《分式》典型例题分析
分式 知识点及典型例题

分 式【知识网络】【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd a c ac ∙=,b c b d bda d a c ac÷=∙=4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m = a m b n , (a m )n = a mn7.负指数幂: a -p =1p aa 0=18.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2- b 2 ;(a ±b)2= a 2±2ab+b 2一、考点、热点知识点一:分式的定义一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子BA叫做分式,A 为分子,B 为分母。
知识点二:与分式有关的条件①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=0B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ∙∙=A B A ,CB C÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即 BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
分式经典题型分类例题及练习题

分式经典题型分类例题及练习题分式的运算一、分式定义及有关题型题型一:考查分式的定义在代数式 $\frac{x_1}{a-bx}-\frac{y}{x+y}$ 中,$\frac{x_1}{a-bx}$ 是分式。
题型二:考查分式有意义的条件当 $x$ 满足以下条件时,下列分式有意义:1)$\frac{x-4}{x+4}$2)$\frac{3x}{x^2+2}$3)$\frac{2}{x^2-1}$4)$\frac{16-x}{5-x}$5)$\frac{1}{|x|-3}-\frac{x}{x}$题型三:考查分式的值为的条件当 $x$ 取以下值时,下列分式的值为 $0$:1)$\frac{x-1}{x+3}$2)$\frac{|x|-2}{x-4}-\frac{2}{x}$3)$\frac{x^2-2x-3}{x-5}-\frac{x-6}{2}$题型四:考查分式的值为正、负的条件1)当 $x$ 为何值时,分式 $\frac{4}{8-x}$ 为正;2)当 $x$ 为何值时,分式 $\frac{5-x}{23+(x-1)/(x-2)}$ 为负;3)当 $x$ 为何值时,分式 $\frac{x+3}{|x|}$ 为非负数。
练:1.当 $x$ 取以下值时,下列分式有意义:1)$\frac{1}{6|x|-3}$2)$\frac{3-x}{(x+1)^2+1}$3)$\frac{1}{x}+\frac{1}{1+x}$2.已知 $x+\frac{1}{x}=3$,求$\frac{x^2+x+1}{2x+x^2}$ 的值。
3.解以下不等式:1)$\frac{1}{|x|-2}\leq x+1$2)$\frac{x+5}{x+2}-\frac{3}{x+3}>0$二、分式的基本性质及有关题型1.分式的基本性质:frac{AA}{BB}=\frac{MA\cdot MA^{-1}}{MB\cdot MB^{-1}}=\frac{A}{B}$2.分式的变号法则:frac{-a}{a}=-1$,$\frac{-b+b}{b-b}=1$题型一:化分数系数、小数系数为整数系数不改变分式的值,把分子、分母的系数化为整数。
(完整版)初中数学分式方程典型例题讲解

第十六章分式知识点和典型例习题【知识网络】【思想方法】 1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd ac ac •=,b c b d bda d a c ac÷=•= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;am●a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a mb n, (a m)n= amn7.负指数幂: a-p=1pa a 0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义(一)分式的概念: 形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.【例1】下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件:1、分母中字母的取值不能使分母值为零,否则分式无意义2、当分子为零且分母不为零时,分式值为零。
