水工钢结构课程设计露顶式平面钢闸门设计

合集下载

露顶式平面钢闸门课程设计-《钢结构》 (1)

露顶式平面钢闸门课程设计-《钢结构》 (1)

露顶式平面钢闸门课程设计-《钢结构》 (1)一、课题背景及意义随着建筑都市化的深入发展,涉及到门类型的多样化,钢闸门也在这一过程中有了很大的发展。

配套安装了顶式平面钢闸门,可以清楚地观察到它的优点,从而更好地满足建筑和工程工程的要求,在维护人们的安全作用以及节约能源的作用上起到了重要的作用,而顶式平面钢闸门是坚固耐用的一类门。

因此,本课题将深入分析顶式平面钢闸门的结构特点,为专业人员和未来相关领域进行开展学习、研究和应用打下基础,将为安全提供更好的性能及更高的使用效率而努力。

二、目的和任务1.熟悉钢结构的知识,并详细了解钢结构及其技术特征。

2.了解顶式平面钢闸门,掌握其设计、制作材料、结构及施工要求;3.分析顶式平面钢闸门的优点和特点,提出相应的设计方案;4.优化顶式平面钢闸门的结构设计,考虑其使用效果和安全性。

三、基础理论及资料准备1.本课题需准备《钢结构》、《钢结构及铝合金结构》、《钢结构设计手册》以及相关的标准规范。

2.从专业角度准备涉及的基础理论及制作要求,对顶式平面钢闸门进行实际应用。

3.参考相关文档,进行原理理论分析,结合现实情况,找出可行的设计方案。

四、技术应用1.根据所采用的钢结构规范分析这种类型钢闸门的结构设计,并参考结构规范中关于钢结构设计的基本要求,对顶式平面钢闸门的制作采用合理的合金规范。

2.结合材料的性能,考虑现有的情况,分析门的框架结构,以满足材料、结构和维护性能的要求;4.在安装完成后,测试闸门的控制功能,检查设计的是否符合标准,以及闸门开闭是否正常,一定要严格把握,及时处理出现的问题。

五、总结通过本课程的学习,系统学习和了解了钢结构的基本知识及其特性,以及顶式平面钢闸门的设计、制作材料、结构及施工要求。

在掌握知识基础上,并结合实际,本课题利用一系列技术工具,通过分析顶式平面钢闸门的特点和优点,制定有效的实施方案,形成了运用钢结构实现顶式平面钢闸门设计和制作的思路。

溢洪道露顶式平面钢闸门钢结构课程设计

溢洪道露顶式平面钢闸门钢结构课程设计

钢结构课程设计溢洪道露顶式平面钢闸门1基本资料闸门形式:溢洪道露顶式平面钢闸门;孔口净宽:9.00m;设计水头:5.50m;结构材料:Q235钢;焊条:E43;止水橡皮:侧止水用p形橡皮;行走支承:采用胶木滑道,压合胶木为MCS-2;混凝土强度等级:C20。

2闸门结构的形式及布置(1)闸门尺寸的确定(图1)。

1)闸门高度:考虑风浪所产生的水位超高为m,故闸门高度m 7.52.05.5=+= 2)闸门的荷载跨度为两侧止水的间距:m L 91=;图1 闸门主要尺寸图3)闸门计算跨度:m d L L 40.92.02920=⨯+=+=(2)主梁的形式。

主梁的形式应根据水头的大小和跨度的大小而定,本闸门属于中等跨度,为了方便制造和维护,决定采用实复式组合梁。

(3)主梁的布置。

根据闸门的高跨比,决定采用双主梁。

为使两个主梁设计水位时所受的水压力相等,两个主梁的位置应对称于水压力合理的作用线m H y 8.13/==(图1)并要求下悬臂a H 12.0≥和m a 4.0≥,上悬臂H c 45.0≤,今取m H a 66.012.06.0=≈=主梁间距 m a y b 4.22.12)(22=⨯=-=则 H m a b H c 45.05.26.04.25.52==--=--=(满足要求) (4)梁格的布置和形式。

