弹性力学平面问题
合集下载
6-3弹性力学平面问题(极坐标)

可通过微分关系直接由直角坐标系下的几何方程得到。 同前分析,当 0 时,
所以
即
四. 极坐标系下的物理方程
因、方向正交,则物理方程与直角坐标系下具有相同形式。 即 当为平面应变问题时,E1E、1 。
五. 极坐标系下的相容方程
极坐标系下如果用应力函数表示相容方程,体力必须为零 或关于 ( , ) 有势。
x y
2
f x f y (1 ) x y 0
f f 1 f 1
2
五. 极坐标系下的应力边界条件
设边界S的外法线方向与 、 方向的方向余弦分别为 l1、 l2 ,其上作用的面力沿、方向的分量分别为f、f 。则其 应力边界条件与直角坐标系下具有相同形式。 即
2
2 1 1 2 2 2 2
二. 极坐标系下的平衡微分方程
1. 直角坐标与极坐标系下的应力分量关系
(1)极坐标系下的应力分量和体力分量
O
如图,根据应力状态的定义, 过P 点分别以 方向和 方向为法线的截面 上的应力 、、 , 作为在极坐 标系下的应力分量。 称为径向应力, y 称为环向向应力。 (2)应力分量的坐标转换
d 1 d 2 0 d d
2 2
f 0
1 u
(不计体力)
f f 1
2
应力分量 边界条件
应力分量 (不计体力)
( ) s l1 ( ) s l2 f ( ) s l1 ( ) s l2 f
应力边界条件
位移边界条件
所以
即
四. 极坐标系下的物理方程
因、方向正交,则物理方程与直角坐标系下具有相同形式。 即 当为平面应变问题时,E1E、1 。
五. 极坐标系下的相容方程
极坐标系下如果用应力函数表示相容方程,体力必须为零 或关于 ( , ) 有势。
x y
2
f x f y (1 ) x y 0
f f 1 f 1
2
五. 极坐标系下的应力边界条件
设边界S的外法线方向与 、 方向的方向余弦分别为 l1、 l2 ,其上作用的面力沿、方向的分量分别为f、f 。则其 应力边界条件与直角坐标系下具有相同形式。 即
2
2 1 1 2 2 2 2
二. 极坐标系下的平衡微分方程
1. 直角坐标与极坐标系下的应力分量关系
(1)极坐标系下的应力分量和体力分量
O
如图,根据应力状态的定义, 过P 点分别以 方向和 方向为法线的截面 上的应力 、、 , 作为在极坐 标系下的应力分量。 称为径向应力, y 称为环向向应力。 (2)应力分量的坐标转换
d 1 d 2 0 d d
2 2
f 0
1 u
(不计体力)
f f 1
2
应力分量 边界条件
应力分量 (不计体力)
( ) s l1 ( ) s l2 f ( ) s l1 ( ) s l2 f
应力边界条件
位移边界条件
6-1弹性力学平面问题(基本理论)

l2 cos( N , y) cos
v 0 x x l
x ( sin ) xy cos 0 y cos yx ( sin ) 0
例6-3
图示薄板,在y方向受均匀拉力作用, 证明在板中间突出部分(1 2 )的尖 点A处无应力存在。
(a) (b)
(2) x C ( x 2 y 2 ), y Cy 2, xy 2Cxy;
解:(1) 将式(a)代入平衡方程:
x xy Fbx 0 x y yx y Fby 0 x y
3xy 2 3xy 2 0
y y 0
y
xy
x y y 0 p( x) p0 l (2) BC段(x l): l1 1, l2 0
u |x l 0, v |x l 0
u y 0,
x l
y 0
0
(3) AC段(y x tan):
l1 cos( N , x) cos(90 ) sin
( x ) s l1 ( yx ) s l2 px ( xy ) s l1 ( y ) s l2 p y
px p y 0
x x h 0
xy x h
0
右侧面: x h l1 1, l2 0 px y, p y 0 代入应力边界条件公式,有
l O x a b
z p
y
l a , l b ——近似认为无限长
2. 受力特征
外力(体力、面力)平行于横截面作用,且沿长度 z 方 向不变化。
如水坝、滚柱、厚壁圆筒等。
水坝 3. 简化分析
(1)位移分量
v 0 x x l
x ( sin ) xy cos 0 y cos yx ( sin ) 0
例6-3
图示薄板,在y方向受均匀拉力作用, 证明在板中间突出部分(1 2 )的尖 点A处无应力存在。
(a) (b)
(2) x C ( x 2 y 2 ), y Cy 2, xy 2Cxy;
解:(1) 将式(a)代入平衡方程:
x xy Fbx 0 x y yx y Fby 0 x y
3xy 2 3xy 2 0
y y 0
y
xy
x y y 0 p( x) p0 l (2) BC段(x l): l1 1, l2 0
u |x l 0, v |x l 0
u y 0,
x l
y 0
0
(3) AC段(y x tan):
l1 cos( N , x) cos(90 ) sin
( x ) s l1 ( yx ) s l2 px ( xy ) s l1 ( y ) s l2 p y
px p y 0
x x h 0
xy x h
0
右侧面: x h l1 1, l2 0 px y, p y 0 代入应力边界条件公式,有
l O x a b
z p
y
l a , l b ——近似认为无限长
2. 受力特征
外力(体力、面力)平行于横截面作用,且沿长度 z 方 向不变化。
如水坝、滚柱、厚壁圆筒等。
水坝 3. 简化分析
(1)位移分量
弹性力学-第二章 平面问题基本理论 (徐芝纶第五版)

