推荐系统综述recommder
《2024年推荐系统综述》范文

《推荐系统综述》篇一一、引言随着互联网技术的飞速发展,信息过载问题日益严重,用户面临着从海量数据中筛选出有价值信息的挑战。
推荐系统作为一种解决信息过载问题的有效手段,已经广泛应用于电商、社交网络、视频网站等各个领域。
本文旨在全面综述推荐系统的研究现状、关键技术、应用领域及未来发展趋势。
二、推荐系统的研究现状推荐系统是一种利用用户的历史行为、兴趣偏好、社交关系等信息,为用户推荐可能感兴趣的内容或服务的系统。
自20世纪90年代以来,推荐系统研究取得了长足的进步。
目前,国内外学者在推荐系统的理论、算法、应用等方面进行了广泛的研究,形成了丰富的成果。
三、推荐系统的关键技术1. 协同过滤技术协同过滤是推荐系统中应用最广泛的技术之一。
它通过分析用户的历史行为、兴趣偏好等数据,找出与目标用户相似的其他用户,然后根据这些相似用户的喜好为目标用户推荐内容。
协同过滤技术包括基于用户的协同过滤和基于项目的协同过滤两种方法。
2. 内容推荐技术内容推荐技术主要依据物品的内容特征进行推荐。
它通过分析物品的文本、图片、视频等多媒体信息,提取物品的特征,然后根据用户的兴趣偏好为用户推荐与之相似的物品。
内容推荐技术的代表算法有基于文本的向量空间模型、基于深度学习的内容推荐等。
3. 混合推荐技术混合推荐技术是将协同过滤技术和内容推荐技术相结合,充分利用两者的优点进行推荐。
混合推荐技术可以提高推荐的准确性和多样性,更好地满足用户的个性化需求。
四、推荐系统的应用领域推荐系统已经广泛应用于各个领域,如电商、社交网络、视频网站、音乐平台等。
在电商领域,推荐系统可以帮助用户快速找到感兴趣的商品;在社交网络中,推荐系统可以帮助用户发现可能感兴趣的人或群组;在视频网站和音乐平台中,推荐系统可以根据用户的喜好推荐相应的视频或音乐。
此外,推荐系统还可以应用于新闻推送、广告投放等领域。
五、未来发展趋势随着人工智能、大数据等技术的发展,推荐系统将迎来新的发展机遇。
推荐系统研究综述

文中主要对传统的推荐方法 和 当 前 深 度 学 习 技 术 中 神 经 网 络 在 推 荐 方 法 上 的 应 用 进 行 了 归
纳,其中传统推荐方法主要分为以下 3 类:
1)基于内容推荐方法主要依据用户与项目之间的特征信
息,用户之间的联系不会影响推荐结果,所以不存在冷启动和 稀 疏 矩 阵 的 问 题,但 是 基 于 内 容 推 荐
l
ogy,
2020,
41(
1):
76
87.
第1期
77
周万珍,等:推荐系统研究综述
关键词:计算机神经网络;推荐系统;数据挖掘;深度学习;信息过载
中图分类号:
TP311.
13
文献标识码:
A
do
i:
10.
7535/hbkd.