梁格采用复式布置和等高连接,水平次梁穿过横隔板上的预留孔并被横隔板所支撑。

水平次梁为连续梁,其间距应上疏下密,使面板各区格需要的厚度大致相等,梁格布置具体尺寸如图2所示。

图2 梁格布置尺寸图(5)连接系的布置和形式。

1)横向连接系,根据主梁的跨度,决定布置3道横隔板,其间距为2.6m,横隔板兼作竖直次梁。

2)纵向连接系,设在两个主梁下翼缘的竖平面内,采用斜杆式桁架。

(6)边梁与行走支撑。

边梁采用单复式,行走支撑采用胶木滑道。

3面板设计根据《钢闸门设计规范》(SL74-95)及2006修订送审稿,关于面板的计算,先估算面板厚度,在主梁截面选择之后在验算面板的局部弯曲与主梁整体弯曲的折算应力。

露顶钢闸门课程设计

露顶钢闸门课程设计

一、设计资料:①闸门型式:露顶式平面钢闸门②孔口尺寸(宽⨯高): 14 m ⨯ 12 m③上游水位: m④下游水位: m⑤闸底高程: 0 m⑥启闭方式:⑦材料钢结构:Q235-A.F;焊条:E43型;行走支承:滚轮支承或胶木滑道止水橡皮:侧止水用P型橡皮,底止水用条形橡皮⑧制造条件金属结构制造厂制造,手工电弧焊,满足Ⅲ级焊缝质量检验标准规范:《水利水电工程钢闸门设计规范SL 1974-2005》二、闸门结构的形式及布置1.闸门尺寸的确定闸门高度:考虑风浪所产生的水位超高0.2m,故闸门高度=12+0.2=12.2(m);闸门的荷载跨度为两侧止水的间距:L1=14m;闸门计算跨度:L=L0+2d=14+2*0.2=14.40(m)整个闸门的荷载为作于和闸门距离闸底H/3的P=706.32 KN/m的均布荷载2.主梁的形式主梁的形式根据水头和跨度大小而定,本闸门属偏大跨度,为了方便制造和维护,决定采用实腹式组合梁。

3.主梁的布置①根据闸门的高跨比:当L小于等于H时采用多主梁形式,当L大于等于1.5H 时候采用双主梁形式,根据设计资料为14*12孔口尺寸,本设计采用3根主梁②主梁位置的确定:主梁位置的设计原则是根据每个主梁承受相等水压力的原则确定。

对于露顶式闸门:假定水面至门底的距离为H,主梁的个数为n,第K根主梁至水面的距离为Yk,则Yk=2H/3√n[K1.5 -(K-1)1.5 ]根据公式:Y1=2*12/3√3[11.5 -(1-1)1.5 ]=4.6(m)Y2=2*12/3√3[21.5 -(2-1)1.5 ]=8.5 (m)Y3=2*12/3√3[31.5 -(3-1)1.5 ]=10.9(m)考虑到后面梁格的布置和面板的选取将第三根主梁的位置下调0.5m所以Y3=11.4(m)。

4.梁格的布置和形式对于露顶式大跨度闸门采用复式布置和等高连接,水平次梁穿过横隔板上的预留孔并被横隔板所支撑,水平次梁为连续梁,其间距应上疏下密,使面板各区格需要的厚度大致相等,梁格布置的尺寸详见下图5.连接系的布置和形式①横向连接系,根据主梁的跨度,决定布置7道横隔板,其间距为1.75m,横隔板兼做竖直次梁,②纵向连接系,设在两两主梁下翼缘的竖平面内,采用斜杆式桁架。

水工钢结构课程设计-平面钢闸门的设计

水工钢结构课程设计-平面钢闸门的设计

水工钢结构课程设计-平面钢闸门的设计### 一、概述平面钢闸门是水工钢结构及水利iooocxx中常用结构形式之一,它由类似重锤头的重门板、加强附件、主动节、水密密封铰链等零部件组成,可用于水坝、桥涵、泵站等水工工程的闸门及安装在水厂总池等建筑物边缘上的用途。

本次课程设计旨在研究平面钢闸门的结构原理,设计符合工程要求的应用实例,分析闸门的性能以及可能的故障现象,采取有效的解决方案以满足工程规范要求。

### 二、研究内容1. 结构原理:分析平面钢闸门结构原理,了解它从几个方面来保证性能和工作效果,要求运行及操作方便,安装牢固可靠,抗压、抗拉能力强,止水性能优越。

2. 工程实例:根据工程要求,考虑抗震、抗风、抗滑水等等要求,确定合理的规范尺寸,计算支撑力、稳定力及固定的力值,设计应用实例并做出相应的图纸。

3. 性能分析:分析闸门的型式(例如:滑动闸门、转轴闸门)、使用频率(例如:经常开关或者严格控制)、耐久性(使用寿命、耐腐蚀性)、导流性能(抗决口、水位差)、防泄漏能力(密封性能)等等要求性能,完成性能的综合分析,基于此完善闸门的结构构件。