分式典型知识点与例题总结

人教版八年级下册分式全章 知识点和典型例习题 知识点回顾知识点一:分式形如 的式子叫做分式 。
知识点二:分式B A 的值1.当 时,分式有意义;2.当 时,分式无意义;3.当 时,分式的值为0;4.当 时,分式的值为1;5.当 时, 分式的值为正;6.当 时,分式的值为负; 知识点三:分式的基本性质用式子表示 知识点四:分式中的符号法则用式子表示 知识点五: 分式的约分 约去分子、分母的最大公因式,使分式变成最简分式或者整式 1.最大公因式= 。
2.当分式的分子和分母为多项式时, 知识点六:分式的通分把异分母分式变成同分母分式的过程。
1.最简公分母= 。
2.当分式的分子和分母为多项式时,知识点七:分式的乘除法法则(用式子表示)乘法法则:用式子表示 除法法则: 用式子表示 知识点八:回顾因式分解总步骤:一提二套三分组1. 提公因式: 套 平方差公式: 2 . 公 完全平方和:式 完全平方差:知识点九:分式的加减法法则 加法法则:减法法则:知识点十:分式的混合运算先 再 最后再 。
知识点十一:整数指数幂七大公式1.同底数幂的乘法2.同底数幂的乘法3.幂的乘方4.积的乘方5.分式的乘方法则6.0指数幂7.负整数指数幂 知识点十二:科学计数法1.绝对值大于1数都可表示成2. 绝对值小于1数都可表示成 其中101<≤a 。
知识点十三:分式方程 1. 概念 2. 解法:①去分母:② ③知识点十四:分式方程解应用题的步骤 、 、 、 、【例题】下列有理式中是分式的有(1)-3x ;(2)yx ;(3)22732xy y x -;(4)x 81-;(5)35+y ; (6)112--x x ;(7)π12--m ; (8)5.023+m ;【练习】1、在下列各式ma m x xb a x xa,),1()3(,43,2,3222--÷++π中,是分式的有 个2.找出下列有理式中是分式的代号(1)-3x ;(2)yx ;(3)22732xyy x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7) π-12m ; (8)5.023+m .二.分式的值 【例题】 1.当a 时,分式321+-a a 有意义;2.当_____时,分式4312-+x x 无意义;3.若分式33x x --的值为零,则x = ;4.当_______时,分式534-+x x 的值为1;5.当______时,分式51+-x 的值为正;6.当______时分式142+-x 的值为负.【练习】1.①分式36122--x x 有意义,则x ;②当x_____时,分式1x x x-- 有意义;③当x ____时分式x x 2121-+有意义;④当x_____时,分式11x x +-有意义;⑤使分式9x 1x 2-+有意义的x 的取值范围是 ; 2.当x = 3时,分式bx a x +-无意义,则b ______ 3. ①若分式11x x -+的值为零,则x 的值为 ;②若分式)1x )(3x (1|x |=-+-,则x 的值为_________________; ③分式392--x x 当x __________时分式的值为0;④当x= _时,分式22943x x x --+的值为0;⑤当a=______时,分式2232a a a -++ 的值为零;4.当x __ 时,分式x -51的值为正.5.当x=_____时,分式232x x --的值为1.6.若分式231-+x x 的值为负数,则x 的取值范围是__________。
分式经典例题及答案

分式经典例题及答案分式的性质一、知识回顾1、分式的定义:如果A B表示两个整式, 并且B中含有字母,那么式子A/B叫做分式。
