高中数学北师大版选修11第三章导数的四则运算法则word教案2

合集下载

高中数学 第3章 §4导数的四则运算法则课件 北师大版选修11

高中数学 第3章 §4导数的四则运算法则课件 北师大版选修11

∴3+a=k,∴a=-1,∴32页。
准确应用公式 求下列函数的导数:
(1)y=(x2+1)2; (2)y=cos22x. [错解] (1)y′=2(x2+1);(2)y′=-2sin2x.
第三十一页,共32页。
[辨析] 这是复合函数的导数,但复合函数的导数我们没有 学习讨论(tǎolùn)过,遇到这种类型的函数求导,可先整理,再 求导.
第二十八页,共32页。
[方法规律总结] 1.导数的应用中,求导数是一个(yī ɡè)基 本解题环节,应仔细分析函数解析式的结构特征,根据导数公 式及运算法则求导数,不具备导数运算法则的结构形式时,先 恒等变形,然后分析题目特点,探寻条件与结论的联系,选择 解题途径.
2.求参数的问题一般依据条件建立参数的方程求解.
即 4x-y-12=0 或 4x-y-8=0.
第二十四页,共32页。
[方法规律总结] 求切线方程(fāngchéng)的步骤: (1)用导数公式和运算法则求导数. (2)求切线的斜率; (3)写出切线方程(fāngchéng).
第二十五页,共32页。
(2014·贵州湄潭中学高二期中)曲线f(x)=xlnx在点x=1处的
第八页,共32页。
=fx+Δx+gx+ΔxΔx-fx-gx
=fx+ΔΔxx-fx+gx+ΔΔxx-gx,
∴ lim Δx→0
Fx+Δx-Fx Δx

lim
Δx→0
gx+ΔΔxx-gx=f ′(x)+g′(x),
fx+Δx-fx Δx

lim
Δx→0
第九页,共32页。
Gx+ΔΔxx-Gx=fx+Δxgx+ΔxΔx-fxgx
解法二:y=(x2+2x+1)(x-1)=x3+x2-x-1, y′=(x3+x2-x-1)′=3x2+2x-1. (2)y′ = (x2sinx)′ = (x2)′sinx + x2(sinx)′ = 2xsinx + x2cosx. (3)y′=1x+x22+x33′=(x-1+2·x-2+3·x-3)′=-x-2- 4x-3-9x-4=-x12-x43-x94.

高中数学 3.4.1 导数的加法与减法法则配套多媒体教学优质课件 北师大版选修11

高中数学 3.4.1 导数的加法与减法法则配套多媒体教学优质课件 北师大版选修11
§4 导数的四则运算法则(fǎzé) 4.1 导数的加法与减法法则 (fǎzé)
第一页,共26页。
观察(guānchá)下图你能作出判断吗?
h(x)
=
f(x) +
g(x)
求 导
f x +
求 导
gx
=

hx
本节课我们就主要解决(jiějué)这一问题.
第二页,共26页。
1.掌握导数的加法与减法法则.(重点) 2.会运用公式,求含有和、差综合(zōnghé)运算的函数的导 数.(重点) 3.函数和、差导数公式的应用,运用导数的几何意义求过曲 线上一点的切线.(难点)
22
1 ( 1 1). 2xx
第十八页,共26页。
1.函数(háynsh1ù) cos x x
A.
y
1 x2
sin x
的导数为B ( )
B.
y
1 x2
sin x
C.
y
1 x2
sin x
D.
y
1 x2
sin x
解析(jiě :
xyī)
( 1 ) x
cos x
1 x2
sin x.
第十九页,共26页。
给定自变量x的一个(yī ɡè)改变量△x,则函数值y的改变
量为
y f x x f x
x x x x2 x x2
x 2xx x2
相应(xiāngyīng)的平均变化y率为x 2xx x 2
x
x
1 2x x.
当△x趋于0时,得到(dé dào)导函f 数x 1 2x.
6x2 6x 4.
第二十三页,共26页。
6.已知曲线 y 1 x3 x 上一点(yīPd(i2ǎ,n1)4)

高中数学 3.4.2 导数的乘法与除法法则配套多媒体教学优质课件 北师大版选修11

高中数学 3.4.2 导数的乘法与除法法则配套多媒体教学优质课件 北师大版选修11

A.
x
1 x
1
1 x2
C. 3x 3x log3 e
B.
log2
x
x
1 ln
2
D.
x2 cos x
2x
cos x x2
cos x2
sin
x
第二十六页,共30页。
5.(2012·新课标全国卷)曲线y=x(3ln x+1)在点
(1,1)处的切线方程为___4_x___y___3___.0
则得
sin x
x
cos
x
x x2
sin
x
1
x
cos
x x2
sin
x
.
第十三页,共30页。
(2)函数 y 是函x2数 f(x)=x2与g(x)=ln x之商,根 据导数公式(gōnglnshxì)表分别得出
f (x) 2x, g(x) 1 . x
由求导的除法(chúfǎ)法
则得
x2
ln
]
f
(x)g(x) f (x)g(x) g2(x)
.
特别地,当
时,有
.
第七页,共30页。
思考交流:下列式子是否成立?试举例说明.