4. 故障分析:分析可能出现的故障现象(例如:闸板断裂、节点受力大、闸板渗漏等等),从成因及原因来考虑闸门的设计,采取有效的解决方案。

### 三、实施方案1. 计算平面闸门的基本参数,如质量、支撑力及稳定力,根据水力学及结构力学原理,分析平面钢闸门的合理配置及设计标准;2. 对工程实例进行尺寸估算、考虑抗震、抗风、抗滑水等要求,修正钢闸门的结构图纸及构件;3. 分析关于平面闸门性能的各个要求,并进行性能综合分析,完善自身结构,确保抗压、抗拉能力强;4. 对可能出现的故障现象进行科学的分析,采取有效的措施,使闸门的操作及运行安全可靠。

本次课程设计旨在对平面钢闸门的设计进行研究,掌握平面钢闸门的结构原理、了解使用频率、耐久性及性能要求等,以及分析可能出现的故障现象并采取适当措施。

钢结构设计(平板钢闸门)

钢结构设计(平板钢闸门)

漏顶式平面钢闸门设计一、设计资料闸门形式:溢洪道漏顶式平面钢闸门孔口净宽:10m设计龙头:5.8m结构资料:3号钢(Q235)焊条:E43型止水橡皮:侧止水为P型橡皮,底止水为条形橡皮行走支承:采用双滚轮式,采用压合胶木定轮轴套,滚轮采用国家定型产品钢筋混凝土强度等级:C20二、闸门结构的形式及布置1、闸门尺寸的确定闸门高度:不考虑风浪所产生的水位超高,H=5.8m;闸门的荷载跨度为两侧止水的间距:L1=10m;闸门的计算跨度:L=L0+2d=10+2×0.2=10.4m,其中,d为行走支承中心线到闸墩侧壁的距离。

2、主梁的形式主梁的形式应根据木头和跨度大小而定,本闸门属于中等跨度,为了便于制造和维护,决定采用实腹式组合梁。

3、主梁的布置由于L>1.5H,所以采用双主梁式。

为使两个主梁在合计水位时所受的水压力相等,两个主梁的位置应对称与水压力合力的作用线y'=H/3=1.93m,并要求下悬臂a≥0.12H,且a≥0.4m,同时满足于上悬臂c≤0.45H,且a≤3.6m,今取a=0.7m≈0.12H=0.696m;主梁间距:2b=2(y'-a)=2×(1.93-0.7)=2.46m;则c=H-2b-a=5.8-2.46-0.7=2.64m≈0.45H=2.61m,且c<3.6m,满足要求;闸门的主要尺寸如图所示.4、梁格的布置和形式梁格采用复式布置和等高连接,水平次梁穿过横隔板上的小孔并被横隔板所支承,水平次梁为连续梁,其间距上疏下密,使面板各区格需要的厚度大致相等,梁格布置的具体尺寸见图2所示。

5、联结系的布置和形式(1)横向联结系根据主梁的跨度,决定布置三道横隔板,其间距为10.4/4=2.6m,横隔板兼做竖直次梁。

(2)纵向联结系设在两个主梁下翼缘的竖平面内,采用斜杠式桁架。

6、边梁采用双复板式,行走支承采用双滚轮式;滚轮安装于边梁双腹板中间,为减小滚动摩擦力,采用压合胶木定轮轴套;滚轮采用国家定型产品。

露顶式平面钢闸门设计【完整版】

露顶式平面钢闸门设计【完整版】

露顶式平面钢闸门设计【完整版】(文档可以直接使用,也可根据实际需要修订后使用,可编辑放心下载)露顶式平面钢闸门设计一、 设计资料1.闸门形式:露顶式平面钢闸门;2.孔口尺寸〔宽×高〕:5m ×4 m3.上游水位:3.7m4.下游水位:0.1m5.闸低高程: 0 m6.启闭方式:电动固定式启闭机;7.材料:A. 钢结构:Q 235-A.F;B. 焊条:E43型;C. 行走支承:胶木滑道;D. 止水橡皮:侧止水用P 型橡皮,底止水用条形橡皮。