2、分式有意义、无意义的条件:①分式有意义的条件:分式的分母不等于0;②分式无意义的条件:分式的分母等于0。
3、分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。
4、分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不5、分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
6、分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
约分的关键是找出分式中分子和分母的公因式。
二、典型例题毗曲•细前式去的窗5(A. x=-22D. x=1分析:先根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.这种题一定要考虑到分母不为0.X+2故选D.例2W荆州烛主专的值为。
5()A. x=1B. x=-1C. x=±1D x Ml分析:要使分式的值为0, —定要分子的值为0并且分母的值不为0.解答:由x2-1=0解得:x=± 1,又Tx -1M0 即x M 1,「• x=-1 ,故选B.分析:要使分式有意义,分式的分母不能为0.解答:・・辽-5工0,「・x半5;故选A.珀蓉磊的值沁>A. x V 2B. x V 2 且x 半-1分析:易得分母为非负数,要使分式为正数,则应让分子大于0,分母不为0.解答:根据题意得:2-x >0,且(x+1)2疋0,…x v 2「且x半-1 ,故选B.例5式严寸皿5如}A. x > 0 B . x > 0C. x>0且x丰1D.无法确定分析:分母x2-2x+仁(x-1 )2,为完全平方式,分母不为0,则:X-1M0时,要使分式的值为非负数,则3x>0,由此列不等式组求解.解答:依题意,得{ 3x >0 ①{ X- 1^0 ②,解得X>0且X半1 ,故选C.例6:下列说法正确的是()A.只要分式的分子为零,则分式的值为零B.分子、分母乘以同一个代数式,分式的值不变C.分式的分子、分母同时变号,其值不变当蛊Vi时,分式—4-Jt无意文分析:根据分式的值为0的条件是:(1) 分子为0;(2)分母不为0.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解答:A、分式的分子为零,分母不为0, 则分式的值为零,故错误;B、分子、分母乘以同一个不等于0的代数式,分式的值不变,故错误;C、正确;D、当x取任意实数时,分式(|2-x|+x ) /2有意义,故错误.故选c.例任ea---=s,则x+E-邛的值为()X V X—XV1-T'■■ — 1A. -7/2B. 7/2C. 2/7D. -2/7分析:先把分式的分子、分母都除以xy , 就可以得到已知条件的形式,再把1/x-1/y=3代入就可以进行计算.解答:根据分式的基本性质,分子分母都除以xy 得,5 57+l"x -3x5+1 7------- = ------- =一I , 1 -5-1 2故选B.2 - hi 1 1 r + 2a—ab —lb例弘BMJ= ———= 2 ?求的值.a b a-^-ab-b分析:根据已知条件求出(a-b )与ab的关系,再代入所求的分式进行求值.2a-ab-2b 2(a-b)-ab -Aab -at) -5ab _6》十口& —2ab -Vai? -abQ +ab_b(口一Tf V 7例g Bffl;丄=」_ =「_,求证巧七电a-b b-c c~a分析:设恒等式等于一个常数,求出x, y,个例子,都米用的整体带入得方法,很常见。
分式典型例题

【分式典型例题】例1. 若分式11||+-x x 的值为零,求x 的值。
解:当⎩⎨⎧=-≠+)2(01||)1(01x x 时,分式的值为零。
由(1)得:1-≠x由(2)得:1±=x ∴当1=x 时,11||+-x x 的值为零。
例2. 若分式732-x x 的值为负,求x 的取值范围。
分析:欲使732-x x 的值为负,即使0732<-x x ,就要使2x 与73-x 异号,而02≥x ,若0=x 时,732-x x 不能为负,因此,只有⎩⎨⎧<->07302x x 才成立。