,试说明(shuōmíng):

.
第八页,共30页。
解析(jiě xī)f:(x)g(x) x3x2 (x5) 5x4,
f (x)g(x) (x3)(x2) 3x2 2x 6x3,
变形 化简
对不易于直接应用求导公式的函数, 适当运用代数、三角恒等变换,对函 数进行化简,优化解题过程.
求导时应尽量避免使用积或商的求 导法则,可在求导前先化简,然后 求导,以简化运算.

北师大版数学高一北师大版选修1-1教案 3.3 计算导数2

北师大版数学高一北师大版选修1-1教案 3.3  计算导数2

3.3 计算导数教学过程: 一、创设情景我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数()y f x =,如何求它的导数呢?由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数. 二、新课讲授1.函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x∆+∆--===∆∆∆ 所以00lim lim 00x x yy ∆→∆→∆'===0y '=表示函数y c =图像上每一点处的切线的斜率都为0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.2.函数()y f x x ==的导数因为()()1y f x x f x x x x x x x∆+∆-+∆-===∆∆∆ 所以00lim lim11x x yy ∆→∆→∆'===∆1y '=表示函数y x =图像上每一点处的切线的斜率都为1,若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.3.函数2()y f x x ==的导数因为22()()()y f x x f x x x x x x x ∆+∆-+∆-==∆∆∆2222()2x x x x x x x x+∆+∆-==+∆∆ 所以00limlim(2)2x x yy x x x ∆→∆→∆'==+∆=∆2y x '=表示函数图像上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x . 4.函数1()y f x x==的导数 因为11()()y f x x f x x x x x x x-∆+∆-+∆==∆∆∆ 2()1()x x x x x x x x x x -+∆==-+∆∆+⋅∆ 所以220011lim lim()x x y y∆→∆→∆'==-=-∆5.函数()y f x==因为()()y f x x f x x x x∆+∆-==∆∆∆==所以lim x y ∆→'=推广: 若*()()n y f x x n Q ==∈,则1()n f x nx -'=注:这里n 可以是全体实数. 6. 基本初等函数的求导公式:⑴ ()kx b k '+= (k,b 为常数) ⑵ 0)(='C (C 为常数) ⑶ ()1x '=⑷ 2()2x x '=⑸ 32()3x x '= ⑹ 211()x x '=-⑺ '=由⑶~⑹你能发现什么规律?⑻ 1()x xααα-'= (α为常数)⑼ ()ln (01)xxa a a a a '=>≠,⑽ a a 11(log x)log e (01)x xlnaa a '==>≠,且 ⑾ xx e )(e =' ⑿ x1)(lnx =' ⒀ cosx )(sinx =' ⒁ sinx )(cosx -='从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。

《导数的四则运算法则》教学设计

《导数的四则运算法则》教学设计

《导数的四则运算法则》教学设计
一、教学目标
1.知识与技能
(1)掌握两个函数的和、差、积、商的求导法则.
(2)能正确利用法则求函数的导数,解决相关的问题.
2.过程与方法
利用学生已掌握的导数定义,得出一个简单的两个函数的和的导数,从而提出问题引入新课,通过学生的猜想,探究和、差、积、商的求导法则,并加以应用,加深学生对法则的理解.
3.情感、态度与价值观
通过学生的主动参与,自我探索,互相交流,提高学生的学习兴趣,激发学生的求知欲,培养探索和创新精神.
二、教材分析
1.地位、作用
导数运算法则的给出是前几节课的继续,它将求导数问题、求曲线切线问题、求瞬时速度问题由理论化转为公式化,使较复杂的过程简单化,也为下节课研究函数的单调性与极值问题提供了方便,在连接教材内容方面起到了一个纽带的作用.
2.教学重点:函数的和、差、积、商的求导法则及应用.
3.教学难点:积、商的求导法则的理解和综合运用.
三、教学方法
通过设疑、引导、启发等形式,采用启发式与发现法相结合的教学方法,引导学生学会自主观察、类比、分析、归纳等学习方法.
四、教学过程。