8. 制造条件:金属结构制造厂制造,手工电弧焊,满足Ⅲ级焊缝质量检验标准;9. 执行标准:?水利水电工程钢闸门设计标准?〔199574--SL 〕。

二、 闸门结构的形式及布置1.闸门尺寸确实定〔见下列图〕。

1〕闸门高度:由于上游水位为3.7m ,要求闸门高度为4m ,而3.7+0.2m <4m ,故闸门高度=4m 。

2〕闸门的荷载跨度为两侧止水的间距:L1 = 5m ; 3〕闸门的计算跨度:L = L0 + 2d = 5+2⨯0.2 =5.4 (m);2.主梁的形式主梁的形式应根据水头的大小和跨度的大小而定,本闸门属于小跨度,为了方便制造和维护,决定采用实腹式组合梁。

3.主梁的布置由于梁的跨度较小,决定由多主梁形式。

为使梁所受的水压力相等,由公式yk =2H[K1.5-(K-1)1.5]/n3进行计算;现令n=3那么:y1=1.42my2=2.60my3=2.37m4.梁格的布置和形式梁格采用简式布置,其间距应上疏下密,使面板各区格需要的厚度大致相等,梁格布置具体尺寸如下列图所示。

5.连接系的布置和形式1〕横向连接系,根据主梁的跨度,决定布置 道横隔板,其间距为 1.8 m ,横隔板兼作竖直次梁。

2〕纵向连接系,在2、3主梁下翼缘的竖平面内。

采用斜杆式桁架。

6.边梁与行走支承边梁采用单复式,行走支承采用胶木滑道。

三、面板设计根据?水利水电工程钢闸门设计标准?〔SL 74-95〕,关于面板的计算,先估算面板的厚度,在主梁截面选择之后再验算面板的局部弯曲与主梁弯曲的折算应力。

钢筋结构课程设计-露顶式焊接平面钢闸门

钢筋结构课程设计-露顶式焊接平面钢闸门

课程设计(综合实验)报告( 201 -- 201 年度第学期)名称:水工钢结构课程设计题目:露顶式焊接平面钢闸门院系:学院班级:学号:学生:指导教师:设计周数:1—2周成绩:日期:201 年月日水工刚结构露顶式焊接平面钢闸门设计计算书一、设计资料闸门形式:溢洪道露顶式平面钢闸门;孔口净:10.00m;设计水头:6.00m;结构材料:Q235焊条:E43;止水橡皮:侧止水用P型橡皮,底止水用条形橡皮;行走支承:采用胶木滑道,压合胶木为MCS-2;混凝土强度等级:C20二、闸门结构的形式及布置1.闸门尺寸的确定(例图7-1)闸门高度:考虑风浪所产生的水位超高为0.2m,故闸门高度=6+0.2=6.2m;闸门的荷载跨度为两侧止水的间距:L1=10m;闸门计算跨度:L=L0+2d=10+2×0.2=10.40m。

例图7-1 闸门主要尺寸图(单位:mm)2.主梁的形式主梁的形式应根据水头和跨度大小而定,本闸门属于中等跨度,为了便于制造和维护,决定采用实腹式组合梁。

3.主梁的布置根据闸门的高跨比,决定采用双主梁.为了使两个主梁在设计水位时所受到的水压力相等,两个主梁的位置应对称于水压力合力的作用线y=H/3=2.0m例图7—1),并要求下悬臂a≥0.12H和a≥0.4m、上悬臂c≤0.45H,今取a=0.7m≈0.12H=0.72m主梁间距:2b=2(y-a)=2×1.3=2.6m则 c=H-2b-a=6-2.6-0.7=2.7m=0.45H(满足要求)4梁格的布置和形式梁格采用复式布置和等高连接,水平次梁穿过横隔板上的预留孔并被横隔板所支承。

水平次梁为连续梁,其间距应上疏下密,使面板各区格所需要的厚度大致相等,梁格的布置具体尺寸见例图7-2。

5.连接系的布置和形式(1)横向连接系,根据主梁的跨度决定布置3道横隔板,其间距为2.6m ,横隔板兼做竖直次梁。

(2)纵向连接系,设在两个主梁下翼缘的竖平面,采用斜杆式桁架。

水工钢结构课程设计任务书(平面钢闸门)

