度解析 f (x )=3sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π6,又P ⎝ ⎛⎭⎪⎫π3,0在函数f (x )的图象上,∴π3ω-π6=k π(k ∈Z ),ω=3k +12,又0<ω<3,∴ω=12,f (x )=2sin ⎝ ⎛⎭⎪⎫x 2-π6.当将f (x )图象向右平移2π3个单位,得y =2sin ⎝ ⎛⎭⎪⎫x 2-π3-π6的图象,即y =2sin ⎝ ⎛⎭⎪⎫x 2-π2=-2cos x 为偶函数.答案 B10.已知数列{a n }为等差数列,且a 1≥1,a 2≤5,a 5≥8,设数列{a n }的前n 项和为S n ,S 15的最大值为M ,最小值为m ,则M +m =( ) A.500B.600C.700D.800解析 由题意,可知公差最大值时,S 15最大;公差最小时,S 15最小.可得a 1=1,a 2=5,此时公差d =4是最大值,M =S 15=1×15+15×142×4=435.当a 2=5,a 5=8,此时d =1是最小值,a 1=4,m =S 15=4×15+15×142×1=165. M +m =435+165=600.答案 B11.如图,已知抛物线y 2=8x ,圆C :x 2+y 2-4x +3=0,过圆心C 的直线l 与抛物线和圆分别交于P ,Q ,M ,N ,则|PN |+9|QM |的最小值为( ) A.32 B.36 C.42D.50解析 易知圆C :(x -2)2+y 2=1,圆心(2,0),半径r =1,且圆心C (2,0)是抛物线y 2=8x 的焦点,则|PN |+9|QM |=|PC |+r +9(|QC |+r )=|PC |+9|QC |+10.设点P (x 1,y 1),Q (x 2,y 2),则x 1x 2=p 24=4.故|PN |+9|QM |=|PC |+9|QC |+10 =x 1+9x 2+5p +10=x 1+9x 2+30 ≥29x 1x 2+30=42.当且仅当x 1=9x 2=6时,上式等号成立. 答案 C12.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=2x -2-1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为( )A.⎝ ⎛⎦⎥⎤1e 2,4eB.⎝ ⎛⎦⎥⎤1e ,4e 2C.⎣⎢⎡⎭⎪⎫4e 2,2eD.⎣⎢⎡⎭⎪⎫4e 3,2e 2 解析 由f (x )=2x -2-1=0,得x =2.依题意|2-β|<1,解得1<β<3.又g (β)=β2-a e β=0,得a =β2eβ,1<β<3.设φ(x )=x 2ex ,x ∈(1,3),则φ′(x )=x (2-x )ex,当1<x <2时,φ′(x )>0;2<x <3时,φ′(x )<0, ∴φ(x )在x =2处有极大值,且φ(2)=4e 2,又φ(1)=1e ,φ(3)=9e3且φ(1)<φ(3).∴φ(x )的值域为⎝ ⎛⎦⎥⎤1e ,4e 2,故a 的取值范围为⎝ ⎛⎦⎥⎤1e ,4e 2.答案 B二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.)13.已知向量a ,b 满足a =(cos 2 018°,sin 2 018°),|a +b |=7,|b |=2,则a ,b 的夹角等于________. 解析 由条件知|a |=1,|b |=2,|a +b |=7,则|a +b |2=a 2+b 2+2a ·b =7,a·b =1.故cos 〈a ,b 〉=a·b|a ||b |=12,〈a ,b 〉=π3. 答案π314.已知点P 在不等式组⎩⎪⎨⎪⎧y ≤2x ,2x +y ≥2,x ≤1表示的平面区域内,A (3,2),B (2,1),则△PAB 面积的最大值为________.解析 作不等式组表示的平面区域如图阴影部分,且|AB |=2,又k AB =1<2, ∴点C 到AB 所在直线的距离最大.易知直线AB 的方程为x -y -1=0.联立⎩⎪⎨⎪⎧x =1,y =2x ,得点C (1,2),∴C 点到直线AB 的距离d =|1-2-1|2=2,故△PAB 面积的最大值是12·|AB |·2=1. 答案 115.