函数方程思想

合集下载

函数与方程的思想

函数与方程的思想

函数与方程的思想函数与方程思想是最重要的一种数学思想,在高考中所占比重较大,综合知识多、题型多、应用技巧多。

函数思想是指用函数的概念、性质、图像去分析问题、转化问题和解决问题,具体体现在:①运用函数的性质解决数学问题;②用映射、函数的观点去观察、分析问题中的数量关系,通过函数的形式把这种数量关系表示出来并加以研究,从而解决问题;③对解不等式、讨论方程的解的个数或分布、某些参数范围的讨论问题等可通过构造函数,利用函数的性质解决。

方程思想是分析数学问题中变量间的相等关系,从而建立方程(组)将问题解决的一种思想方法,具体体现在:①解方程及含参数方程的讨论;②可转化为方程(组)求解的讨论问题及构造方程(组)。

下面通过几个具体例题说明它们的应用。

一、运用函数、方程思想转化解决函数、方程和不等式问题【例】若a,b是正数,且满足ab=a+b+3,求ab 的取值范围。

思维精析把方程转化成关于ab的不等式。

解法一:(看成函数的值域):∵ab=a+b+3∴b=而b>0∴>0 即∵a>0 ∴a>1∴ab=a•==(a-1)++5≥9当且仅当a-1=,即a=3时取等号。

又a>3时,a-1++5是关于a的单调增函数,∴ab的取值范围是[9,+∞)。

解法二:(看成不等式的解集):∵a,b为正数,∴a+b≥2又ab=a+b+3∴ab≥2+3即( )2-2-3≥0即≥3或≤-1∴ab≥9解法三:解若设ab=t,则a+b=t-3∴a,b可看成方程x2-(t-3)x+t=0的两个正根△=(t-3)2-4t≥0a+b=t-3>0ab=t=>t≤1,t≥9t>3t>0 得t≥9 ,即ab≥9。

点拨:从以上解法可以看出,对于同一个问题,用不同的观点去看,会产生不同的想法,从而有不同的处理方法,解法一用函数观点去分析,则应将已知条件变形后去消元;解法二,解法三则利用题中和、积特征构造不等式、方程来求解,它们分别体现了用函数、用不等式、用方程来解决问题的意识,因此,在解题过程中,应多方位、多角度去思考、去探索,选用合理简明的解题途径,以求取得事半功倍之效。

函数与方程思想简单应用

函数与方程思想简单应用

数学思想方法的简单应用(1)一、函数与方程思想函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。

方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。

有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。

函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。

它体现了“联系和变化”的辩证唯物主义观点。

一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:y=f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。

在解决问题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。

对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。

另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。

1.证明:若则为整数.解析:若x+y+z+t=0,则由题设条件可得,于是此时(1)式的值等于-4.若x+y+z+t≠0,则由此可得x=y=z=t.于是(1)式的值等于4.2.已知:函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=.(1)求a、b的值及函数f(x)的解析式;(2)若不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]时恒成立,求实数k的取值范围;(3)如果关于x 的方程f (|2x ﹣1|)+t •(﹣3)=0有三个相异的实数根,求实数t 的取值范围.解:(1)g (x )=ax 2﹣2ax+1+b ,函数的对称轴为直线x=1,由题意得: ①得②得(舍去)∴a=1,b=0 ∴g (x )=x 2﹣2x+1,(2)不等式f (2x )﹣k •2x ≥0,即k设,∴,∴k ≤(t ﹣1)2 ∵(t ﹣1)2min =0,∴k ≤0 (3)f (|2x ﹣1|)+t •(﹣3)=0,即|2x ﹣1|++﹣3t ﹣2=0. 令u=|2x ﹣1|>0,则 u 2﹣(3t+2)u+(4t+1)=0记方程①的根为u 1,u 2,当0<u 1<1<u 2时,原方程有三个相异实根,记φ(u )=u 2﹣(3t+2)u+(4t+1),由题可知,或. ∴时满足题设. 3.已知函数()ln(1)(1)1f x x k x =---+. (1)若()0f x ≤ 恒成立,试确定实数k 的取值范围;(2)证明:ln 2ln 3ln 4ln (1)34514n n n n -++++<+(*n N ∈且1n >)解:(1)0k ≤当时()()1,f x +∞在上为增函数;0k >当时1()1,1f x k ⎛⎫+ ⎪⎝⎭在上为增函数;在11,k ⎛⎫++∞ ⎪⎝⎭上为减函数;易知k>0,则max 1()(1)0f x f k =+≤即1k ≥; (2)令1k =则ln(1)2x x -≤-对()1,x ∈+∞恒成立, 即:ln 1x x ≤-对()0,x ∈+∞恒成立。