2020yx01009
Asur
veyo
fr
e
commenda
t
i
onsys
t
ems
i
z
e
st
heapp
l
i
c
a
t
i
ono
ft
r
ad
i
t
i
ona
lr
e
c
ommenda
t
i
onme
t
hodsandt
heapp
l
i
c
a
t
i
ono
fneu
r
a
lne
two
r
k
ysumma
i
ncu
r
r
en
tde
epl
e
a
推荐系统研究综述

推荐系统研究综述推荐系统是一种根据用户的兴趣和偏好,为其推荐个性化内容的技术。
随着互联网的发展和信息爆炸的时代,推荐系统在各个领域都得到了广泛的应用。
本文将对推荐系统的研究进行综述,从其发展历程、主要算法和应用领域三个方面进行介绍。
推荐系统的研究可以追溯到20世纪90年代末,当时互联网刚刚兴起,人们面临着信息过载的问题。
最初的推荐系统主要是基于内容的过滤方法,根据物品的内容特征来进行推荐。
这种方法忽略了用户的个性化偏好,推荐结果往往不准确。
随着协同过滤算法的提出,推荐系统开始考虑用户之间的相似性和关联性,通过分析用户行为数据和利用其他用户的评价信息来进行推荐,明显提高了推荐准确度。
在推荐系统的研究中,协同过滤算法是最为经典和常用的方法之一。
基于用户的协同过滤算法通过分析用户的行为数据,寻找和当前用户行为最相似的其他用户,并根据这些用户的喜好来进行推荐。
基于物品的协同过滤算法则是寻找和用户喜好最相似的物品,如果用户对某一物品感兴趣,那么系统会推荐和该物品相似的其他物品。
基于模型的方法也得到了广泛的关注,例如潜在因子模型和深度学习模型,其通过对用户和物品进行建模,预测用户对物品的评分或概率分布,从而进行推荐。
推荐系统广泛应用于电子商务、社交媒体、新闻推荐和音乐推荐等领域。
在电子商务中,推荐系统可以帮助用户根据其历史购买记录和浏览行为,给出个性化的商品推荐。
社交媒体中的推荐系统可以根据用户的好友关系和兴趣爱好,为其推荐适合的内容。
新闻推荐系统可以根据用户的点击和收藏行为,推荐相关的新闻文章。
音乐推荐系统可以根据用户的音乐偏好,为其推荐新的音乐作品。
推荐系统是一种帮助用户发现个性化内容的技术。
随着互联网的发展,推荐系统的研究得到了广泛的关注,并在各个领域得到了应用。
未来,推荐系统的研究还需要解决一些挑战,例如数据稀疏性和冷启动问题。
相信随着技术的不断进步,推荐系统将为用户提供更加准确和个性化的推荐服务。
推荐系统综述

推荐系统综述推荐系统综述引言:随着互联网和电子商务的快速发展,推荐系统成为了各个行业中的重要组成部分。
推荐系统通过分析用户的行为和兴趣,为用户提供个性化的推荐,从而提高用户体验和满意度。
本文将综述推荐系统的背景、发展历程、应用领域、算法原理等方面,为读者全面介绍推荐系统的相关知识。
一、背景:随着信息爆炸和信息过载的时代到来,人们面临了获取信息的困境。
传统的信息检索方式往往无法满足用户的个性化需求。
而推荐系统通过对用户行为和兴趣的分析,可以为用户提供个性化的推荐,从而解决了这一问题。
二、推荐系统的发展历程:推荐系统的发展经历了几个重要的阶段。
起初,推荐系统主要采用基于内容的推荐算法,即通过分析物品的内容特征来做出推荐。
然后,协同过滤成为了主流的推荐算法,它通过分析用户的历史行为和其他用户的行为来生成推荐结果。
最近几年,深度学习等技术的兴起使得推荐系统可以更好地提取和利用用户的行为特征,从而进一步提高了推荐的准确度和个性化程度。
三、推荐系统的应用领域:推荐系统广泛应用于各个行业领域。
在电子商务领域,推荐系统可以根据用户的购买历史和浏览行为,为用户推荐相关的商品,提高销售额和用户忠诚度。
在社交媒体领域,推荐系统可以根据用户的兴趣和好友关系,为用户推荐感兴趣的内容和用户。
在音乐和视频领域,推荐系统可以根据用户的偏好和历史播放记录,为用户推荐相关的音乐和视频。
四、推荐系统的算法原理:推荐系统的核心是推荐算法。
推荐算法包括基于内容的推荐算法、协同过滤算法和深度学习算法等。
基于内容的推荐算法通过分析物品的内容特征,为用户推荐与其兴趣相似的物品。
协同过滤算法通过分析用户的历史行为和与其兴趣相似的其他用户的行为,为用户生成推荐结果。
深度学习算法通过建立多层神经网络,提取和利用用户的行为特征,进一步提高了推荐的准确度和个性化程度。
五、推荐系统的挑战与展望:虽然推荐系统取得了很大的进展,但仍然面临一些挑战。
首先,数据稀疏性和冷启动问题限制了推荐系统的效果和覆盖范围。
推荐系统综述

推荐系统综述随着互联网的迅速发展,人们面对的信息越来越多,选择的难度也越来越大。
而推荐系统的出现,为用户提供了个性化、准确的信息推荐,帮助用户更好地进行决策。
本文将综述推荐系统的基本原理、应用领域和发展趋势。
一、基本原理推荐系统是通过分析用户的历史数据、行为和偏好,为用户提供个性化的推荐。
其基本原理包括数据采集、特征提取、相似度计算和推荐算法。
1. 数据采集推荐系统需要大量的用户数据作为基础,其中包括用户的历史行为、浏览记录、评分等。
这些数据可以通过用户注册、调查问卷、网络爬虫等方式获取。
2. 特征提取特征提取是将原始数据转化为有意义的特征向量的过程。
常用的特征包括用户的年龄、性别、地理位置等个人属性,以及用户对商品的评分、点击率等行为特征。
3. 相似度计算相似度计算是衡量用户和物品之间相似程度的指标。