点M 是双曲线x 2-y 24=1渐近线上一点,若以M 为圆心的圆与圆C :x 2+y 2-4x +3=0相切,则圆M 的半径的最小值等于________.解析 不妨设点M 是渐近线2x -y =0上一点.∵圆C :x 2+y 2-4x +3=0的标准方程为(x -2)2+y 2=1,∴圆心C (2,0),半径R =1.若圆M 的半径最小,则圆M 与圆C 外切,且直线MC 与直线2x -y =0垂直. 因此圆M 的半径的最小值r min =|MC |min -R .由于|MC |min =|4-0|22+(-1)2=455,故r min =455-1. 答案 455-116.我国古代数学名著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱.如图为一个“堑堵”,即三棱柱ABC -A 1B 1C 1,其中AC ⊥BC ,已知该“堑堵”的高为6,体积为48,则该“堑堵”的外接球体积的最小值为________.解析 以C 为顶点,把三棱柱补成长方体,设其外接球的半径为R ,则(2R )2=AC 2+BC 2+CC 21=36+AC 2+BC 2,又V 三棱柱=12·AC ·BC ·CC 1=48,知AC ·BC =16,∴AC 2+BC 2≥2AC ·BC =32.则(2R )2的最小值为68,所以R min =17.故外接球体积的最小值为 43π(17)3=68173π. 答案 68173π。
高考数学总复习高分突破复习:小题满分限时练(六)

—————————— 教育资源共享 步入知识海洋 ————————高分突破复习:小题满分限时练(六)(限时:45分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合P ={x |y =-x 2-x +2},Q ={x |ln x <1},则P ∩Q =( ) A.(0,2] B.[-2,e) C.(0,1]D.(1,e)解析 由-x 2-x +2≥0,得-2≤x ≤1,则P =[-2,1],又Q ={x |0<x <e}=(0,e),故P ∩Q =(0,1]. 答案 C2.若复数z 满足z =4-2ii -1(i 为虚数单位),则下列说法正确的是( )A.复数z 的虚部为1B.|z |=10C.z -=-3+iD.复平面内与复数z 对应的点在第二象限解析 z =4-2i i -1=12(4-2i)(-1-i)=-3-i.∴z -=-3+i ,A ,B ,D 均不正确.答案 C3.已知a =20.9,b =323,c =log 123,则a ,b ,c 的大小为( )A.b >c >aB.a >c >bC.b >a >cD.a >b >c解析 0<a =20.9<2,c =log 123=-log 23<0,又b 3=(323)3=9>8,则b >2.故b >a >c .答案 C4.如图,已知正六边形ABCDEF 内接于圆O ,连接AD ,BE ,现在往圆O 内投掷2 000粒小米,则可以估计落在阴影区域内的小米的粒数大致是(参考数据:π3≈1.82,3π≈0.55)( ) A.275B.300C.550D.600解析 依题意,设AB =1,故阴影部分的面积S 1=2×34×12=32,圆O 的面积S 2=π×12=π,故落在阴影区域内的小米的粒数为2 000×32π=2 000×32π≈550.答案 C5.在某项检测中,测量结果服从正态分布N (2,1),若P (X <1)=P (X >1+λ),则λ=( ) A.0B.2C.3D.5解析 依题意,正态曲线关于x =2对称,又P (X <1)=P (X >1+λ),因此1+λ=3,∴λ=2. 答案 B6.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =3,3a =6sin A ,△ABC 的面积S =3,则a +b =( ) A.21B.17C.29D.5解析 在△ABC 中,c =3,3a =6sin A , ∴csin C =a sin A =63,则sin C =32,C =π3. 又S =12ab sin π3=3,知ab =4.由余弦定理,32=a 2+b 2-2ab cos π3=(a +b )2-3ab .∴(a +b )2=9+3ab =21,故a +b =21. 