函数与方程思想

函数与方程思想

函数与方程的思想 函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其它内容时,起着重要作用;方程思想是解决各类计算问题的基本思想,是培养运算能力的基础,高考把函数与方程思想作为重要思想方法重点来考查.函数是高中数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分支. 函数思想以函数知识做基石,用运动变化的观点分析、研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来很强的创新能力. 因此,函数思想是数学高考常考的热点. 函数思想在高考中的应用主要是函数的概念、性质及图像的应用.方程的思想,就是分析数学问题中各个量及其关系,运用数学语言建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解的情况,使问题得以解决.函数思想与方程思想的联系十分密切,解方程()0f x =就是求函数()y f x =当函数值为零时自变量x 的值;求综合方程()()f x g x =的根或根的个数就是求函数()y f x =与()y g x =的图像的交点横坐标或交点个数,正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库.函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证)方程(等式)或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.一、函数思想的应用1.显化函数关系在方程、不等式、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而利用函数知识或函数方法解决问题.【例1】已知,,若点在线段上,则的最大值为()(2,5)A (4,1)B (,)P x y AB 2x y -A.−1B.3C.7D.8【分析】本题是解析几何问题,由所在直线方程可得x 与y 的函数关系,转化为函数求值域的问题。

函数与方程的思想

函数与方程的思想

函数与方程的思想函数思想就是用运动、变化的观点分析和研究现实中的数量关系,通过问题所提供的数量特征及关系建立函数关系式,然后运用有关的函数知识解决问题。

如果问题中的变量关系可以用解析式表示出来,则可把关系式看作一个方程,通过对方程的分析使问题获解。

所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。

函数与方程思想是中学数学中最常用、最重要的数学思想。

中考函数试题解法及新颖题目研究函数是初中代数的重点,也是难点,在中考的代数部分所占比重最大,综合题中离不开函数内容。

中考函数考察的重点是:函数自变量取值范围,正反比例函数、一次函数、二次函数的定义和性质,画函数图像,求函数表达式。

近年来中考比较侧重实际应用问题的考察。

中考的最后一道题,常常要用到多个数学思想方法,纵观近几年的中考题,基本上都是函数、方程、几何(主要是圆)的综合题。

1.初中函数知识网络2.命题思路与知识要点:2.1一般函数2.1.1考查要点:平面直角坐标系的有关概念;常量、变量、函数的意义;函数自变量的取值范围和函数值的意义及确定。

2.1.2考纲要求:理解平面直角坐标系的有关概念,掌握各象限及坐标轴上的点的坐标特征,会求对称点坐标,能确定函数自变量的取值范围。

2.1.3主要题型:填空题,选择题,阅读理解题。

2.1.4知识要点:(1)平面直角坐标系中,每一个点都与有序实数对一一对应;象限与坐标符号如图1。

(2)特殊位置上点的坐标特点:①点P(x ,y)在xy=0; 点P(x ,y)在y ; ②点P(x ,y)x=y ; 点P(x ,y)③点P(x ,y)关于x 轴对称的点的坐标是(x ,-y);点P(x ,y)关于y 轴对称的点的坐标是(-x ,y); 点P(x ,y)关于原点对称的点的坐标是(-x ,-y);确定函数自变量取值范围,就是要找出使函数有意义的自变量的全部取值。

高中数学思想方法

高中数学思想方法

高中数学思想方法高中数学思想方法高中数学思想方法1第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的.分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点高中数学思想方法2近年来,高考命题方向很明显地朝着对知识网络交汇点、数学思想方法及对数学能力的考查发展,考生在复习的过程中,应对所学知识进行及时的梳理,这里既包含对基础知识的整理,也包括对数学思想方法的总结。