常用的相似度计算方法有余弦相似度、皮尔逊相关系数等。
通过计算用户和物品之间的相似度,可以找到用户可能感兴趣的物品。
4. 推荐算法推荐算法是推荐系统的核心,根据用户的历史行为和特征向量,给出用户可能感兴趣的物品列表。
常用的推荐算法包括基于内容的推荐、协同过滤推荐、深度学习推荐等。
二、应用领域推荐系统已广泛应用于电子商务、社交网络、个性化新闻推荐等领域。
1. 电子商务电子商务是推荐系统最早应用的领域之一。
通过分析用户的购买记录、浏览历史等信息,推荐系统可以为用户提供个性化的商品推荐,增加用户购买的可能性。
2. 社交网络社交网络中存在大量用户生成的内容,推荐系统可以通过分析用户的社交关系、兴趣爱好等信息,为用户推荐感兴趣的文章、照片、视频等。
3. 个性化新闻推荐随着新闻来源和内容的爆炸式增长,用户往往面临信息过载的问题。
推荐系统可以根据用户的阅读历史、偏好等,过滤和推荐用户可能感兴趣的新闻内容,提高用户的阅读体验。
三、发展趋势随着互联网和人工智能的发展,推荐系统正呈现出以下几个发展趋势。
1. 深度学习在推荐系统中的应用深度学习技术具有强大的模式识别和特征提取能力,可以更精确地挖掘用户的兴趣和推荐物品。
推荐系统的发展综述

推荐系统的发展综述推荐系统发展至今,其背后的技术大致可以划分为三类:基于内容的模型,基于协同过滤的模型,以及混合模型。
基于内容的推荐模型主要在于分别建立用户和物品的档案资料,从而计算用户和物品之间的相似度。
物品的档案通常由它的各种属性资料构成,以服装领域为例,可以为价格、品牌、类别、颜色、风格、款式、尺寸等等。
用户的档案可以包括她们的人口统计学资料,也可以是从她们的历史交互过的物品档案中构建,例如,用户经常购买杰克琼斯的服装,说明她比较喜欢这个服装品牌。
建立了用户和物品的档案之后,可以直接计算相似度,也可以把它们当做特征放入机器学习的模型。
基于内容的推荐模型的优点是,只要得到了物品或者用户的档案,就可以处理冷启动的问题:其次,因为档案都是显式的特征,最终的模型有比较好的可解释性。
基于协同过滤的推荐模型是目前学术界研究得最广泛的模型。
它不需要使用用户或者物品的档案资料,只需要收集用户历史的行为记录,发掘其中用户和用户、物品与物品之间潜在的相似性,并基于这种群组的相似性完成推荐。
协同过滤模型可以分为两类:基于邻居的方法和基于模型的方法。
基于邻居的方法的核心在于根据历史的行为记录,构建user一user,或者item一item的相似度矩阵。
常用的相似度计算方法有余弦相似度、皮尔逊相似度等。
基于樸型的推荐中最常用的方法是隐因子樸型。
是这一技术发展的重要里程碑。
在这类模型中,用户和物品都被嵌入到一个低维的向量表示,用户和物品的相关性则体现在它们对应的隐向量的点积关系。
这种方法的优点在于效率高,一旦训练出了模型,用户和物品的关系就能很方便地通过点积计算出来;同时准确度也相比于邻居模型要好。
其缺点也很明显,不能解决冷启动的问题,同时学习出的隐向量不方便解释。
混合模型则是指将多种推荐模型相结合,取长补短,从而得到更好的推荐效果。
工业界常用的模型往往是混合的模型。
这类模型可以是通过各种集成学习的方式组合而来,也可以是一种端到端的樸型,Wide&Deep 等樸型。
推荐系统研究综述

推荐系统研究综述推荐系统是当下信息技术领域中备受关注的一个研究方向,它主要应用于电子商务、社交网络、电影音乐推荐等各个领域。
随着互联网和人工智能技术的发展,推荐系统正不断地得到改进和完善。
本文将从推荐系统的基本原理、发展历程、主要技术和未来发展方向等方面进行综述,以期为相关研究和实践提供参考。
一、推荐系统的基本原理推荐系统是基于用户的历史行为数据和物品的属性信息,通过一定的算法模型,为用户提供个性化的推荐结果。
其基本原理是将用户和物品映射到一个特征空间中,然后通过计算用户和物品在特征空间中的相似度或相关度,来进行个性化推荐。
推荐系统一般包括用户建模、物品建模和推荐算法三个部分,其核心问题是如何准确地度量用户和物品之间的关联程度。
用户建模方面,可以通过用户的历史行为数据来捕获用户的兴趣和偏好,如浏览记录、购买记录、评分记录等。
物品建模方面,可以通过物品的属性信息来描述物品的特征,如电影的类型、歌曲的风格等。
推荐算法方面,可以采用协同过滤、内容过滤、深度学习等各种算法模型来实现个性化推荐。
二、推荐系统的发展历程推荐系统的发展历程可以追溯到上世纪90年代初,当时互联网和电子商务开始兴起,人们开始意识到个性化推荐的重要性。
最早的推荐系统是基于内容过滤和协同过滤两种算法模型。
内容过滤是根据物品的内容信息进行推荐,而协同过滤是根据用户的行为数据进行推荐。
这两种算法模型各有优缺点,内容过滤主要受限于特征表示的质量,而协同过滤主要受限于数据稀疏和冷启动问题。
随着互联网和人工智能技术的不断发展,推荐系统开始融合了深度学习、图神经网络、强化学习等最新技术,实现了更加精准的个性化推荐。
推荐系统也逐渐从传统的电子商务领域扩展到了社交网络、在线教育、健康医疗等各个领域,为人们的生活和工作带来了便利。
三、推荐系统的主要技术推荐系统的主要技术包括协同过滤、内容过滤、深度学习、图神经网络、强化学习等。
协同过滤是最常用的推荐算法之一,主要包括基于用户的协同过滤和基于物品的协同过滤两种模型。
推荐系统研究综述