答案 A7.若执行右面的程序框图,则输出的结果为( ) A.180B.182C.192D.202解析 循环一次后:S =2,m =2. 循环两次后:S =7,m =3. 循环三次后:S =20,m =4. 循环四次后:S =61,m =5. 循环五次后:S =182,m =6. 不满足S <120?,退出循环体. 输出S =182. 答案 B8.如图为某几何体的三视图(图中网格纸上每个小正方形边长为1),则该几何体的体积等于( )A.π+12B.π+4C.53π+12D.53π+1 解析 由三视图知,该几何体是由一个长方体、一个半球与圆锥构成的组合体.V 长方体=3×2×2=12,V 半球=12×43π×13=23π, V 圆锥=13·π×12×1=π3.故该几何体的体积V =12+23π+π3=π+12.答案 A9.已知函数f (x )=3cos ⎝ ⎛⎭⎪⎫ωx -π2-cos ωx (0<ω<3)的图象过点P ⎝ ⎛⎭⎪⎫π3,0,若要得到一个偶函数的图象,则需将函数f (x )的图象( )A.向左平移2π3个单位长度B.向右平移2π3个单位长度C.向左平移π3个单位长度D.向右平移π3个单位长度解析 f (x )=3sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π6,又P ⎝ ⎛⎭⎪⎫π3,0在函数f (x )的图象上,∴π3ω-π6=k π(k ∈Z ),ω=3k +12,又0<ω<3,∴ω=12,f (x )=2sin ⎝ ⎛⎭⎪⎫x 2-π6.当将f (x )图象向右平移2π3个单位,得y =2sin ⎝ ⎛⎭⎪⎫x 2-π3-π6的图象,即y =2sin ⎝ ⎛⎭⎪⎫x 2-π2=-2cos x 为偶函数. 答案 B10.已知数列{a n }为等差数列,且a 1≥1,a 2≤5,a 5≥8,设数列{a n }的前n 项和为S n ,S 15的最大值为M ,最小值为m ,则M +m =( ) A.500B.600C.700D.800解析 由题意,可知公差最大值时,S 15最大;公差最小时,S 15最小.可得a 1=1,a 2=5,此时公差d =4是最大值,M =S 15=1×15+15×142×4=435.当a 2=5,a 5=8,此时d =1是最小值,a 1=4,m =S 15=4×15+15×142×1=165. M +m =435+165=600.答案 B11.如图,已知抛物线y 2=8x ,圆C :x 2+y 2-4x +3=0,过圆心C 的直线l 与抛物线和圆分别交于P ,Q ,M ,N ,则|PN |+9|QM |的最小值为( ) A.32 B.36 C.42D.50解析 易知圆C :(x -2)2+y 2=1,圆心(2,0),半径r =1,且圆心C (2,0)是抛物线y 2=8x 的焦点,则|PN |+9|QM |=|PC |+r +9(|QC |+r )=|PC |+9|QC |+10.设点P (x 1,y 1),Q (x 2,y 2),则x 1x 2=p 24=4.故|PN |+9|QM |=|PC |+9|QC |+10 =x 1+9x 2+5p +10=x 1+9x 2+30 ≥29x 1x 2+30=42.当且仅当x 1=9x 2=6时,上式等号成立. 答案 C12.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=2x -2-1与g (x )=x 2-a e x互为“1度零点函数”,则实数a 的取值范围为( )A.⎝ ⎛⎦⎥⎤1e 2,4eB.⎝ ⎛⎦⎥⎤1e ,4e 2C.⎣⎢⎡⎭⎪⎫4e 2,2eD.⎣⎢⎡⎭⎪⎫4e 3,2e 2 解析 由f (x )=2x -2-1=0,得x =2.依题意|2-β|<1,解得1<β<3.又g (β)=β2-a e β=0,得a =β2eβ,1<β<3.设φ(x )=x 2ex ,x ∈(1,3),则φ′(x )=x (2-x )ex,当1<x <2时,φ′(x )>0;2<x <3时,φ′(x )<0, ∴φ(x )在x =2处有极大值,且φ(2)=4e 2,又φ(1)=1e ,φ(3)=9e3且φ(1)<φ(3).∴φ(x )的值域为⎝ ⎛⎦⎥⎤1e ,4e 2,故a 的取值范围为⎝ ⎛⎦⎥⎤1e ,4e 2.