高中数学(北师大版)选修1-1教案:第3章 导数的四则运算法则 参考教案__2

高中数学(北师大版)选修1-1教案:第3章 导数的四则运算法则 参考教案__2

3.4 导数的四则运算法则教学目的:1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数.2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数3.能够综合运用各种法则求函数的导数教学重点:用定义推导函数的和、差、积、商的求导法则教学难点:函数的积、商的求导法则的推导.授课类型:新授课教学过程:一、复习引入:常见函数的导数公式:0'=C ;()'kx b k +=(k,b 为常数) 1)'(-=n n nx x ; ()'ln (0,0)x x a a a a a =>≠且 ()'x x e e =1(ln )'x x = 11(log )'log (0,0)ln a a x e a a x x a==>≠且 x x cos )'(sin =; x x sin )'(cos -=二、讲解新课:例1.求2y x x =+的导数.法则 1 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即 []()()''()'()f x g x f x g x ±=±法则2常数与函数的积的导数,等于常数与函数的积的导数.[]()'()'cf x cf x = 法则3两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即 []()()''()()()'()f x g x f x g x f x g x =+ 证明:令()()y f x g x =,则=∆y ()f x x +∆()g x x +∆-()()f x g x()f x x =+∆()g x x +∆-()f x ()g x x +∆+()f x ()g x x +∆-()()f x g x ,=∆∆x y ()()f x x f x x +∆-∆()g x x +∆+()f x ()()g x x g x x+∆-∆ 因为()g x 在点x 处可导,所以它在点x 处连续,于是当0→∆x 时,()()g x x g x +∆→, 从而0lim →∆x =∆∆x y 0lim →∆x ()()f x x f x x +∆-∆()g x x +∆+()f x 0lim →∆x ()()g x x g x x+∆-∆ '()()()'()f x g x f x g x =+,法则4 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即'2()'()()()'()(()0)()()f x f x g x f x g x g x g x g x ⎛⎫-=≠ ⎪⎝⎭三、讲解范例:例1 求下列函数的导数1、y =x 2+sin x 的导数.2、求2(23)(32)y x x =+-的导数.(两种方法)3、求下列函数的导数 ⑴()sin h x x x = ⑵21()t s t t+= 4、y =5x 10sin x -2x cos x -9,求y ′5、求y =xx sin 2的导数. 变式:(1)求y =332++x x 在点x =3处的导数. (2) 求y =x1·cos x 的导数. 例2求y =tan x 的导数.例3求满足下列条件的函数()f x(1) ()f x 是三次函数,且(0)3,'(0)0,'(1)3,'(2)0f f f f ===-=(2)'()f x 是一次函数, 2'()(21)()1x f x x f x --=变式:已知函数f(x)=x 3+bx 2+cx+d 的图象过点P(0,2),且在点M 处(-1,f(-1))处的切线方程为6x-y+7=0,求函数的解析式四、课堂练习:1.求下列函数的导数:(1)y =x a x a +- (2)y =232xx + (3)y =x cos 11- 五、小结 :由常函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数,商的导数法则(v u)′=2vv u v u '-'(v ≠0),如何综合运用函数的和、差、积、商的导数法则,来求一些复杂函数的导数.要将和、差、积、商的导数法则记住六、课后作业:。

高中数学《导数的四则运算法则》导学案导学课件 北师大版选修11

高中数学《导数的四则运算法则》导学案导学课件 北师大版选修11
ln x
(xsin x)' sin x+xcos x
)'=
(ln x)'
=
1
x
2
=xsin x+x cos x.
第九页,共21页。
[问题]求函数的导数是对谁求导?导数的运算(yùn suàn)法则正确吗?
[结论](1)求导是对自变量的求导,要分清表达式中的自变量.本题
的自变量是 x,a 是常量.(2)不正确,商的求导法则是:分母的平方作
写出推导过程.
第三页,共21页。
问题1
基本初等函数的导数公式表:
①若 f(x)=c,则 f'(x)= 0
;
②若 f(x)=xα(α∈Q),则 f'(x)= αxα-1 ;
③若 f(x)=sin x,则 f'(x)= cos x ;
④若 f(x)=cos x,则 f'(x)= -sin x ;
x
x
a
分母,分子是差的形式,等于分子的导数乘以分母的积减去分母的导
数乘以分子的积.
于是,正确解答为:
2
2
(1)f'(x)=(a +2ax-x )'=-2x+2a.
(2)f'(x)=(
xsin x
=
ln x
(xsin x)'ln x-xsin x(ln x)'
)'=
(ln x)
sin xln x+xcos xln x-sin x
4
求下列函数的导数.
π
(1)y=sin(x+ );
2
(2)y=log 1 x2-log 1 x.
2