函数方程思想

函数方程思想

所 以 , 大 时 ,增 大.所 以 当 当 A 取 奶 的人 数 增加 时 .按 照 方案二 楼
建奶站 , 奶 站仍 建在B C 取 , 两楼 之 间 , 且随 着人 数 的增加 , 楼越 来越 远. 离B 例 2 已知 为 锐 角 , n +oa s c cs = i ̄
cs 1 o = 可求 出s c cs 这样 就 可 以 i  ̄ o , n・
数学概念 , 但它们相互联系 、 相互渗
透 . 个 函数 若有解析表达式 , 一 那么这 个 表达 式就 可 以看成 是 一个方 程 . 一 个方程 .它 的两 端可 以分 别看成 函数 .
对 于方案 二 . 须通过 列方程 来解 决. 解 :1 ()设 取奶 站 建在 距A 楼 m 处 , 有取 奶 的人 到奶 站 的距 离总和 所
的 问题也 可 以用方 程 的方法 来解决 .
将 s + - 1 n
① 当0 ≤4 时 ,=0 +0 4一 ≤ 0 y 2x7 (0
x + 0 10 ) 一 x 88 0 ) 6 ( 0 : 1 0 + 0 .所 以 当 1
2 5
c = 代入 上 式得 s  ̄oa , 因 。 1 i c ̄ =1 2 )
① 当 ≤ ≤4 时,0+0 1Ox= 0 0 2x6(O -) -
7 (0x , 04- )解得 一 < ( o舍去 ) . ② 当4 < ≤10 2x 6 (0 一 0x 0 时。0+ 0 10
x=0x4 )解得 8 )7 (-0 , - =Q 因此 , 方 案 二 建 奶 站 , 奶 站 按 取 应 建在距 A 8 处. 楼 0 m () t 取奶人 数增加 , 3i 楼  ̄
过解方程或方程组求 出这些未知数. 函数与方程虽然是两个不 同的

高中数学思想方法8篇

高中数学思想方法8篇

高中数学思想方法8篇高中数学思想方法精选8篇高中数学思想方法1第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的`转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点高中数学思想方法21、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