答案 B二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.)13.已知向量a ,b 满足a =(cos 2 018°,sin 2 018°),|a +b |=7,|b |=2,则a ,b 的夹角等于________.解析 由条件知|a |=1,|b |=2,|a +b |=7,则|a +b |2=a 2+b 2+2a ·b =7,a·b =1.故cos 〈a ,b 〉=a·b |a ||b |=12,〈a ,b 〉=π3.答案π314.已知点P 在不等式组⎩⎪⎨⎪⎧y ≤2x ,2x +y ≥2,x ≤1表示的平面区域内,A (3,2),B (2,1),则△PAB 面积的最大值为________.解析 作不等式组表示的平面区域如图阴影部分,且|AB |=2,又k AB =1<2,∴点C 到AB 所在直线的距离最大.易知直线AB 的方程为x -y -1=0.联立⎩⎪⎨⎪⎧x =1,y =2x ,得点C (1,2),∴C 点到直线AB 的距离d =|1-2-1|2=2,故△PAB 面积的最大值是12·|AB |·2=1.答案 115.点M 是双曲线x 2-y 24=1渐近线上一点,若以M 为圆心的圆与圆C :x 2+y 2-4x +3=0相切,则圆M 的半径的最小值等于________. 解析 不妨设点M 是渐近线2x -y =0上一点.∵圆C :x 2+y 2-4x +3=0的标准方程为(x -2)2+y 2=1,∴圆心C (2,0),半径R =1.若圆M 的半径最小,则圆M 与圆C 外切,且直线MC 与直线2x -y =0垂直.因此圆M 的半径的最小值r min =|MC |min -R . 由于|MC |min =|4-0|22+(-1)2=455,故r min =455-1. 答案 455-116.我国古代数学名著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱.如图为一个“堑堵”,即三棱柱ABC -A 1B 1C 1,其中AC ⊥BC ,已知该“堑堵”的高为6,体积为48,则该“堑堵”的外接球体积的最小值为________.解析 以C 为顶点,把三棱柱补成长方体,设其外接球的半径为R ,则(2R )2=AC 2+BC 2+CC 21=36+AC 2+BC 2,又V 三棱柱=12·AC ·BC ·CC 1=48,知AC ·BC =16,∴AC 2+BC 2≥2AC ·BC =32.则(2R )2的最小值为68,所以R min =17.故外接球体积的最小值为 43π(17)3=68173π. 答案 68173π。
2019届高考数学总复习 高分突破复习:小题基础过关练(二)

高分突破复习:小题基础过关练(二)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合M ={x ||x -1|<1},N ={x |x <2},则M ∩N =( ) A.(-1,1)B.(-1,2)C.(0,2)D.(1,2)解析 由|x -1|<1,得-1<x -1<1,解得0<x <2, ∴M ={x |0<x <2},又∵N ={x |x <2}, ∴M ∩N =(0,2). 答案 C2.(2018·全国Ⅰ卷)设z =1-i1+i +2i ,则|z |=( )A.0B.12C.1D. 2解析 因为z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =-i +2i =i ,所以|z |=1.答案 C3.函数y =cos2⎝⎛⎭⎪⎫x +π4是( )A.周期为π的奇函数B.周期为π的偶函数C.周期为2π的奇函数D.周期为2π的偶函数解析 y =cos2⎝ ⎛⎭⎪⎫x +π4=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x ,是周期为π的奇函数. 答案 A4.已知倾斜角为θ的直线l 与直线x +2y -3=0垂直,则sin 2θ 的值为( ) A.35B.45C.15D.-15解析 由已知tan θ=2,sin 2θ=2sin θcos θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45. 答案 B5.