半导体激光器的发展历程2(精)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西师范学院2017年本科毕业论文

论文题目

半导体激光器的发展历程

毕业生:吴伊琴

指导老师:王*

学科专业:物理学(师范)

目录

摘要

前言

一.理论基础及同质结半导体激光器(1917-1962)

1.1激光理念及激光技术的面世

1.2早期半导体激光器理念提出与探索(1953-1962)二.异质结半导体激光器(1963-1977)

2.1 单异质(SH)激光器

2.2 双异质(DH)激光器

三.半导体激光器实用领域的探索(1980-2005)

3.1 光纤通信与半导体激光器的相辅相成

3.2 量子阱能带工程技术的引入

4.1半导体激光器应用的多样化

4.2 半导体激光器的未来发展

结语

参考文献

摘要

双异质半导体激光器,量子阱技术,应变量子阱激光器,DFB激光器,面发射激光器,大功率激光器等等突破性研究成果的面世,使得半导体激光器已经占据了激光领域市场的大壁江山,以及成为了军事,医疗,材料加工,印刷业,光通信等等领域不可或缺的存在。本文梳理了1917年—2008年半导体激光器的发展历程,文中包括了半导体激光器大多研究成果,按照时间线对其进行整理。

总的说来,半导体激光器的发展历程可以分为4个阶段

第一.理论准备及起步阶段(1917-1962)。 1962年同质结半导体激光器研制成功。尽管同质结半导体激光器没有实用价值,但是它面世是半导体激光器发展历程中重要的标志,其基本理论是后来半导体激光器前进的基础。

第二.大发展期(1962--1979 长寿命,长波长双异质半导体激光器的面世使得半导体激光器能够满足光纤通信的需求。1978-1979年,国际上关于通过改进器件结构提高器件稳定性,降低损耗的研究成果非常多。由于对AlGaAs—GaAs激光器特性的不断进步的追求,使得这个时期出现了许多新的制造工艺,新的结构理念,为之后发展长波长半导体激光器留下了充足的技术支持。

第三.实用性的初步探索(1980--1990)在这期间半导体激光器的实用领域主要集中于光纤通信领域,由于光纤通信技术的不断发展,使得半导体激光器的发展也极其迅猛。

第四.实用的多样化(1990--2008 由于量子阱技术,应变量子阱激光器,DFB激光器,面发射激光器,大功率激光器等等突破性研究成果的面世,半导体激光器的实用领域覆盖了军事,医疗,材料加工,印刷业,光通信等等领域。

本文按照时间线将半导体激光器的发展历程梳理了一遍,使得半导体激光器的发展脉络更加清晰,时候其发展历程更加具体,明了。

关键词:激光半导体激光器应用多样化发展方向

前言

激光,英文名为“laser”是20世纪以来,目前在人类科技进步史上与原子能,计算机,半导体并驾齐驱的重大发明。其发展动向对于人类的科技,生活等等方面有着重要的影响。

半导体激光器就是以半导体材料作为激光工作物质的一类激光器的总称。半导体激光器具有体积小,重量轻;波长范围广,相干性高,适宜大量生产,半导体激光器在20世纪80年代初期其主要应用领域是在光纤通信技术方面的,并且在如今半导体激光器仍然是光通信领域不可或缺,至关重要的存在。20世纪90年代开始,由于光电子技术的不断成熟,各个领域对于光电子技术需求越来越高,使得光电子技术的实用领域不断扩大,半导体激光器在各个领域里的用武之地也越多。并且随着对半导体激光器的研究不断深入,半导体激光器已经占据了激光领域市场的大壁江山,以及成为了军事,医疗,材料加工,印刷业,光通信等等领域不可或缺的存在。

笔者在查询半导体激光器的发展历程是发现虽然关于半导体激光器发展的文献较多,但是这些文献中关于半导体激光器的发展时间线不够清晰,而且多数是按照大功率,量子阱等等方面分开描述,对于半导体激光器总体的发展历程的描述不够清晰,已有的文献对于半导体激光器的发展框架的描述较为清晰,但是还是会有一些不够清晰的点:

1. 1977年以前半导体激光器早期的发展方向是什么?