高中数学基本数学思想:函数与方程思想在数列中的应用

高中数学基本数学思想:函数与方程思想在数列中的应用

高中数学基本数学思想:函数与方程思想在数列中的应用函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。

以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。

函数与方程思想在数列中的应用(含具体案例)本文列举几例分类剖析:一、方程思想1.知三求二等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的.例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值.解(1)由a10=a1+9d=30,a20=a1+19d=50,解得a1=12,因为n∈N*,所以n=11.2.转化为基本量在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得.例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8.解a6―a4=a1q3(q2―1)=24.(1)由a3a5=(a1q3)2=64,得a1q3=±8.将a1q3=―8代入(1),得q2=―2(舍去);将a1q3=8代入(1),得q=±2.当q=2时,a1=1,S8=255;当q=―2时,a1=―1,S8=85.3.加减消元法利用Sn求an利用Sn求an是求通项公式的一种重要方法,其实这种方法就是方程思想中加减消元法的运用.例3(2011年佛山二模)已知数列{an}、{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an―1bn―1+anbn=(n―1)?2n+1.若数列{bn}是首项为1、公比为2的等比数列,求数列{an}的通项公式.解将等式左边看成Sn,令Sn=a1b1+a2b2+a3b3+…+an―1bn―1+anbn.依题意Sn=(n―1)?2n+1,(1)又构造Sn―1=a1b1+a2b2+a3b3+…+an―1bn―1=(n―2)?2n―1+1,(2)两式相减可得Sn―Sn―1=an?bn=n?2n―1(n≥2).又因为数列{bn}的通项公式为bn=2n―1,所以an=n (n≥2).当n=1,由题设式子可得a1=1,符合an=n.从而对一切n∈N*,都有an=n.所以数列{an}的通项公式是an=n.4.等差、等比的综合问题这一类的综合问题往往还是回归到数列的基本量去建立方程组.例4设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,求数列{an}的通项公式.解根据求和定义和等差中项建立关于a1,a2,a3的方程组.由已知得a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=2q,a3=2q.又S3=7,可知2q+2+2q=7,即2q2―5q+2=0,解得q1=2,q2=12.由题意得q>1,所以q=2.可得a1=1,从而数列{an}的通项为an=2n―1.二、函数思想数列是一类定义在正整数或它的有限子集上的特殊函数.可见,任何数列问题都蕴含着函数的本质及意义,具有函数的一些固有特征.如一次、二次函数的性质、函数的单调性、周期性等在数列中有广泛的应用.如等差数列{an}的通项公式an=a1+(n―1)d=dn+(a1―d),前n项和的公式Sn=na1+n(n―1)2d=d2n2+(a1―d2)n,当d≠0时,可以看作自变量n的一次和二次函数.因此我们在解决数列问题时,应充分利用函数有关知识,以它的概念、图象、性质为纽带,架起函数与数列间的桥梁,揭示了它们间的内在联系,从而有效地分解数列问题.1.运用函数解析式解数列问题在等差数列中,Sn是关于n的二次函数,故可用研究二次函数的方法进行解题.例5等差数列{an}的前n项的和为Sn,且S10=100,S100=10,求S110,并求出当n为何值时Sn有最大值.分析显然公差d≠0,所以Sn是n的二次函数且无常数项.解设Sn=an2+bn(a≠0),则a×102+b×10=100,a×1002+b×100=10.解得a=―11100,b=11110.所以Sn=―11100n2+11110n.从而S110=―11100×1102+11110×110=―110.函数Sn=―11100n2+11110n的对称轴为n=111102×11100=55211=50211.因为n∈N*,所以n=50时Sn有最大值.2.利用函数单调性解数列问题通过构造函数,求导判断函数的单调性,从而证明数列的单调性.例6已知数列{an}中an=ln(1+n)n (n≥2),求证an>an+1.解设f(x)=ln(1+x)x(x≥2),则f ′(x)=x1+x―ln(1+x)x2. 因为x≥2,所以x1+x<1,ln(1+x)>1,所以f ′(x)<0.即f(x)在[2,+∞)上是单调减函数.故当n≥2时,an>an+1.例7已知数列{an}是公差为1的等差数列,bn=1+anan.(1)若a1=―52,求数列{bn}中的最大项和最小项的值;(2)若对任意的n∈N*,都有bn≤b8成立,求a1的取值范围.(1)分析最大、最小是函数的一个特征,一般可以从研究函数的单调性入手,用来研究函数最大值或最小值的方法同样适用于研究数列的最大项或最小项.解由题设易得an=n―72,所以bn=2n―52n―7.由bn=2n―52n―7=1+22n―7,可考察函数f(x)=1+22x―7的单调性.