(2018·日照模拟)设a =20.1,b =lg 52,c =log 3910,则a ,b ,c 的大小关系是( )A.b >c >aB.a >c >bC.b >a >cD.a >b >c解析 因为a =20.1∈(1,2),b =lg 52∈(0,1),c =log 3910<0,∴a >b >c .答案 D6.“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件解析 由f (x )=m +log 2x =0(x ≥1),得m =-log 2x ≤0.因为{m |m <0}{m |m ≤0},所以“m <0”是“函数f (x )(x ≥1)存在零点”的充分不必要条件. 答案 A7.(2018·武昌调研)中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为( )A.1.2B.1.6C.1.8D.2.4解析 由三视图知,商鞅铜方升是由一圆柱和一长方体的组合体.依题意,得(5.4-x )×3×1+π⎝ ⎛⎭⎪⎫122x =12.6,解得x =1.6.答案 B8.正项等比数列{a n }中,a 2 018=a 2 017+2a 2 016,若a m a n =16a 21,则4m +1n的最小值等于( )A.1B.32C.53D.136解析 设公比为q ,因为a 2 018=a 2 017+2a 2 016, 所以q 2=q +2,则q =2或q =-1(舍). 又a m a n =16a 21,则a 21·2m +n -2=16a 21.∴m +n =6(m >0,n >0),且m ,n ∈N *. ∴4m +1n =16(m +n )⎝ ⎛⎭⎪⎫4m +1n =16⎝⎛⎭⎪⎫5+4n m +m n≥16⎝ ⎛⎭⎪⎫5+24n m ·m n =32. 当且仅当m =4,n =2时等号成立. 答案 B9.已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB →|=2,OC →=13OA →+23OB →,若M 是线段AB 的中点,则OC →·OM →的值为( ) A. 3B.2 3C.2D.3解析 由OC →=13OA →+23OB →,又OM →=12(OA →+OB →),所以OC →·OM →=⎝ ⎛⎭⎪⎫13OA →+23OB →·12(OA →+OB →)=16(OA →2+2OB →2+3OA →·OB →), 又△OAB 为等边三角形,所以OA →·OB →=2×2cos 60°=2,OA →2=4,OB →2=4,所以OC →·OM →=3. 答案 D10.习总书记在十九大报告中指出:坚定文化自信,推动社会主义文化繁荣兴盛.如图,“大衍数列”:0,2,4,8,12…来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.如图是求大衍数列前n 项和的程序框图,执行该程序框图,输入m =6,则输出的S =( )A.26B.44C.68D.100解析 第一次运行,n =1,a =n 2-12=0,S =0+0=0,不符合n ≥m ,继续运行.第二次运行,n =2,a =n 22=2,S =0+2=2,不符合n ≥m ,继续运行,第三次运行,n =3,a =n 2-12=4,S =2+4=6,不符合n ≥m ,继续运行,第四次运行,n =4,a =n 22=8,S =6+8=14,不符合n ≥m ,继续运行,第五次运行,n =5,a =n 2-12=12,S =14+12=26,不符合n ≥m ,继续运行,第六次运行,n =6,a =n 22=18,S =26+18=44,符合n ≥m ,输出S =44.答案 B11.已知双曲线E :x 24-y 22=1,直线l 交双曲线于A ,B 两点,若线段AB 的中点坐标为⎝ ⎛⎭⎪⎫12,-1,则l 的方程为( ) A.4x +y -1=0B.2x +y =0C.2x +8y +7=0D.x +4y +3=0解析 设A (x 1,y 1),B (x 2,y 2),则x 214-y 212=1,且x 224-y 222=1,相减得x 21-x 224=y 21-y 222,即y 1-y 2x 1-x 2=12×x 1+x 2y 1+y 2. 