高中数学 第三章 变化率与导数 4 导数的四则运算法则学案 北师大版选修11

高中数学 第三章 变化率与导数 4 导数的四则运算法则学案 北师大版选修11

§4 导数的四则运算法则[对应学生用书P41]已知函数f (x )=1x ,g (x )=x ,那么f ′(x )=-1x2,g ′(x )=1.问题1:如何求h (x )=f (x )+g (x )的导数?提示:用定义,由h (x )=1x+x ,得h (x +Δx )-h (x )=1x +Δx +x +Δx -1x-x =Δx -Δxx x +Δx.则f ′(x )=lim Δx →0 h x +Δx -h xΔx=lim Δx →0 ⎝⎛⎭⎪⎫1-1xx +Δx =1-1x 2.问题2:[f (x )+g (x )]′=f ′(x )+g ′(x )成立吗? 提示:成立.问题3:[f (x )-g (x )]′=f ′(x )-g ′(x )成立吗? 提示:成立.问题4:运用上面的结论你能求出(3x 2+tan x -e x)′吗? 提示:可以,(3x 2+tan x -e x )′=6x +1cos 2x-e x .导数的加法与减法法则两个函数和(差)的导数等于这两个函数导数的和(差),即 [f (x )+g (x )]′=f ′(x )+g ′(x ), [f (x )-g (x )]′=f ′(x )-g ′(x ).已知函数f (x )=x 3,g (x )=x 2,则f ′(x )=3x 2,g ′(x )=2x .问题1:[f (x )g (x )]′=f ′(x )g ′(x )成立吗? 提示:因为[f (x )·g (x )]′=(x 5)′=5x 4,f ′(x )g ′(x )=3x 2·2x =6x 3,所以上式不成立.问题2:[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x )成立吗? 提示:成立. 问题3:⎣⎢⎡⎦⎥⎤f x g x ′=fxg x成立吗? 提示:不成立. 问题4:⎣⎢⎡⎦⎥⎤f x g x ′=f x g x -f x gx[g x2成立吗?提示:成立.导数的乘法与除法法则(1)若两个函数f (x )和g (x )的导数分别是f ′(x )和g ′(x ),则 [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x )⎣⎢⎡⎦⎥⎤f x g x ′=f x g x -f x gxg 2x.(2)[kf (x )]′=kf ′(x ).1.[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x )≠f ′(x )g ′(x ),避免与[f (x )+g (x )]′=f ′(x )+g ′(x )混淆.2.若c 为常数,则[cf (x )]′=cf ′(x ).3.类比[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x )记忆⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x gx[g x2.[对应学生用书P42][例1] (1)f (x )=x ln x ;(2)y =x -1x +1; (3)y =2x 3+log 3x ;(4)y =x -sin x2cos x2.[思路点拨] 观察函数的结构特征,可先对函数式进行合理变形,然后利用导数公式及运算法则求解.[精解详析] (1)f ′(x )=(x ln x )′=ln x +x ·1x=ln x +1.(2)法一:y ′=(x -1x +1)′=x +1-x -x +2=2x +2.法二:y =x +1-2x +1=1-2x +1, ∴y ′=(1-2x +1)′=(-2x +1)′ =-x +-x +x +2=2x +2.(3)y ′=(2x 3+log 3x )′=(2x 3)′+(log 3x )′=6x 2+1x ln 3. (4)y =x -sin x 2cos x 2=x -12sin x ,∴y ′=(x -12sin x )′=1-12cos x .[一点通]解决函数的求导问题,应先分析所给函数的结构特点,选择正确的公式和法则,对较为复杂的求导运算,一般综合了和、差、积、商几种运算,在求导之前应先将函数化简,然后求导,以减少运算量.1.用导数的运算法则推导: (1)(tan x )′=1cos 2x; (2)(cot x )′=-1sin 2x.解:(1)(tan x )′=⎝ ⎛⎭⎪⎫sin x cos x ′=sin x ′cos x -sin x cos x ′cos 2x =cos 2x +sin 2x cos 2x =1cos 2x. (2)(cot x )′=⎝ ⎛⎭⎪⎫cos x sin x ′=cos x ′sin x -cos x sin x ′sin 2x =-sin 2x -cos 2x sin 2x =-1sin 2x.2.求下列函数的导数.(1)y =4cos x -3sin x ;(2)y =x +3x 2+3;(3)y =x n e x. 解:(1)y ′=(4cos x -3sin x )′=(4cos x )′-(3sin x )′=-4sin x -3cos x .(2)y ′=(x +3x 2+3)′=x +3′x 2+3-x +3x 2+3′x 2+32=x 2+3-2x 2-6xx 2+32=-x 2-6x +3x 2+32.(3)y ′=(x n e x)′=(x n)′e x+x n(e x)′=(nxn -1+x n )e x.[例2] 处与直线y =x -3相切,求a ,b ,c 的值.[思路点拨] 题中涉及三个未知量,已知中有三个独立条件,因此,要通过解方程组来确定a ,b ,c 的值.[精解详析] 因为y =ax 2+bx +c 过点(1,1), 所以a +b +c =1.y ′=2ax +b ,曲线在点(2,-1)的切线的斜率为4a +b =1.又曲线过点(2,-1),所以4a +2b +c =-1.由⎩⎪⎨⎪⎧a +b +c =1,4a +b =1,4a +2b +c =-1,解得⎩⎪⎨⎪⎧a =3,b =-11,c =9.所以a ,b ,c 的值分别为3,-11,9. [一点通]1.由导数的几何意义,结合已知条件建立关于参数的方程组是解决此类问题的关键. 2.若已知(x 0,y 0)处的切线方程为y =kx +b ,则有f ′(x 0)=k ,y 0=kx 0+b .3.若函数y =x 2+m 2x(m >0)在点x =x 0处的导数等于0,那么x 0=( )A .mB .-mC .