推荐系统研究综述推荐系统是一种信息过滤技术,通过分析用户的历史行为数据,为用户提供个性化的推荐信息。
随着互联网的快速发展,推荐系统成为了电商、社交媒体、新闻媒体等领域不可或缺的一部分。
本文将对推荐系统的研究进行综述,主要包括推荐系统的概述、推荐算法以及评价指标等内容。
推荐系统主要分为基于内容的推荐和协同过滤推荐两种类型。
基于内容的推荐系统通过分析用户的历史行为数据,将用户对不同内容的偏好进行建模,从而为用户提供个性化的推荐。
协同过滤推荐系统则是通过分析用户与其他用户之间的行为关系,将相似用户之间的行为转化为推荐结果。
还有基于混合模型的推荐系统,结合了基于内容和协同过滤的优势,提供更加准确的推荐结果。
在推荐算法方面,常用的算法包括基于相似度的算法、基于关联规则的算法、基于隐语义模型的算法等。
基于相似度的算法通过计算用户之间的相似度,将相似用户之间的偏好关系转化为推荐结果。
基于关联规则的算法则是通过挖掘用户行为之间的关联规则,发现用户喜欢的商品之间的关联性。
基于隐语义模型的算法则是通过降维将用户行为数据映射到一个隐含的空间中,提取用户的兴趣特征,为用户推荐相关内容。
评价指标是评价推荐系统性能的重要标准。
常用的评价指标包括准确率、召回率、覆盖率、多样性等。
准确率指的是推荐系统推荐的物品中用户真正感兴趣的比例。
召回率指的是推荐系统能够从所有感兴趣的物品中找出的比例。
覆盖率指的是推荐系统能够给用户推荐的物品占所有可推荐物品的比例。
多样性指的是推荐系统能够为用户提供多样化的推荐物品。
目前,推荐系统的研究还面临一些挑战。
首先是数据稀疏性问题,由于用户行为数据的稀疏性,推荐系统往往难以准确预测用户的兴趣。
其次是冷启动问题,当一个用户没有足够的行为数据时,推荐系统难以为其提供个性化的推荐。
最后是可解释性问题,由于推荐算法往往是基于机器学习和深度学习技术,难以直观解释为什么给用户推荐这些内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A Comparison
Scalability Diversity&
Precision
Netflix Prize
Netflix是一家美国在线视频网站,公司一 开始的主要业务是提供DVD和Blu-ray光盘的出 租服务。现在的主要业务是原创内容的网络流 媒体服务。2013年凭借高端自制美剧《纸牌屋》 和随后的多部剧集的超高质量引起全球瞩目。
2006年,NETFLIX宣布,设立一项大赛,公 开征集电影推荐系统的最佳电脑算法,第一 个能把现有推荐系统的准确率提高10%的参赛 者将获得一百万美元的奖金。2009 年 9 月 21 日,来自全世界 186 个国家的四万多个 参赛团队经过近三年的较量,终于有了结果。 一个由工程师和统计学家组成的七人团队夺 得了大奖,拿到了那张百万美元的超大支票。
Probabilistic MF
Probabilistic MF
Automatic Complexity Control
Constrained PMF
Experimental Results
Experimental Results
Problem
评价一个推荐系统标准
算法效率、可解释性
collaborative filtering
The Long Tail
User-based CF
Konstan, Joseph A., et al. "GroupLens: applying collaborative filtering to Usenet news." Communications of the ACM 40.3 (1997): 77-87
Linden, Greg, Brent Smith, and Jeremy York. "Amazon. com recommendations: Item-to-item collaborative filtering." IEEE Internet computing 7.1 (2003): 76-80.
Cosine Similarity
Jaccard Coefficient
Neighborhoods
K-neighborhoods or Threshold-based neighborhoods
Similarity Computing
Similarity Computing
Item-based CF
Item-based CF
-Few details
-basi
M users, N items
O( N M )
2
O( NM )
Item-based CF sample
Scalability
has more than 29 million customers and several million catalog items. For large retailers like , a good recommendation algorithm is scalable over very large customer bases and product catalogs, requires only subsecond processing time to generate online recommendations.
history