解:当⎩⎨⎧<->)2(073)1(02x x 时,分式732-x x 的值为负, 由(1)得0≠x ,由(2)得37<x 037≠<∴x x 且∴x 的取值范围是037≠<x x 且例3. 如果把分式y x xy+的x 和y 都扩大3倍,那么分式的值( )A. 不变B. 扩大3倍C. 缩小3倍D. 缩小9倍分析:x ,y 都扩大3倍,即变为3x ,3y , 则y x xy yx xy y x xy y x y x +⨯=+=+=+⋅33)(393333 因此,分式y x xy+中的x 和y 都扩大3倍,那么分式值扩大3倍。
解:选B 。
!例4. 计算:(1)x x x x x x x 4126)3(446222--+⋅+÷+-- (2)22221111⎪⎭⎫ ⎝⎛-+-⋅⎪⎭⎫ ⎝⎛-÷--a a a a a a a(3)x x x -+-++1111112 (4)231421222+++⋅--÷⎪⎭⎫ ⎝⎛+-a a a a a a a a a 解:(1)x x x x x x x 4126)3(446222--+⋅+÷+-- 421)2(21)3(4)2)(3(31)2()3(22--=--=---+⋅+⋅--=x x x x x x x x (2)22221111⎪⎭⎫ ⎝⎛-+-⋅⎪⎭⎫ ⎝⎛-÷--a a a a a a a 】aa a a a a a a a a 1)1()1()1()1)(1()1(2222+-=-+⋅-⋅-+--=(3)x x x -+-++1111112 11)1)(1(111---+++=x x x x 11)1)(1(1)1)(1(111)1)(1(1)1)(1(1)1)(1(12--=-+-=-+--+-=-++--++-+-=x x x x x x x x x x x x x x x (4)231421222+++⋅--÷⎪⎭⎫ ⎝⎛+-a a a a a a a a a 231241)1(222+++⋅--⋅+-+=a a a a a a a a a a1)1)(2(1)2()2)(2(12+=+++⋅--+⋅+=a a a a a a a a a a a例5. 解方程。
《分式》典型例题及解析

《分式》典型例题及解析例1.分式中,当x = a时,下列说法正确的是( )A.分式的值为零 B.分式无意义C.当a≠时,分式的值为零D.当a≠−时,分式无意义答案:C说明:当x = a时,分子x−a = 0,但需满足分式有意义,即分母2x−3≠0,x≠∴当a≠时,分式值为0,因此,答案为C.例2.分式有意义,则x的值为( )A.x≠−1 B.x≠−2 C.x≠1 D.x ≠−1,x≠−2且x≠1答案:D说明:有意义,需满足x+1≠0且x−≠0,得x≠−1且≠0,即,所以当x≠−1,x≠−2且x≠1时分式有意义,答案为D.例3.下列各式从左到右变形错误的是( )A.=B.=C.=D.=答案:D说明:选项A、B中的变形都是将左边的分式分子、分母同乘以−1,即得到右边的分式,变形过程都是正确的;选项C左边的分式隐含条件a≠0,因此,分子、分母可以同时除以a,即得到右边的分式,变形过程也是正确的;只有选项D中的变形需附加条件b ≠0,因此,答案为D.例4.当=时,A应为( )A.x−1 B.x+1 C.3(x+1)D.3(x−1)答案:D说明:由=得=,因为分式的分母x+2乘以(x−1)才能化为x2+x−2,所以根据分式的基本性质,分子3也应乘以(x−1)得3(x−1),所以A = 3(x−1),答案为D.例5.下列命题中不正确的是( )A.不论x取任何实数时,分式都有意义B.x = 0时,分式的值为0C.(2x+y)÷(y−x) =D.当x<0时,分式<0答案:B说明:不论x取任何实数,x2+1始终不会为0,所以分式有意义,选项A命题成立;选项B中命题显然错误;选项C、D中的命题不难看出都是正确的,所以答案为B.例6.分式与是同一个分式吗?分析:分式=它有意义的条件是(x+2)(x−3)≠0即x≠−2且x≠3,而分式有意义的条件是x−3≠0即x≠3,当x = −2时,分式有意义.答:由于两分式有意义的条件不同,所以与不是同一个分式.。
分式方程的典型例题解析

分式方程的典型例题解析分式方程是一种含有分式的方程,它的解法可以通过化简分式,通分消去分母,然后根据整式方程的解法进行求解。
在解分式方程时,我们需要注意分式的约分和消去分母的方法,以及解方程过程中可能出现的特殊情况。
下面我们通过几个典型的例题来具体解析分式方程的解法。