±mD .m 2解析:由y ′=⎝ ⎛⎭⎪⎫x +m 2x ′=1-m 2x 2,结合题意得1-m 2x 20=0⇒x 20=m 2⇒x 0=±m .答案:C4.已知曲线y =x 3-1与曲线y =3-12x 2在x =x 0处的切线互相垂直,则x 0的值为( )A.33B.333 C. 3D.393解析:因为y =x 3-1⇒y ′=3x 2,y =3-12x 2⇒y ′=-x ,由题意得3x 20·(-x 0)=-1,解得x 30=13,即x 0=313=393.答案:D5.若f ′(x )为一次函数,且x 2f ′(x )+(-2x +1)f (x )=1,求f (x )的解析式. 解:由于f ′(x )为一次函数,则f (x )必为二次函数, 令f (x )=ax 2+bx +c ,则f ′(x )=2ax +b , 代入x 2f ′(x )+(-2x +1)f (x )=1得x 2(2ax +b )+(-2x +1)(ax 2+bx +c )=1.即(-b +a )x 2+(b -2c )x +(c -1)=0, ∴⎩⎪⎨⎪⎧-b +a =0,b -2c =0,c -1=0,解得⎩⎪⎨⎪⎧a =2,b =2,c =1.∴f (x )=2x 2+2x +1.[例3] (1)求曲线y =f (x )在点(2,-6)处的切线方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.[思路点拨] (1)求出f (x )在2处的导数,即切线斜率,用点斜式写出方程即可. (2)设出切点坐标,进而求出切线斜率,写出切线方程,再利用切线过原点即可求出切点坐标.(3)设出切点坐标,求出切线斜率,又已知斜率为4,则可求出切点坐标. [精解详析] (1)可判定点(2,-6)在曲线y =f (x )上. ∵f ′(x )=(x 3+x -16)′=3x 2+1, ∴f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13.∴切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)法一:设切点为(x 0,y 0), 则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16. 整理得,x 30=-8,∴x 0=-2. ∴y 0=(-2)3+(-2)-16=-26.k =3×(-2)2+1=13.∴直线l 的方程为y =13x ,切点坐标为(-2,-26). 法二:设直线l 的方程为y =kx ,切点为(x 0,y 0),则k =y 0-0x 0-0=x 30+x 0-16x 0,又∵k =f ′(x 0)=3x 20+1,∴x 30+x 0-16x 0=3x 20+1.解之得x 0=-2,∴y 0=(-2)3+(-2)-16=-26.k =3×(-2)2+1=13.∴直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)∵切线与直线y =-x4+3垂直,∴切线的斜率k =4.设切点坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4, ∴x 0=±1.∴⎩⎪⎨⎪⎧x 0=1,y 0=-14,或⎩⎪⎨⎪⎧x 0=-1,y 0=-18.即切点为(1,-14)或(-1,-18).切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14. [一点通]利用导数求曲线的切线方程的两种类型及求解过程. (1)求曲线y =f (x )在点P (x 0,y 0)处的切线方程:①求导数y =f ′(x ),得斜率k =f ′(x 0);②写出点斜式方程y -f (x 0)=f ′(x 0)(x -x 0)并化简. (2)求过点P (x 1,y 1)的曲线y =f (x )的切线方程: ①设切点坐标为(x 0,y 0);②求导数y =f ′(x )得切线斜率k =f ′(x 0); ③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0); ④代入P 的坐标(x 1,y 1),求出x 0; ⑤代入切线方程并化简.6.若曲线f (x )=13x 3+ax 2+x 存在垂直于y 轴的切线,则实数a 的取值范围为( )A .(-∞,-12]∪[1,+∞)B .(-∞,-1]∪[1,+∞)C .(-∞,-1]∪[0,+∞)D .[-12,+∞)解析:f ′(x )=x 2+2ax +1, ∵f (x )存在垂直于y 轴的切线,∴f ′(x )=0有解,即x 2+2ax +1=0有解, ∴Δ=(2a )2-4≥0, ∴a ≥1或a ≤-1,即a 的取值范围为(-∞,-1]∪[1,+∞). 答案:B7.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为________. 解析:y ′=3x 2+6x +6=3(x +1)2+3,当x =-1时,y ′取最小值3.∴点(-1,-14)处的切线斜率最小,切线方程为y +14=3(x +1)即3x -y -11=0. 答案:3x -y -11=08.若函数f (x )=ax 2+2ln x (a ∈R )在点(1,f (1))处的切线l 与圆C :x 2+y 2=1相切,求a 的值及切线l 的方程.解:依题意有f (1)=a ,f ′( x )=2ax +2x,∴f ′(1)=2a +2.∴直线l 的方程为y -a =(2a +2)(x -1), 即(2a +2)x -y -a -2=0.(*) ∵l 与圆C 相切,∴|a +2|a +2+1=1,解得a =-1或a =-13.把a =-1或a =-13代入(*)式并整理得切线l 的方程为y =-1或4x -3y -5=0.1.运用基本的初等函数的导数公式和求导的运算法则时,要认真分析函数式的结构特点,较复杂的要先化简,再求导,尽量避免使用积或商的求导法则.2.求切线方程.(1)求过点P 的曲线的切线方程时应注意,P 点在曲线上还是在曲线外,两种情况的解法是不同的.(2)解决此类问题应充分利用切点满足的三个关系:一是切点坐标满足曲线方程;二是切点坐标满足对应切线的方程;三是切线的斜率是函数在此切点处的导数值.[对应课时跟踪训练十四1.函数y =x 2x +3的导数是( )A.x 2+6x x +2B.x 2+6x x +3C.-2x x +2D.3x 2+6x x +2解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=x 2x +-x 2x +x +2=2xx +-x2x +2=x 2+6x x +2.