当x<72时,f(x)为减函数,且f(x)<1;当x>72时,f(x)为减函数,且f(x)>1.所以数列{bn}的最大项为b4=3,最小项为b3=―1.(2)分析由于对任意的n∈N*,都有bn≤b8成立,本题实际上就是求数列{bn}中的最大项.由于bn=1+1n―1+a1,故可以考察函数f(x)=1+1x―1+a1的形态.解由题,得an=n―1+a1,所以bn=1+1n―1+a1.考察函数f(x)=1+1x―1+a1,当x<1―a1时,f(x)为减函数,且f(x)<1;当x>1―a1时,f(x)为减函数,且f(x)>1.所以要使b8是最大项,当且仅当7<1―a1<8,所以a1的取值范围是―73.利用函数周期性解数列问题例8数列{an}中a1=a2=1,a3=2,anan+1an+2an+3=an+an+1+an+2+an+3且anan+1an+2≠1成立.试求S100=a1+a2+…+a100的值.分析从递推式不易直接求通项,观察前几项a1=1,a2=1,a3=2,a4=4,a5=1,a6=1,a7=2,a8=4,a9=1,…可猜测该数列是以4为周期的周期数列.解由已知两式相减得通过上述实例的分析与说明,我们可以发现,在数列的教学中,应重视方程函数思想的渗透,应该把函数概念、图象、性质有机地融入到数列中,通过数列与函数知识的相互交汇,使学生的知识网络得以不断优化与完善,同时也使学生的思维能力得以不断发展与提高.高中数学思想方法介绍,高中数学解题思想方法与讲解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点36 函数方程思想函数与方程思想是最重要的一种数学思想,数学中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.●难点磁场1.(★★★★★)关于x 的不等式2·32x –3x +a 2–a –3>0,当0≤x ≤1时恒成立,则实数a 的取值范围为 .2.(★★★★★)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.已知函数f (x )=ax 2+(b +1)x +(b –1)(a ≠0)(1)若a =1,b =–2时,求f (x )的不动点;(2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围;(3)在(2)的条件下,若y =f (x )图象上A 、B 两点的横坐标是函数f (x )的不动点,且A 、B 关于直线y =kx +1212+a 对称,求b 的最小值.●案例探究[例1]已知函数f (x )=log m33+-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明;(2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由.命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目.知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根.技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题.解:(1)⇔>+-033x x x <–3或x >3. ∵f (x )定义域为[α,β],∴α>3 设β≥x 1>x 2≥α,有0)3)(3()(6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数.(2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)] ∵0<m <1, f (x )为减函数.∴⎪⎪⎩⎪⎪⎨⎧-=+-=-=+-=)1(log 33log )()1(log 33log )(ααααββββm f m f m m m m即3,0)1(3)12(0)1(3)12(22>>⎪⎩⎪⎨⎧=---+=---+αβααββ又m m m m m m 即α,β为方程mx 2+(2m –1)x –3(m –1)=0的大于3的两个根∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-->+-=∆<<0)3(3212011616102mf m m m m m ∴0<m <432-故当0<m <432-时,满足题意条件的m 存在. [例2]已知函数f (x )=x 2–(m +1)x +m (m ∈R ) (1)若tan A ,tan B 是方程f (x )+4=0的两个实根,A 、B 是锐角三角形ABC 的两个内角.求证:m ≥5;(2)对任意实数α,恒有f (2+cos α)≤0,证明m ≥3;(3)在(2)的条件下,若函数f (sin α)的最大值是8,求m .命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属 ★★★★★级题目.知识依托:一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式. 错解分析:第(1)问中易漏掉Δ≥0和tan(A +B )<0,第(2)问中如何保证f (x )在[1,3]恒小于等于零为关键.技巧与方法:深挖题意,做到题意条件都明确,隐性条件注意列.列式要周到,不遗漏. (1)证明:f (x )+4=0即x 2–(m +1)x +m +4=0.