After 2006 —Interpretability of the recommendation results —Join the sentiment analysis to the Matrix Factorization
—Recommender Systems with Deep Learning
Matrix factorization
LFM(Latent factor model)
Matrix factorization
Probabilistic MF
Salakhutdinov, Ruslan, and Andriy Mnih. "Probabilistic matrix factorization."NIPS. Vol. 20. 2011.
Recommender Systems Introduction
Cheng Shi
20.Dec.2016
Outline
Backgrounds
& history
Algorithms
Content-based Recommendation Collaborative Filtering-based Recommendation • User-based Recommendation • Item-based Recommendation • Model-based Recommendation Problem
Backgrounds
Information overload is one of the most critical problems, and personalized recommendation system is a powerful tool to solve this problem.
Matrix factorization
Yehuda, Robert Bell, and Chris Volinsky. "Matrix factorization techniques for recommender systems." Computer 42.8 (2009): 30-37.
Matrix factorization
history
Content Filtering [Before 1992] Grouplens [1994] —Frist recommender system using rating data Movielens[1997] —Frist movie recommender system —Provide well-known dataset for researchers Amazon —proposed item-based collaborative filtering (Patent is filed in 1998 and issued in 2001) Netflix Prize[2006] —Latent Factor Model(SVD,RSVD,NSVD,SVD++) —Yehuda Koren’s team get prize
User-based CF
Grouplens
—The rating servers predict scores based on the heuristic that people who agreed in the past will probably agree again.
—Basic idea: recommend items similar to users favorite items. —GroupLens Architecture Overview —A Dynamic and Fast-Paced Information System —Ratings Sparsity —Performance Challenges
A basic matrix factorization model
Matrix factorization
ˆ R P QT = R
Matrix factorization
K ˆij piT q j k r 1 pik qkj
2 K 2 ˆij ) 2 (rij k eij (rij r p q ) 1 ik kj
Content-based
example (movie)
Item Profiles - its genre - the participating actors - Its box office popularity - so forth User Profiles - movies and score list
简单的算法+海量数据应该是能符合实际生产环境
Thanks !
Matrix factorization
Matrix factorization
Biases:
Temporal dynamics: Confidence levels:
Browsing Additional input sources : history,gender,age group
Zip code,income level
User-based CF
Establishment of user model
Similarity Computing
Find similar users set
Euclidean Distance Similarity
Similarity Computing
Pearson Correlation Similarity