水工钢结构课程设计任务书(平面钢闸门)

水工钢结构课程设计任务书(平面钢闸门设计)班级:农业水利工程12-1、2一、设计任务为某水库溢洪道设计平面钢闸门一面,作为主要工作闸门。

二、设计资料1、 孔口净宽:12米。

2、 计算水头:6米。

3、 材料:门叶结构 Q235,侧止水用P -60A 型橡皮,底止水用I110—16条型橡皮,焊条 E43型,砼等级C20,采用普通螺栓。

4、参考资料:《水工钢结构》范崇仁主编,《水利水电工程钢闸门设计规范》。

三、设计要求1、 编写设计书,参照“设计计算参考提纲”的内容,对原则问题应有简略的论证并附必要的简图。

用A4打印,用铅笔绘制简图。

2、 手工绘制施工图,图幅为A2图2张(或A3图4张)。

图中包括:门叶结构总图、侧视图、俯视图、必要的大样图,闸槽尺寸及埋固构件。

比例根据布图需要自定。

3、 作出闸门的材料表附在设计图上。

四、设计参考提纲1、 根据闸门工作条件,初步拟出闸门的构造形式及其总体布置⑴ 选择闸门的基本尺寸门高:6+0.3(门的超高,高出孔口净高)=6.3m。

门宽:为了布置侧止水和行走支承闸门宽度等于孔口净宽+2×0.3m。

⑵ 选择梁格布置方案主梁根数和布置,为简化设计和制造方便,又能保持闸门的整体刚度。

对与跨度远大于门高平面闸门,宜采用双主梁的复式梁格。

主梁位置按等水压力的原则布置,上下主梁应放置在离水压合力作用线相等的位置,并要求门的下悬臂≥0.12门高,上悬臂≤0.45门高。

水平次梁的间距,根据水压力的变化,应布置上疏下密,使各区格的面板厚度大致相同。

次梁可采用槽钢(包括顶梁和底梁)。

底梁不到底,布置底止水。

设置横隔板三道,等间距。

边梁采用单腹式。

⑶ 梁格采用齐平连接水平次梁穿过横隔板成连续梁。

纵向联结系,两主梁的下翼缘设斜杆,形成纵向桁架。

将所选择的梁格布置方式、行走支承的位置绘出简图。

2、 面板设计根据梁格布置,进行面板设计。

列表估算面板厚度,结合构造要求选择面板厚度。

对底梁下的面板悬出段,应按悬臂板进行验算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水工钢结构课程设计题目:露顶式平面钢闸门设计专业:水利水电工程姓名:班级:学号:指导老师:二〇年月日2.2 设计资料闸门形式:溢洪道露顶式平面钢闸门; 孔口净宽:0.00m ; 设计水头:4.40m ; 结构材料:Q244钢; 焊条:E44;止水橡皮:侧止水用p 形橡皮;行走支承:采用胶木滑道,压合胶木为MCS-2; 混凝土强度等级:C20。

2.2 闸门结构的形式及布置(2)闸门尺寸的确定(图2)2)闸门高度:考虑风浪所产生的水位超高为0.2m ,故闸门高度=4.4+0.2=4.7m ;2)闸门的荷载跨度为两侧止水的间距:m L 91=;4)闸门计算跨度:m d L L40.92.02920=⨯+=+=;(2)主梁的形式。

主梁的形式应根据水头的大小和跨度大小而定,本闸门属于中等跨度,为了方便制造和维护,决定采用实腹式组合梁。

(4)主梁的布置。

根据闸门的高跨比,决定采用双主梁。

为使两个主梁设计水位时所受的水压力相等,两个主梁的位置应对称于水压力合力的作用线m H y 83.13/==(图2)并要求下悬臂a ≥0.22H 和a ≥0.4m 、上悬臂c ≤0.44H 且不大于4.6m ,今取0.650.120.66a H m=≈=主梁间距22() 2.35b y a m=-=则2 5.5 2.350.65 2.50.45c H b a H=--=--=≈(满足要求) (4)梁格的布置和形式。