依题意:⎪⎩⎪⎨⎧>+=⋅>+=+≥+-+=∆04tan tan 01tan tan 0)4(4)1(2m B A m B A m m 又A 、B 锐角为三角形内两内角 ∴2π<A +B <π ∴tan(A +B )<0,即031tan tan 1tan tan )tan(<--+=-+=+m m B A B A B A ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>++>+>+≥--031040101522m m m m m m ∴m ≥5 (2)证明:∵f (x )=(x –1)(x –m )又–1≤cos α≤1,∴1≤2+cos α≤3,恒有f (2+cos α)≤0 即1≤x ≤3时,恒有f (x )≤0即(x –1)(x –m )≤0 ∴m ≥x 但x max =3,∴m ≥x max =3(3)解:∵f (sin α)=sin 2α–(m +1)sin α+m =4)1()21(sin 22+-++-m m m α 且21+m ≥2,∴当sin α=–1时,f (sin α)有最大值8. 即1+(m +1)+m =8,∴m =3 ●锦囊妙计函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化.考生应做到:(1)深刻理解一般函数y =f (x )、y =f –1(x )的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.●歼灭难点训练 一、选择题1.(★★★★★)已知函数f (x )=log a [x –(2a )2]对任意x ∈[21,+∞]都有意义,则实数a 的取值范围是( )A.(0,41] B.(0,41) C.[41,1) D.(41,21) 2.(★★★★★)函数f (x )的定义域为R ,且x ≠1,已知f (x +1)为奇函数,当x <1时,f (x )=2x 2–x +1,那么当x >1时,f (x )的递减区间是( )A.[45,+∞) B.(1,45] C.[47,+∞) D.(1,47]二、填空题3.(★★★★)关于x 的方程lg(ax –1)–lg(x –3)=1有解,则a 的取值范围是 .4.(★★★★★)如果y =1–sin 2x –m cos x 的最小值为–4,则m 的值为 . 三、解答题5.(★★★★)设集合A ={x |4x –2x +2+a =0,x ∈R }. (1)若A 中仅有一个元素,求实数a 的取值集合B ;(2)若对于任意a ∈B ,不等式x 2–6x <a (x –2)恒成立,求x 的取值范围.6.(★★★★)已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件:f (x –1)=f (3–x )且方程f (x )=2x 有等根.(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n =,使f (x )定义域和值域分别为[m ,n ]和[4m ,4n ],如果存在,求出m 、n 的值;如果不存在,说明理由.7.(★★★★★)已知函数f (x )=6x –6x 2,设函数g 1(x )=f (x ), g 2(x )=f [g 1(x )], g 3(x )=f [g 2(x )], …g n (x )=f [g n –1(x )],…(1)求证:如果存在一个实数x 0,满足g 1(x 0)=x 0,那么对一切n ∈N ,g n (x 0)=x 0都成立; (2)若实数x 0满足g n (x 0)=x 0,则称x 0为稳定不动点,试求出所有这些稳定不动点; (3)设区间A =(–∞,0),对于任意x ∈A ,有g 1(x )=f (x )=a <0, g 2(x )=f [g 1(x )]=f (0)<0, 且n ≥2时,g n (x )<0.试问是否存在区间B (A ∩B ≠∅),对于区间内任意实数x ,只要n ≥2,都有g n (x )<0.8.(★★★★)已知函数f (x )=xa 11- (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )≤2x 在(0,+∞)上恒成立,求a 的取值范围;(3)若f (x )在[m ,n ]上的值域是[m ,n ](m ≠n ),求a 的取值范围.参 考 答 案●难点磁场1.解析:设t =3x ,则t ∈[1,3],原不等式可化为a 2–a –3>–2t 2+t ,t ∈[1,3]. 等价于a 2–a –3大于f (t )=–2t 2+t 在[1,3]上的最大值. 答案:(–∞,–1)∪(2,+∞)2.解:(1)当a =1,b =–2时,f (x )=x 2–x –3,由题意可知x =x 2–x –3,得x 1=–1,x 2=3. 故当a =1,b =–2时,f (x )的两个不动点为–1,3.(2)∵f (x )=ax 2+(b +1)x +(b –1)(a ≠0)恒有两个不动点,∴x =ax 2+(b +1)x +(b –1),即ax 2+bx +(b –1)=0恒有两相异实根 ∴Δ=b 2–4ab +4a >0(b ∈R )恒成立. 于是Δ′=(4a )2–16a <0解得0<a <1故当b ∈R ,f (x )恒有两个相异的不动点时,0<a <1.(3)由题意A 、B 两点应在直线y =x 上,设A (x 1,x 1),B (x 2,x 2) 又∵A 、B 关于y =kx +1212+a 对称.∴k =–1.