答案:A 2.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2解析:∵y ′=x x +-x x +x +2=2x +2,∴k =f ′(-1)=2-1+2=2.∴切线方程为:y +1=2(x +1),即y =2x +1. 答案:A3.若过函数f (x )=ln x +ax 上的点P 的切线与直线2x -y =0平行,则实数a 的取值范围是( )A .(-∞,2]B .(-∞,2)C .(2,+∞)D .(0,+∞)解析:设过点P (x 0,y 0)的切线与直线2x -y =0平行,因为f ′(x )=1x+a ,故f ′(x 0)=1x 0+a =2,得a =2-1x 0,由题意知x 0>0,所以a =2-1x 0<2.答案:B4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x (e 为自然对数的底数),则f ′(e)等于( )A.1e B .e C .-1eD .-e解析:由f (x )=2xf ′(e)+ln x ,得f ′(x )=2f ′(e)+1x ,则f ′(e)=2f ′(e)+1e⇒f ′(e)=-1e.答案:C5.函数y =sin x -cos x 2cos x 在x =π3处的导数为________.解析:y ′=⎝⎛⎭⎪⎫sin x -cos x 2cos x ′=⎝⎛⎭⎪⎫12tan x -12′=12cos 2x ,∴x =π3时,y ′=12cos2π3=2.答案:26.若点P 是曲线f (x )=x 2-ln x 上任意一点,则点P 到直线y =x -2的距离最小时点P 的坐标为________.解析:过点P 作y =x -2的平行直线l ,且与曲线f (x )=x 2-ln x 相切.设P (x 0,x 20-ln x 0),则直线l 的斜率k =f ′(x 0)=2x 0-1x 0,∴2x 0-1x 0=1,∴x 0=1或x 0=-12(舍去),∴点P 的坐标为(1,1).答案:(1,1)7.求下列函数的导数.(1)y =1+x 1-x +1-x 1+x ;(2)y =ln x +2xx2; (3)y =1-12sin 2x 2.解:(1)∵y =+x 21-x+-x 21-x=+x1-x=41-x-2, ∴y ′=⎝⎛⎭⎪⎫41-x -2′=-x --x-x2=4-x2.(2)y ′=⎝ ⎛⎭⎪⎫ln x x 2+2xx 2′=⎝ ⎛⎭⎪⎫ln x x 2′+⎝ ⎛⎭⎪⎫2xx 2′=1x ·x 2-ln x ·2x x 4+2x ·ln 2·x 2-2x·2x x4=1-2ln x x +ln 2·x 2-2x ·2xx 4=1-2ln x +ln 2·x -22xx 3.(3)∵y =1-12sin 2x 2=14⎝ ⎛⎭⎪⎫3+1-2sin 2x 2=14(3+cos x )=34+14cos x ,∴y ′=⎝ ⎛⎭⎪⎫34+14cos x ′=-14sin x .8.已知函数f (x )=ax 2-(a +2)x +ln x .(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当a ≥1时,求证:当x ∈[1,e]时,f ′(x )≥0,其中e 为自然对数的底数.解:(1)当a =1时,f (x )=x 2-3x +ln x ,f ′(x )=2x -3+1x,因为f ′(1)=0,f (1)=-2, 所以切线方程是y =-2.(2)证明:函数f (x )=ax 2-(a +2)x +ln x 的定义域是(0,+∞),f ′(x )=2ax -(a +2)+1x.即f ′(x )=2ax 2-a +x +1x=x -ax -x,当a ≥1时,在x ∈[1,e]上,2x -1>0,ax -1≥0,可得f ′(x )≥0.对应学生用书P44]一、导数的概念1.导数:f ′(x 0)=li m Δx →0f x 0+Δx -f x 0ΔxΔx 是自变量x 在x 0处的改变量,它可正、可负,但不可为零,f ′(x 0)是一个常数. 2.导函数:f ′(x )=li m Δx →0 f x +Δx -f xΔx f ′(x )为f (x )的导函数,是一个函数.二、导数的几何意义1.f ′(x 0)是函数y =f (x )在x 0处切线的斜率,这是导数的几何意义. 2.求切线方程: 常见的类型有两种:一是函数y =f (x )“在点(x 0,f (x 0))处的切线方程”,这种类型中(x 0,f (x 0))是曲线上的点,其切线方程为y -f (x 0)=f ′(x 0)(x -x 0).二是函数y =f (x )“过某点的切线方程”,这种类型中,该点不一定为切点,可先设切点为Q (x 1,y 1),则切线方程为y -y 1=f ′(x 1)(x -x 1),再由切线过点P (x 0,y 0)得y 0-y 1=f ′(x 1)(x 0-x 1),又y 1=f (x 1),由上面两个方程可解得x 1,y 1的值,即求出了过点P (x 0,y 0)的切线方程.三、导数的运算1.基本初等函数的导数: (1)f (x )=c ,则f ′(x )=0; (2)f (x )=x α,则f ′(x )=αxα-1;(3)f (x )=a x (a >0且a ≠1),则f ′(x )=a xln a . (4)f (x )=log a x ,则f ′(x )=1x ln a; (5)f (x )=sin x ,则f ′(x )=cos x ; (6)f (x )=cos x ,则f ′(x )=-sin x ;(7)f (x )=tan x ,则f ′(x )=1cos 2x ;(8)f (x )=cot x ,则f ′(x )=-1sin 2x .2.导数四则运算法则:(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x gxg 2x.⎣⎢⎡⎦⎥⎤对应阶段质量检测三 见8开试卷 (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列求导运算正确的是( ) A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(5x )′=5xlog 5eD .(x 2cos x )′=2x sin x解析:∵⎝ ⎛⎭⎪⎫x +1x ′=1-1x2;(5x )′=5x ln 5;(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x ·cos x -x 2sin x ,∴B 选项正确. 答案:B2.