梁格采用复式布置和等高连接,水平次梁穿过横隔板上的预留孔并被横隔板所支撑。

水平次梁为连续梁,其间距应上疏下密,使面板各区格需要的厚度大致相等,梁格布置具体尺寸如图2所示。

图2. 梁格布置尺寸图(4)连接系的布置和形式。

2)横向连接系,根据主梁的跨度,决定布置4道横隔板,其间距为2.44m,横隔板兼做竖直梁。

2)纵向连接系,设在两个主梁下翼缘的竖直平面内,采用斜杠式桁架。

(6)边梁与行走支承。

边梁采用单腹式,行走支承采用胶木滑道。

2.4 面板设计根据《钢闸门设计规范》(SL 74-04)及2006修订送审稿,关于面板的计算,先估算面板厚度,在主梁截面选择之后再验算面板的局部弯曲与主梁整体弯曲的折算应力。

(2)估算面板厚度。

假定梁格布置尺寸如图2所示,面板厚度按下式计算[]σα9.0kpa t =当a b /≤4时,α=2.4,则kp a t 068.0=当a b />4时,α=2.4,则kp a t 07.0= 现列表2进行计算。

2 区格Ⅰ、Ⅵ中系数k 由三边固定一边简支板查得。

根据表2计算,选用面板厚度t=8mm 。

(2)面板与梁格的连接计算。

面板局部挠曲时产生的垂直于焊缝长度方向的横向拉力P 按下式计算,已知t=8mm ,并且近似地取板中最大弯曲应力[]mm N 2max /160==σσ,则mm N t P /6.89160807.007.0max =⨯⨯==σ面板与主梁连接焊缝方向单位长度内的剪力为mm N VS T I /19110649600002263858033345020=⨯⨯⨯⨯==面板与主梁连接的焊缝厚度为 mm W F f T Ph 62.2)1157.0/()7.0/(1916.892222=⨯+=+=τ面板与梁格连接焊缝取其最小厚度.6mm h f=。

2.4 水平次梁、顶梁和底梁的设计(2)荷载与内力计算。

水平次梁和顶、底梁都是支承在横隔板上的连续梁,作用在它们上面的水平压力2a a p q 下上+=,且m KN R /11.36.1345.122.1445.11=⨯⨯=列表2计算后得∑=q 240.22KN/m+4.22KN/m=242.42KN/m跨度为 2.44m (图4),水平次梁弯曲时的边跨弯距为: M 次中=0.077ql 2=0.077х40.2х2.442=22.8kN ∙m支座B 处的弯距:M 次B =0.207ql 2=0.207х40.2х2.442=27.8kN ∙m(2)截面选择W=111250160108.17][6=⨯=σM mm 4 考虑利用面板作为次梁截面的一部分,初选[24b,由附录6.4表查得:图面板参加水平次梁工作后的组合截面A=2242mm 2 ; W x =87200mm 4 ;I x =6000000mm 4 ; b=60mm ; d=8mm 。

面板参加次梁工作的有效宽度分别按式下式计算,然后取其中较小值。

B ≤mm c b t 540860602=⨯+=+B=ζ2b (对跨中正弯距段)B=ζ2b (对支座负弯距段) 。

梁间距b=mm b b 7452730760221=+=+ 。

对于第一跨中正弯距段l 0=0.8l=0.8Х2440=2880mm ;对于支座负弯距段l 0=0.4l =0.4Х2440=040mm 。

根据l 0/b 查表6—2:对于l 0/b =2880/744=2.424 得ζ2=0.78 ,得B=ζ2b =482mm , 对于l 0/b =040/744=2.262 得ζ2=0.464 ,得B=ζ2b =272mm , 对第一跨中选用B =440mm,则水平次梁组合截面面积(图4): A=2242+440Х8=6442mm 2 ;组合截面形心到槽钢中心线得距离:e=6451748540⨯⨯=40mm ;跨中组合截面的惯性距及截面模量为:I 次中=6000000+2242Х402+440Х8Х242=24004820mm 4W min =211588212013905820mm = 对支座段选用B =272mm ,则组合截面面积:A=2242+272Х8=4200mm 2 ; 组合截面形心到槽钢中心线得距离:e=4299748271⨯⨯=47mm支座初组合截面的惯性距及截面模量为:I 次B =6000000+2242Х472+272Х8Х472=22074442mm 4W min =211191910711975331mm =(4)水平次梁的强度验算由于支座B 处(图4)处弯距最大,而截面模量较小,故只需验算支座B 处截面的抗弯强度,即σ次=,/160][/159111919108.17226mm N mm N =<=⨯σ 说明水平次梁选用[24b 满足要求。