设AB 的中点为M (x ′,y ′)∵x 1,x 2是方程ax 2+bx +(b –1)=0的两个根. ∴x ′=y ′=a b x x 2221-=+,又点M 在直线1212++-=a x y 上有 121222++=-a a b a b ,即aa a ab 121122+-=+-= ∵a >0,∴2a +a 1≥22当且仅当2a =a 1即a =22∈(0,1)时取等号, 故b ≥–221,得b 的最小值–42. ●歼灭难点训练一、1.解析:考查函数y 1=x 和y 2=(2a )x的图象,显然有0<2a <1.由题意21)2(21a =得a =41,再结合指数函数图象性质可得答案. 答案:A 2.解析:由题意可得f (–x +1)=–f (x +1).令t =–x +1,则x =1–t ,故f (t )=–f (2–t ),即f (x )=–f (2–x ).当x >1,2–x <1,于是有f (x )=–f (2–x )=–2(x –47)2–87,其递减区间为[47,+∞). 答案:C3.解析:显然有x >3,原方程可化为1031=--x ax 故有(10–a )·x =29,必有10–a >0得a <10又x =a -1029>3可得a >31. 答案:31<a <104.解析:原式化为4)2(cos 22m m x y --=.当2m<–1,y min =1+m =–4⇒m =–5. 当–1≤2m ≤1,y min =42m -=–4⇒m =±4不符.当2m>1,y min =1–m =–4⇒m =5. 答案:±5二、5.解:(1)令2x =t (t >0),设f (t )=t 2–4t +a .由f (t )=0在(0,+∞)有且仅有一根或两相等实根,则有 ①f (t )=0有两等根时,Δ=0⇒16–4a =0⇒a =4 验证:t 2–4t +4=0⇒t =2∈(0,+∞),这时x =1 ②f (t )=0有一正根和一负根时,f (0)<0⇒a <0③若f (0)=0,则a =0,此时4x –4·2x =0⇒2x =0(舍去),或2x =4,∴x =2,即A 中只有一个元素综上所述,a ≤0或a =4,即B ={a |a ≤0或a =4}(2)要使原不等式对任意a ∈(–∞,0]∪{4}恒成立.即g (a )=(x –2)a –(x 2–6x )>0恒成立.只须175081020)4(022-⇒⎩⎨⎧<+-≤⇒⎩⎨⎧>≤-x x x g x <x ≤2 6.解:(1)∵方程ax 2+bx =2x 有等根,∴Δ=(b –2)2=0,得b =2. 由f (x –1)=f (3–x )知此函数图象的对称轴方程为x =–ab2=1得a =–1,故f (x )=–x 2+2x . (2)f (x )=–(x –1)2+1≤1,∴4n ≤1,即n ≤41 而抛物线y =–x 2+2x 的对称轴为x =1 ∴n ≤41时,f (x )在[m ,n ]上为增函数. 若满足题设条件的m ,n 存在,则⎩⎨⎧==nn f mm f 4)(4)(⎩⎨⎧-==-==⇒⎪⎩⎪⎨⎧=+-=+-2020424222n n m m nn n m m m 或或即 又m <n ≤41,∴m =–2,n =0,这时定义域为[–2,0],值域为[–8,0]. 由以上知满足条件的m 、n 存在,m =–2,n =0. 7.(1)证明:当n =1时,g 1(x 0)=x 0显然成立; 设n =k 时,有g k (x 0)=x 0(k ∈N )成立, 则g k +1(x 0)=f [g k (x 0)]=f (x 0)=g 1(x 0)=x 0 即n =k +1时,命题成立.∴对一切n ∈N ,若g 1(x 0)=x 0,则g n (x 0)=x 0.(2)解:由(1)知,稳定不动点x 0只需满足f (x 0)=x 0 由f (x 0)=x 0,得6x 0–6x 02=x 0,∴x 0=0或x 0=65 ∴稳定不动点为0和65. (3)解:∵f (x )<0,得6x –6x 2<0⇒x <0或x >1.∴g n (x )<0⇔f [g n –1(x )]<0⇔g n –1(x )<0或g n –1(x )>1要使一切n ∈N ,n ≥2,都有g n (x )<0,必须有g 1(x )<0或g 1(x )>1. 由g 1(x )<0⇔6x –6x 2<0⇔x <0或x >1 由g 1(x )>0⇔6x –6x 2>1⇔633633+<<-x 故对于区间(633,633+-)和(1,+∞)内的任意实数x ,只要n ≥2,n ∈N ,都有g n (x )<0. 8.(1)证明:任取x 1>x 2>0,f (x 1)–f (x 2)=2121122111)11()11(x x x x x x x a x a-=-=---∵x 1>x 2>0,∴x 1x 2>0,x 1–x 2>0,∴f (x 1)–f (x 2)>0,即f (x 1)>f (x 2),故f (x )在(0,+∞)上是增函数. (2)解:∵xa 11-≤2x 在(0,+∞)上恒成立,且a >0, ∴a ≥xx 121+在(0,+∞)上恒成立,令421221121)(=⋅≤+=xx xx x g (当且仅当2x =x 1即x =22时取等号),要使a ≥xx 121+在(0,+∞)上恒成立,则a ≥42.故a 的取值范 围是[42,+∞).(3)解:由(1)f (x )在定义域上是增函数. ∴m =f (m ),n =f (n ),即m 2–a 1m +1=0,n 2–a1n +1=0 故方程x 2–a 1x +1=0有两个不相等的正根m ,n ,注意到m ·n =1,故只需要Δ=(a1)2–4>0,由于a >0,则0<a <21.。

相关文档
最新文档