例题一:求解方程$\frac{2}{x} + \frac{3}{x+2} = \frac{5}{x^2+2x}$。
解:首先将分式方程中的分式通分,得到$\frac{2(x+2)}{x(x+2)} +\frac{3x}{x(x+2)} = \frac{5}{x(x+2)}$。
然后将分式相加并合并同类项,得到$\frac{2x+4+3x}{x(x+2)} =\frac{5}{x(x+2)}$。
继续化简,得到$\frac{5x+4}{x(x+2)} = \frac{5}{x(x+2)}$。
由于等号两边的分式相等,所以分子相等,即$5x+4=5$。
解得$x=1$。
因此,原方程的解为$x=1$。
例题二:求解方程$\frac{1}{x-1} + \frac{2}{x-2} = \frac{3}{x-3}$。
解:同样地,将方程通分,得到$\frac{x-2}{(x-1)(x-2)} + \frac{2(x-1)}{(x-1)(x-2)} = \frac{3(x-2)}{(x-1)(x-2)}$。
合并同类项,得到$\frac{x-2+2(x-1)}{(x-1)(x-2)} = \frac{3(x-2)}{(x-1)(x-2)}$。
进一步化简,得到$\frac{x-2+2x-2}{(x-1)(x-2)} = \frac{3x-6}{(x-1)(x-2)}$。
继续化简,得到$\frac{3x-4}{(x-1)(x-2)} = \frac{3x-6}{(x-1)(x-2)}$。
由于等号两边的分式相等,所以分子相等,即$3x-4=3x-6$。
然而,这个方程没有解,因为等号两边的式子相等,无法将方程化简成一个恒等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式》复习提纲
考点1. 分式的概念
1、下列各有理式 π
y
y x y x y x x y xy y x x x ,31),(23,,53,81,4,
23,822++-+---中,分式的个数是( )
A. 3个
B. 4个
C. 5个
D. 6个 考点2. 分式的意义
分式:B
A
(A ,B 都是整式,且B 中含有字母,B ≠0)
① 分式有意义⇔ ;② 分式无意义⇔ ;③ 分式值为零⇔
1、若分式32
-x 有意义,则x__________
2、 要使分式
)
5)(32(23-+-x x x 有意义,则( ) A. x ≠23- B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2
3
-或x ≠5
3、 当a 为任意有理数时,下列分式一定有意义的是( )
A . 112++a a B. 12+a a C. 112++a a D. 21
a
a +
4、分式
3
24
x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。
5、当x 时,分式2
5
2++x x 的值是零;当x 时,分式242--x x 的值是零;
当x 时,分式
x x -+22
的值是零
考点3、最简公分母、最简分式 1、分式
ac b bc a ab
c 3,2,2
--的最简公分母是 ;分式1
3x ,11x x +-,225(1)xy x -的最简公分母为________
2、下列分式中是最简分式的是( )
A. 122+x x
B. x 24
C. 1
12--x x D. 11--x x
3、下列分式中是最简分式的是( )
A. 2
2
2)
(y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质
1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。
(1)y x y
x 213221-+; (2)b a b a -+2.05.03.0
2、把分式xy
y x +中的分子、分母的x 、y 同时扩大2倍,那么分式的值( )
A. 扩大2倍
B. 缩小为原来的2
1 C. 不变 D. 缩小为原来的4
1
3、约分(1)4
3
22016xy y x -= ;(2)4
4422+--x x x = 4、通分(1)
b a 21,2
1ab
; (2)y x -1,y x +1; (3)221y x -,xy x +21.