轧成梁的剪应力一般很小,可不必验算。

(4)水平次梁的挠度验算受均布荷载的等跨连续梁,最大挠度发生在边跨,由于水平次梁在B 支座处截面的弯距已经求得M 次B=27.8kN ∙m,则边跨挠度可近似地按下式计算:次次次EI l M EI ql l U B 1638453-⨯= =139058201006.2162350108.17139058201006.2384]2350[1.3055653⨯⨯⨯⨯⨯-⨯⨯⨯⨯⨯ =0.00086≤004.02501][==l U故水平次梁选用[24b 满足强度和刚度要求。

(4)顶梁和底梁。

顶梁所受的荷载较小,但考虑水面漂浮物的撞击等影响,必须加强顶梁的刚度,所以也采用[24b 。

2.4 主梁设计(2)设计资料 2)主梁跨度:净跨(孔口净宽)L 0=0m ;计算跨度L =0.4m ;荷载跨度L 1=0m 。

2)主梁荷载:kN p q 1.742/== 4)横向隔板间距: 2.44m 。

4)主梁容许挠度: [U]=L/600 。

(2)主梁设计。

2)截面选择①弯距和剪力 弯距与剪力计算如下:弯距: m kN M ⋅=-⨯=817)4924.9(291.74max剪力: kN ql V 45.333291.7421max =⨯== ②需要的截面模量 已知Q244钢的容许应力[σ]=260N/mm2 ,考虑钢闸门自重引起附加应力的影响,取容许应力[σ]=,/1441609.02mm N =⨯ 则需要的截面模量为;W=。

36max 567414410817][cm M =⨯=σ ③腹板高度选择 按刚度要求的最小梁高(变截面梁)为: 经济梁高:。

cm W h ec 38.98)5674(1.31.35/25/2=⨯==[],05.87600/11006.2104.914423.096.0]/[23.096.074min cm l U E Lh =⨯⨯⨯⨯⨯=⨯=σ 由于钢闸门中的横向隔板重量将随主梁增高而增加,故主梁高度宜选得比h ec 为小,但不小于h min 。

现选用腹板厚度h 0=00cm 。

④腹板厚度选择,86.011/9011/cm h t w ===选用t w =2.0cm 。

⑤翼缘截面选择:每个翼缘需要截面为,04.48690190567462001cm h t h W A w =⨯-=-=下翼缘选用t 2=2.0cm (符合钢板规格),需要,0.24111cm t Ab ==取b 2=24cm,上翼缘的部分截面积可利用面板,故只需设置较小的翼缘板同面板相连,选用t 2=2.0cm ,b 2=20cm ,面板兼作主梁上翼缘的有效高度为B =b 2+60δ=20+60Х0.8=48cm 。

上翼缘截面面积A 2=20Х2.0+48Х0.8=66.4cm 2 。

⑥弯应力强度验算截面形心距:,8.434.20656.9046''cm A Ay y ===∑∑ 截面惯性距:,30986724911712900.11243230cm Ay h t I w =+⨯=+=∑ 截面模量:上翼缘顶边 ,59.70748.4330986731min cm y I W === 下翼缘底边 ,8.60755130986732min cm y I W === 弯应力:,/4.14169.0/446.138.607510081722min max cm kN cm kN W M =⨯<=⨯==σ安全稳定性,因梁高大于按刚度度要求的最小梁高,故梁的挠度也不必验算。

2)截面改变。

因主梁跨度较大,为减小门槽宽度与支承边梁高度(节约钢材),有必要将主梁承端腹板高度减小为cm h h s 546.000==。

(图6) 梁高开始改变的位置取在邻近支承端的横向隔板下翼缘的外侧(图7),离开支承端的距离为244-20=224cm 。

剪切强度验算:考虑到主梁端部腹板及翼缘相焊接,故可按工字截面梁验算应力剪力强度。

尺寸表4所示:图主梁支承端截面401064969337412541cm I =+⨯= cm y 7.261=,200821.3011.301.31503cm S =⨯⨯+⨯= ,/5.9][/29.60.1106496200845.333220max cm kN cm kN t I S V w =<=⨯⨯==ττ因误差未超过20%,安全4)翼缘焊缝翼缘焊缝厚度h f 按受力最大的支承端截面计算。

相关文档
最新文档