又线段AB 的中点坐标是⎝ ⎛⎭⎪⎫12,-1, 因此x 1+x 2=2×12=1,y 1+y 2=(-1)×2=-2,则y 1-y 2x 1-x 2=-14,即直线AB 的斜率为-14,直线l 的方程为y +1=-14⎝ ⎛⎭⎪⎫x -12,即2x +8y +7=0. 答案 C12.定义在(0,+∞)上的函数f (x )满足x 2f ′(x )+1>0,f (1)=6,则不等式f (lg x )<1lg x +5的解集为( ) A.(10,10) B.(0,10) C.(10,+∞)D.(1,10)解析 设g (x )=f (x )-1x -5,则g ′(x )=f ′(x )+1x 2=x 2f ′(x )+1x2>0,故函数g (x )在(0,+∞)上单调递增,又g (1)=0,故g (x )<0的解集为(0,1),即f (x )<1x+5的解集为(0,1).由0<lg x <1,得1<x <10,则所求不等式的解集为(1,10). 答案 D二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.)13.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,2x +y -4≥0,x ≥0,则z =x +2y 的最小值为________.解析 由题意可得可行域为如图所示(含边界)的阴影部分,z =x +2y ,即y =-12x +12z ,则在点A 处取得最小值,联立⎩⎪⎨⎪⎧x -y +1=0,2x +y -4=0,解得⎩⎪⎨⎪⎧x =1,y =2, ∴A (1,2).代入z =x +2y 得最小值5. 答案 5 14.若二项式⎝⎛⎭⎪⎫55x 2+1x 6的展开式中的常数项为m ,则⎠⎛1m x 2d x =________.解析 依题意m =T 5=C 46⎝⎛⎭⎪⎫552=3.则⎠⎛1m x 2d x =⎠⎛13x 2d x =13x 3⎪⎪⎪31=263.答案26315.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=4x 的准线分别交于A ,B 两点,O 为坐标原点,若S △AOB =23,则双曲线的离心率e =________.解析 双曲线的渐近线方程是y =±ba x ,当x =-1时,y =±b a,不妨设A ⎝⎛⎭⎪⎫-1,b a ,B ⎝⎛⎭⎪⎫-1,-b a,所以S △AOB =12×2×b a ×1=23,即b a =2 3.所以b2a 2=12,所以e =1+b 2a2=13. 答案1316.若函数y =f (x )满足:对于y =f (x )图象上任意一点P ,在其图象上总存在点P ′,使得OP →·OP →′=0成立,称函数y =f (x )是“特殊对点函数”.给出下列五个函数: ①y =x -1;②y =e x-2(其中e 为自然对数的底数); ③y =ln x ;④y =1-x 2.其中是“特殊对点函数”的是________(写出所有正确的序号).解析 设点P (x 1,f (x 1)),点P ′(x 2,f (x 2)),由OP →·OP ′→=0,得x 1x 2+f (x 1)f (x 2)=0,即OP →⊥OP →′.对于①y =x -1.当取点P (1,1)时,满足OP →⊥OP →′的点P ′不在y =x -1上,故①y =x -1不是“特殊对点函数”,如图(1)所示;对于②y =e x -2.作出函数y =e x-2的图象.由图象知,满足OP →⊥OP →′的点P ′(x 2,f (x 2))都在y =f (x )图象上,则②是“特殊对点函数”,如图(2)所示;(1) (2)(3) (4)对于③y =ln x .当取点P (1,0)时,满足OP →⊥OP →′的点P ′不在y =ln x 上,故③y =ln x 不是“特殊对点函数”,如图(3)所示;对于④y =1-x 2.作出函数y =1-x 2的图象,由图象知,满足OP →⊥OP →′的点P ′(x 2,f (x 2))都在y =f (x )图象上,则④是“特殊对点函数”,如图(4)所示. 答案 ②④。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高分突破复习:小题满分限时练(一)(限时:45分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合A ={x |x 2-6x +8<0},B ={x ∈N |y =3-x },则A ∩B =( ) A.