考点5、计算
1、(1)222222x b yz a z b xy a ÷= ;(2)49
3222--⋅+-x x x x = ;(3)43222)1.().()(
ab a b b a --= (4) x x x x x x 362996222+-÷-+- (5)ab a b a a b a b a --+-2224. (6)
(7)xy y x xy y x 22)()(--+ (8)22y x x --22x y y - (9)
(11)211a a a --- (12)
⎪⎭
⎫
⎝⎛---÷--225262x x x x
2、先化简)2(2
2
22a b ab a ab
a b a ++÷--,当b= —1时,请你为 a 选一个适当的数代入求值
22212(1)441x x x
x x x x
-+÷+⨯
++-16
24
432---x x a a a +--2
2214)10(
3、(1)如果2-=y x ,那么分式2
22
222223y
xy x y xy x +-+-的值为 ; (2)如果,211=+y x 那么分式y
xy x y xy x 22323+-+-的值为 (3)已知
1
22432+-
-=--+x B
x A x x x ,其中A 、B 为常数,则A -B 的值为 (4)某人上山的速度为a ,下山的速度为b ,则他上山、下山的平均速度(假设按原路返回)为____________
考点6、零指数幂与负整指数幂
计算:(1)2
21-⎪⎭
⎫
⎝⎛= ;(2)220)2()21()2(---+--= ;
(3)013)13()3
1
()2(16-+--÷- = (4)(8×105)÷(-2×104)=
(5)()()2
3
323a b ab ----⨯(结果只含正整数指数幂)=
考点7、科学计数法
(1) 用科学计数法表示:0-.000 0064=
(2) 一个纳米粒子的直径是35纳米,它等于 米(请用科学记数法表示) 考点8、分式方程的概念
下列关于x 的方程是分式方程的是( )
A. 23356x x ++-=
B. 324x =π
C. x a b x
a b a b
-=- D. 2(1)11x x -=- 考点9、分式方程的解 1、当x= 时,
1
25x x x x
+--与
互为相反数 2、若分式方程1473
3x x x
-+=--有增根,增根为 ;当k=_____时,分式方程0
1
11
x k x x x x +-=--+有增根。
3、已知关于x 的分式方程x
x a x 3
11=---无解,则a = 4、关于x 的方程
11
2=-+x a
x 的解是正数,则a 的取值围是 考点10、解分式方程
(1)x x 321=- (2)1132422x x +=-- (3)21212
339x x x -=+--
(4)
x x x -+=-3231 (5)1262=++-x x x (6)21
234
42+-=
-++-x x x x x
考点11、分式方程的应用题
1、某人生产一种零件,计划在30天完成,若每天多生产6个,则25天完成且还多生产10个,问原计划每天生产多少个零件?设原计划每天生产x 个,列方程式是( ) A.
3010256x x -=+ B. 3010256x x +=+ C. 3025106
x
x =++ D. 3010
25106
x x +=-+ 2、某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力使挖出的土能及时运走且不窝土,解决此问题可设派x 人挖土,其它人运土,列方程:①x+3x=72,
②72-x=3x ,③7213x x -=, ④372x
x
=-.上述所列方程正确的( )
A. 1个
B. 2个
C. 3个
D. 4个
3、某工程需要在规定日期完成,如果甲工程队独做,恰好如期完成; 如果乙工作队独做,则超过规定日期3天,现在甲、乙两队合作2天,剩下的由乙队独做,恰好在规定日期完成,求规定日期.如果设规定日期为x 天,下面所列方程中错误的是( )
A. 213x x x +=+
B. 233x x =+
C. 1
122133x x x x -⎛⎫+⨯+= ⎪
++⎝⎭
D. 113x x x +=+ 4、某中学全体同学到距学校15千米的科技馆参观,一部分同学骑自行车走40分钟后,其余同学乘汽车出发,结果他们同时到达科技馆, 已知汽车的速度是自行车速度的3倍,求汽车的速度.设汽车的速度是x 千米/小时,则汽车行驶时间为______, 自行车行驶时间为______.根据题意列方程_____________________.解得汽车的速度为_______.
5、 为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,
每日比原计划多种20棵,结果提前4天完成任务,原计划每天种植多少棵?设原计划每天种植x 棵,根据题意得方程_____ _______. 6、某商店经销一种商品,由于进货价降低6.4%,使得利润率提高了8%,那么原来经销这种商品的利润率是_________.
7、 某人骑自行车比步行每小时快8千米,坐汽车比骑自行车每小时快16千米,此人从A 地出发,先步行4千米,然后乘坐汽车10千米就到在B 地,他又骑自行车从B 地返回A 地,结果往返所用的时间相等,求此人步行的速度.
8、某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工
程款1.5万元, 乙工程队工程款1.1万元.工程领导小组根据甲、乙两队的投标书测算:(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用5天;
(3)若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成.
在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?。