2. 是光纤通信技术成就了半导体激光器还是半导体激光器成就了现在的光

通信技术?

3. 半导体激光器的研究成果有着什么样的意义?

为了回答这些问题笔者查阅了许多相关文献,将1917年-2008年期间半导体激光器的发展历程重新梳理,按照时间线整理好争取形成一条较为清晰发展脉络。

一.理论基础及同质结半导体激光器(1917-1962)

1.1激光理念及激光技术的面世

1.1.1激光理念

激光,英文名为“laser”。源于Light Amplification by Stimulated Emission of Radiation这句话中由每个单词首字母组成的缩写词,意思是“通过辐射的受激辐射光放大”。作为20世纪以来,目前在人类科技进步史上与原子能,计算机,半导体并驾齐驱的重大发明,激光的许多特性对于社会进步有着巨大的影响。

激光被人们称为20世纪最亮的光,最准的尺,最快的刀,由此可看出激光亮度激光,定向发光能力极强,能量之大等等特性。概括说来激光有四大特性,即高亮度,高相干性,高方向性,高单色性。也是激光的这些特性使它拥有了其他普通光源不可企及的能力。也正是因为这些特性,现如今激光在医学,军事,通信,快速成型技术,显示技术,材料加工等领域取得了巨大的成就,也是由于激光的便利,使得其在社会中得到了快速的普及,逐渐渗透进我们日常的工作及生活中。

1.1.2 激光技术的发展

爱因斯坦是在1916年发布了《关于辐射的量子理论》一文。在该文中受激辐射理论指出,处于高能态的粒子受到一个能量等于两个能级之间能量差的光子的作用,将转变到低能态,并产生第二个光子,同第一个光子同时发射出来,这就是受激辐射。“受激辐射”理论为激光提供了物理基础。但是由于当时并没有关于光量大化的实际应用的科学探索,所以受激辐射的概念在当时没有得到重视,爱因斯坦本人也没有对其进行进一步的研究,此后大约40年的时间里都没有人进行激光技术的研究工作。但是,在二战期间,由于雷达在战争中的广泛应用及重大作用,如何提高雷达的性能成为了当时国际的研究重点,也正是如此,受激辐射这一概念得到了相应的关注,开始有科学家进行激光技术的相应研究。利用受激辐射来放大电磁波的概念被提出。

1953年美国物理学家汤斯(Charles hard Townes)和阿瑟•肖洛制成了激光器的前身:第一台微波量子放大器,获得了高度相干的微波束。该机器的成功研制激发了人们对于激光技术更深层次的研究。汤斯(Charles hard Townes)和阿瑟•肖洛(Schawlow)在1958年成功的观测到激光现象,并且在同年12月,美国物理学家汤斯(Charles hard Townes)与阿瑟•肖洛(A. L. Schawlow)在《物理评论》上发表了《红外与光学激射器》一文,提出了“激光原理”以及“激光”的概念。他们指出在物质受到与其分子固有振荡频率相同的能量激发时,会产生一种不发散的强光,这束强光就是激光。此后对于激光,激光器的研究正式进入正轨。

1958年美国物理学家汤斯(Charles hard Townes)与阿瑟•肖洛(A. L. Schawlow)提出了开放式光谐振腔的概念,抛弃了之前的封闭式谐振腔的模式,对于激光以及激光器的研究又是一个新的阶段。此后在科学家们对于激光的不断改进和创新中,激光的研究成果不断更新,终于在1960年5月美国科学家梅曼(T. H. Maiman)获得了人类史上的第一束激光(长0.6943μm),并且在同年7月成功研制出世界上第一台激光器(红宝石脉冲激光器(固体激光器))。从此“激光技术”正式走向世界科学的舞台。

相关文档
最新文档