{3} B.{1,3} C.{1,2}D.{1,2,3}解析 由x 2-6x +8<0得2<x <4,故A ={x |2<x <4},又B ={x ∈N |y =3-x }={x ∈N |x ≤3}={0,1,2,3},故A ∩B ={3}. 答案 A2.复数2+i1-2i 的共轭复数是( )A.-35iB.35iC.-iD.i解析 法一 ∵2+i 1-2i =(2+i )(1+2i )(1-2i )(1+2i )=2+i +4i -25=i ,∴2+i1-2i 的共轭复数为-i.法二 ∵2+i 1-2i =-2i 2+i 1-2i =i (1-2i )1-2i =i ,∴2+i1-2i 的共轭复数为-i.答案 C3.已知数列{a n }满足:对于m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12解析 由于a n ·a m =a n +m (m ,n ∈N *),且a 1=12.令m =1,得12a n =a n +1,所以数列{a n }是公比为12,首项为12的等比数列.因此a 5=a 1q 4=⎝ ⎛⎭⎪⎫125=132.答案 A4.已知角α的终边经过点P (2,m )(m ≠0),若sin α=55m ,则sin ⎝⎛⎭⎪⎫2α-3π2=( )A.-35B.35C.45D.-45解析 ∵角α的终边过点P (2,m )(m ≠0), ∴sin α=m4+m2=55m ,则m 2=1. 则sin ⎝ ⎛⎭⎪⎫2α-32π=cos 2α=1-2sin 2α=35.答案 B5.在ABCD 中,|AB →|=8,|AD →|=6,N 为DC 的中点,BM →=2MC →,则AM →·NM →=( ) A.48B.36C.24D.12解析 AM →·NM →=(AB →+BM →)·(NC →+CM →)=⎝ ⎛⎭⎪⎫AB →+23AD →·⎝ ⎛⎭⎪⎫12AB →-13AD →=12AB →2-29AD →2=24.答案 C6.中国古代有计算多项式值的秦九韶算法,下面是实现该算法的程序框图.执行该程序框图,若输入的x =3,n =2,依次输入的a 为2,2,5,则输出的s =( )A.8B.17C.29D.83解析 由程序框图知,循环一次后s =2,k =1. 循环二次后s =2×3+2=8,k =2.循环三次后s =8×3+5=29,k =3.满足k >n ,输出s =29. 答案 C7.如图,半径为R 的圆O 内有四个半径相等的小圆,其圆心分别为A ,B ,C ,D ,这四个小圆都与圆O 内切,且相邻两小圆外切,则在圆O 内任取一点,该点恰好取自阴影部分的概率为( ) A.3-2 2 B.6-4 2C.9-6 2D.12-8 2解析 由题意,A ,O ,C 三点共线,且AB ⊥BC . 设四个小圆的半径为r ,则AC =AB 2+BC 2, ∴2R -2r =22r ,∴R =(2+1)r .所以,该点恰好取自阴影部分的概率P =4πr 2πR 2=4(2+1)2=12-8 2. 答案 D8.已知函数f (x )=3+log a (7-x )(a >0,a ≠1)的图象恒过点P ,若双曲线C 的对称轴为两坐标轴,一条渐近线与3x -y -1=0垂直,且点P 在双曲线C 上,则双曲线C 的方程为( ) A.x 29-y 2=1 B.x 2-y 29=1C.x 23-y 2=1D.x 2-y 23=1解析 由已知可得P (6,3),因为双曲线的一条渐近线与3x -y -1=0垂直,故双曲线的渐近线方程为x ±3y =0,故可设双曲线方程为x 2-(3y )2=λ,即x 2-9y 2=λ,由P (6,3)在双曲线上可得62-9×(3)2=λ,解得λ=9.所以双曲线方程为x 29-y 2=1.答案 A9.函数f (x )=x 2-2ln|x |的图象大致是( )解析 f (x )=x 2-2ln|x |为偶函数,排除D.当x >0时,f (x )=x 2-2ln x ,f ′(x )=2x -2x =2(x +1)(x -1)x,所以当0<x <1时,f ′(x )<0,f (x )为减函数;当x >1时,f ′(x )>0,f (x )为增函数,排除B ,C ,故选A. 