设函数y =-3x +2在区间[-4,-2]上的平均变化率为a ,在区间[2,4]上的平均变化率为b ,则下列结论中正确的是( )A .a >bB .a <bC .a =bD .不确定解析:一次函数y =kx +b 在区间[m ,n ]上的平均变化率都为常数k .∵y =-3x +2在区间[-4,-2],[2,4]上的平均变化率都为常数-3,∴a =b =-3.答案:C3.运动物体的位移s =3t 2-2t +1,则此物体在t =10时的瞬时速度为( ) A .281 B .58 C .85D .10解析:t =10时的瞬时速度即为t =10时的导数值,s ′=6t -2. ∴t =10时,s ′=6×10-2=58.答案:B4.若曲线f (x )=x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:由f ′(x )=2x +a ,得f ′(0)=a =1,将(0,b )代入切线方程得b =1. 答案:A5.曲线f (x )=x +13x 3在点⎝ ⎛⎭⎪⎫1,43处的切线和坐标轴围成的三角形的面积为( ) A .3 B .2 C.13D.19解析:由题意,f ′(x )=1+x 2,故切线的斜率为k =f ′(1)=2,又切线过点⎝ ⎛⎭⎪⎫1,43,∴切线方程为y -43=2(x -1),即y =2x -23,切线和x 轴、y 轴交点为(13,0),(0,-23).故所求三角形的面积=12×13×23=19.答案:D6.曲线f (x )=2x 3-3x 在点P 处的切线斜率为3,则P 点坐标为( ) A .(1,-1) B .(-1,-5) C .(-1,1)D .(1,-1)或(-1,1)解析:设切点为(x 0,y 0),则6x 20-3=3. ∴x 20=1,则x 0=±1.当x 0=1时,y 0=-1;x 0=-1时,y 0=1,故选D. 答案:D7.已知f (x )=x 2+2xf ′(1),则f ′(0)=( ) A .-2 B .2 C .1D .-4解析:∵f ′(x )=2x +2f ′(1), ∴令x =1得,f ′(1)=2+2f ′(1). ∴f ′(1)=-2,即f (x )=x 2-4x . ∴f ′(x )=2x -4, ∴f ′(0)=-4. 答案:D8.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-3,3]表示的曲线过原点,且在点(1,f (1))和点(-1,f (-1))处的切线斜率均为-2,则f (x )的奇偶性为( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数解析:∵f (0)=0,∴c =0,f ′(x )=3x 2+2ax +b . 得⎩⎪⎨⎪⎧f =3+2a +b =-2,f-=3-2a +b =-2,解得a =0,b =-5,∴f (x )=x 3-5x ,x ∈[-3,3],f (x )为奇函数. 答案:A9.(江西高考)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞)D .(-1,0)解析:令f ′(x )=2x -2-4x=x -x +x>0,利用穿针引线法可解得-1<x<0或x >2,又x >0,所以x >2. 答案:C10.若点P 在曲线y =x 3-3x 2+(3-3)x +34上移动,点P 处的切线的倾斜角为α,则角α的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,πC.⎣⎢⎡⎭⎪⎫2π3,πD.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎦⎥⎤π2,2π3解析:y ′=3x 2-6x +3-3=3(x -1)2-3≥-3,即tan α≥-3,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π. 答案:B二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上)11.设f (x )=1sin x +1cos x ,则f ′⎝ ⎛⎭⎪⎫π3=________.解析:f ′(x )=⎝⎛⎭⎪⎫1sin x +1cos x ′=-cos x sin 2x +sin x cos 2x ,∴f ′⎝ ⎛⎭⎪⎫π3=-12⎝⎛⎭⎪⎫322+32⎝⎛⎭⎪⎫122=-23+2 3.答案:-23+2 312.点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________.解析:∵y ′=3x 2-10,设切点P (x 0,y 0)(x 0<0,y 0>0),则曲线C 在点P 处切线的斜率k =3x 20-10=2,∴x 0=-2.∴点P 的坐标为(-2,15). 答案:(-2,15)13.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),若f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为________.解析:∵f ′(x )=3x 2+2ax +a -3为偶函数,∴a =0, ∴f ′(x )=3x 2-3,f ′(0)=-3,∴所求切线方程为y =-3x . 答案:y =-3x14.已知f (x )=x 3-12x 2+bx +c 的图像存在与直线y =1平行的切线,则b 的取值范围是________.解析:由题意知,存在x 使f ′(x )=3x 2-x +b =0,故Δ=1-12b ≥0,得b ≤112.答案:⎝⎛⎦⎥⎤-∞,112 三、解答题(本大题共4小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知某运动着的物体的运动方程为s (t )=t -1t2+2t 2(路程单位:m ,时间单位:s),求s ′(3),并解释它的实际意义.解:∵s (t )=t -1t 2+2t 2=t t 2-1t 2+2t 2=1t -1t 2+2t 2, ∴s ′(t )=-1t2+2·1t3+4t , ∴s ′(3)=-19+227+12=32327,即物体在t =3 s 时的瞬时速度为32327m/s.16.(本小题满分12分)求满足下列条件的函数f (x ).(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0; (2)f (x )是二次函数,且x 2f ′(x )-(2x -1)f (x )=1.解:(1)由题意设f (x )=ax 3+bx 2+cx +d (a ≠0),则f ′(x )=3ax 2+2bx +c .