答案 A10.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A.163π B.112π C.173π D.356π 解析 该几何体可以看成是在一个半球上叠加一个14圆锥,然后挖掉一个相同的14圆锥,所以该几何体的体积和半球的体积相等.由图可知,球的半径为2,则V =23πr 3=16π3.答案 A11.将函数f (x )=4sin 2x 的图象向右平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位长度后得到函数g (x )的图象,若对于满足|f (x 1)-g (x 2)|=8的x 1,x 2,有|x 1-x 2|min =π6,则φ=( )A.π6B.π4C.π3D.5π12解析 由题意知,g (x )=4sin(2x -2φ),满足|f (x 1)-g (x 2)|=8,不妨设此时x 1,x 2分别是函数f (x )和g (x )的最小值点和最大值点.即f (x 1)=-4,g (x 2)=4.则x 1=3π4+k 1π(k 1∈Z ),x 2=⎝ ⎛⎭⎪⎫π4+φ+k 2π(k 2∈Z ), |x 1-x 2|=⎪⎪⎪⎪⎪⎪π2-φ+(k 1-k 2)π(k 1,k 2∈Z ).又|x 1-x 2|min =π6,0<φ<π2,所以φ=π3.答案 C12.已知函数f (x )=ax 3+bx 2+cx +d ⎝ ⎛⎭⎪⎫a <23b 在R 上是单调递增函数,则c 2b -3a 的最小值是( ) A.1B.2C.3D.4解析 依题意,f ′(x )=3ax 2+2bx +c ≥0在x ∈R 恒成立.∴a >0,且Δ=4b 2-12ac ≤0,则b 2≤3ac ,c ≥b 23a >0.又a <23b ,知2b -3a >0,则3a (2b -3a )≤⎝ ⎛⎭⎪⎫3a +2b -3a 22=b 2,故c 2b -3a ≥b 23a (2b -3a )≥b 2b2=1. 答案 A二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.)13.一个总体分为A ,B 两层,其个体数之比为5∶1,用分层抽样方法从总体中抽取一个容量为12的样本,已知B 层中甲、乙都被抽到的概率为128,则总体中的个数为________.解析 由条件易知B 层中抽取的样本数是2,设B 层总体数是n ,则又由B 层中甲、乙都被抽到的概率是C 22C 2n =128,可得n =8,所以总体中的个数是5×8+8=48.答案 4814.⎝⎛⎭⎪⎫2x +x (1-x )4的展开式中x 的系数是________.解析 ⎝ ⎛⎭⎪⎫2x +x (1-x )4的展开式中含x 的项是(1-x )4展开式中的常数项乘⎝ ⎛⎭⎪⎫2x +x 中的x 与(1-x )4展开式中含x 2的项乘⎝ ⎛⎭⎪⎫2x +x 中的2x的和,所以其系数为1+2×1=3.答案 315.(2018·烟台模拟)已知F (2,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,过F 且垂直于x 轴的弦的长度为6,若A (-2,2),点M 为椭圆上任一点,则|MF |+|MA |的最大值为________. 解析 ∵过点F 的弦长为6,得2b 2a=6,b 2=3a ,①又a 2-b 2=c 2=4,②联立①②,解得a =4,b =2 3.过点A 作x 轴垂线交椭圆于M ,当点M 在第三象限时,|MF |+|MA |取最大值2a +2=8+ 2. 答案 8+ 216.已知函数f (x )=ax 3-3x 2+1(a ≠0),若f (x )存在2个零点x 1,x 2,且x 1,x 2都大于0,则a 的取值范围是______.解析 f ′(x )=3ax 2-6x ,令f ′(x )=0,得x =0或x =2a,当a >0时,易知x =0是极大值点,x =2a是极小值点.∵f (0)=1>0,∴f ⎝ ⎛⎭⎪⎫2a =a 2-4a 2<0,解得a ∈(0,2).当a <0时,易知x =2a是极小值点,x =0是极大值点.又f (0)=1>0,∴函数f (x )只有一个大于零的零点,不满足题意. 综上,实数a 的取值范围是(0,2). 答案 (0,2)。