由已知⎩⎪⎨⎪⎧f =d =3,f =c =0,f=3a +2b +c =-3,f=12a +4b +c =0,解得a =1,b =-3,c =0,d =3. 故f (x )=x 3-3x 2+3.(2)由题意设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .所以x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1, 化简得(a -b )x 2+(b -2c )x +c =1,此式对任意x 都成立,所以⎩⎪⎨⎪⎧a =b ,b =2c ,c =1,得a =2,b =2,c =1,即f (x )=2x 2+2x +1.17.(本小题满分12分)已知两曲线f (x )=x 3+ax 和g (x )=x 2+bx +c 都经过点P (1,2),且在点P 处有公切线,试求a ,b ,c 的值.解:∵点P (1,2)在曲线f (x )=x 3+ax 上, ∴2=1+a ,∴a =1,函数f (x )=x 3+ax 和g (x )=x 2+bx +c 的导数分别为f ′(x )=3x 2+a 和g ′(x )=2x +b ,且在点P 处有公切线,∴3×12+a =2×1+b ,得b =2,又由点P (1,2)在曲线g (x )=x 2+bx +c 上可得2=12+2×1+c ,得c =-1. 综上,a =1,b =2,c =-1.18.(本小题满分14分)已知直线l 1为曲线f (x )=x 2+x -2在点P (1,0)处的切线,l 2为曲线的另一条切线,且l 2⊥l 1.(1)求直线l 2的方程;(2)求直线l 1,l 2与x 轴所围成的三角形的面积S .解:(1)设直线l 1,l 2的斜率分别为k 1,k 2,由题意可知k 1=f ′(1)=3,故直线l 1的方程为y =3x -3,由l 1⊥l 2,可知直线l 2的斜率为-13,设l 2与曲线相切于点Q (x 0,y 0),则k 2=f ′(x 0)=-13,解得x 0=-23,代入曲线方程解得y 0=-209,故直线l 2的方程为y +209=-13⎝ ⎛⎭⎪⎫x +23,化简得到3x +9y +22=0.(2)直线l 1,l 2与x 轴交点坐标分别为(1,0),⎝ ⎛⎭⎪⎫-223,0,联立⎩⎪⎨⎪⎧3x -y -3=0,3x +9y +22=0解得两直线交点坐标为⎝ ⎛⎭⎪⎫16,-52,故所求三角形的面积S =12×⎪⎪⎪⎪⎪⎪-223-1×⎪⎪⎪⎪⎪⎪-52=12512.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的四则运算法则
教学目的:
1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数.
2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数
3.能够综合运用各种法则求函数的导数
教学重点:
用定义推导函数的和、差、积、商的求导法则
教学难点:
函数的积、商的求导法则的推导.
授课类型:新授课
教学过程:
一、复习引入:
常见函数的导数公式:
0'=C ;()'kx b k +=(k,b 为常数) 1)'(-=n n nx x ; ()'ln (0,0)x x a a a a a =>≠且 x x cos )'(sin =; x x sin )'(cos -=
二、讲解新课:
例1.求2y x x =+的导数.
法则 1 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即 []()()''()'()f x g x f x g x ±=±
法则2常数与函数的积的导数,等于常数与函数的积的导数.[]()'()'cf x cf x =
法则3两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即 []()()''()()()'()f x g x f x g x f x g x =+
证明:令()()y f x g x =,则
=∆y ()f x x +∆()g x x +∆-()()f x g x
()f x x =+∆()g x x +∆-()f x ()g x x +∆+()f x ()g x x +∆-()()f x g x , =∆∆x y ()()f x x f x x +∆-∆()g x x +∆+()f x ()()g x x g x x
+∆-∆
因为()g x 在点x 处可导,所以它在点x 处连续,于是当0→∆x 时,()()g x x g x +∆→, 从而0lim →∆x =∆∆x y 0lim →∆x ()()f x x f x x
+∆-∆()g x x +∆+()f x 0lim →∆x ()()g x x g x x +∆-∆ '()()()'()f x g x f x g x =+,
法则4 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即
三、讲解范例:
例1 求下列函数的导数
1、y =x 2
+sin x 的导数.
2、求2(23)(32)y x x =+-的导数.(两种方法)
3、求下列函数的导数 ⑴()sin h x x x = ⑵21()t s t t
+= 4、y =5x 10sin x -2x cos x -9,求y ′
5、求y =x
x sin 2
的导数. 变式:(1)求y =3
32++x x 在点x =3处的导数. (2) 求y =x
1·cos x 的导数. 例2求y =tan x 的导数.
例3求满足下列条件的函数()f x
(1) ()f x 是三次函数,且(0)3,'(0)0,'(1)3,'(2)0f f f f ===-=
(2)'()f x 是一次函数, 2'()(21)()1x f x x f x --=
变式:已知函数f(x)=x 3+bx 2+cx+d 的图象过点P(0,2),且在点M 处(-1,f(-1))处的切线方程为6x-y+7=0,求函数的解析式
四、课堂练习:
1.求下列函数的导数:(1)y =x a x a +- (2)y =232x
x + (3)y =x cos 11-
五、小结 :由常函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数,商的导数法则(v u )′=2v v u v u '-'(v ≠0),如何综合运用函数的和、差、积、商的导数法则,来求一些复杂函数的导数.要将和、差、积、商的导数法则记住
六、课后作业:。

相关文档
最新文档