基本方程是二维的。
平面应力问题
平面应变问题
3
1.平面应力问题
支承板
z x
y
(2) 受力特性
外力(体力、面力)和约束,仅平行于 板面作用,沿z方向不变化。
(1) 几何特性
一个方向的尺寸比另两个 方向的尺寸小得多。
——平板
4
1.平面应力问题
(3) 应力特征
由于板面上不受力,有
sx =sx(x,y)
sy =sy(x,y)
53
54
55
56
习题
57
第二章 教学参考资料 (一)本章学习要求及重点
本章系统地介绍了平面问题的基本理论: 基本方程和边界条件,及两种基本解法。这 些内容在弹性力学中具有典型性和代表性。 因此,学好平面问题的基本理论,就可以方 便地学习其他各章。为此,我们要求学生深 入地理解本章的内容,掌握好以下几点:
)
f
y
0.
68
(2)用位移表示的应力边界条件
E
1
2
[l
(
u x
v
y
)m12
(
u y
v x
)]s
fx,
E
1
2
[m(
v y
u
x
)l12
(
u y
v x
)]s
fy.
(在s 上ss)
69
(3)位移边界条件
(u)s u , (v)s v.
(在Su上)
70
4、按应力求解平面问题(平面应力问题),
应力分量 σ x , σ y ,t x必y 须满足下列全部条件:
sx =sx(x,y) sy =sy(x,y) txy =txy(x,y) sz =sz (x,y) txz =tyz =0
平面应力问题
平面应变问题
3
1.平面应力问题
支承板
z x
y
(2) 受力特性
外力(体力、面力)和约束,仅平行于 板面作用,沿z方向不变化。
(1) 几何特性
一个方向的尺寸比另两个 方向的尺寸小得多。
——平板
4
1.平面应力问题
(3) 应力特征
由于板面上不受力,有
sx =sx(x,y)
sy =sy(x,y)
53
54
55
56
习题
57
第二章 教学参考资料 (一)本章学习要求及重点
本章系统地介绍了平面问题的基本理论: 基本方程和边界条件,及两种基本解法。这 些内容在弹性力学中具有典型性和代表性。 因此,学好平面问题的基本理论,就可以方 便地学习其他各章。为此,我们要求学生深 入地理解本章的内容,掌握好以下几点:
)
f
y
0.
68
(2)用位移表示的应力边界条件
E
1
2
[l
(
u x
v
y
)m12
(
u y
v x
)]s
fx,
E
1
2
[m(
v y
u
x
)l12
(
u y
v x
)]s
fy.
(在s 上ss)
69
(3)位移边界条件
(u)s u , (v)s v.
(在Su上)
70
4、按应力求解平面问题(平面应力问题),
应力分量 σ x , σ y ,t x必y 须满足下列全部条件:
sx =sx(x,y) sy =sy(x,y) txy =txy(x,y) sz =sz (x,y) txz =tyz =0
第七章_弹性力学平面问题的极坐标系解答讲解

在r = b边界(外径):
r= -qb,r=0
本问题仍为轴对称问题,且体力为零,
可采用前述的应力函数求解方程,也可按位移法求解。
1.按应力函数法求解
按应力函数求解前面已导出应力分量和位移表达式:
, ,
平面应力问题的位移:
法求解:
由基本方程 得
代入应力与位移之间关系式,对于平面应力问题,有
其中Brsin=By可略去。
将( r,)代入应力分量表达式
A、C、D由力的边界条件来定。
力的边界条件:在主要边界上,
在r = a:r= 0,r= 0, 2Aa+C/a-2D/a3= 0
在r = b:r= 0,r= 0, 2Ab+C/b-2D/b3= 0
在次要边界上,
在=0,环向方向的面力为零, 满足。
在= 0: 由于主要边界满足,则此式自然满足;
在= 0:
(3)
主要边界满足时,由(1)、(2)、(3)求出A、B、C,应力求出后,依次可求出应变和位移表达式,详细推导在徐芝纶(上册)P.91-92。
在徐芝纶(4-13)中I、K、H为刚体位移,I = u0、K = v0, H =。
可利用约束确定,如令r0=(a+b)/2,= 0处
应力分量表达代入几何方程的第一式并积分,得
——(b)
考虑位移单值性比较(a)和(b)式:
4Br-F=0B=F=0
轴对称问题的应力和位移解为:
, ,
,
A、C由两个力的边界条件确定。
对于无体力圆盘(或圆柱)的轴对称问题,
则根据圆盘(或圆柱)中心应力和
位移有限值,得
A=0
图示圆盘受力情况,得应力为r==2C= -q
然后,利用r = a时, ,得
r= -qb,r=0
本问题仍为轴对称问题,且体力为零,
可采用前述的应力函数求解方程,也可按位移法求解。
1.按应力函数法求解
按应力函数求解前面已导出应力分量和位移表达式:
, ,
平面应力问题的位移:
法求解:
由基本方程 得
代入应力与位移之间关系式,对于平面应力问题,有
其中Brsin=By可略去。
将( r,)代入应力分量表达式
A、C、D由力的边界条件来定。
力的边界条件:在主要边界上,
在r = a:r= 0,r= 0, 2Aa+C/a-2D/a3= 0
在r = b:r= 0,r= 0, 2Ab+C/b-2D/b3= 0
在次要边界上,
在=0,环向方向的面力为零, 满足。
在= 0: 由于主要边界满足,则此式自然满足;
在= 0:
(3)
主要边界满足时,由(1)、(2)、(3)求出A、B、C,应力求出后,依次可求出应变和位移表达式,详细推导在徐芝纶(上册)P.91-92。
在徐芝纶(4-13)中I、K、H为刚体位移,I = u0、K = v0, H =。
可利用约束确定,如令r0=(a+b)/2,= 0处
应力分量表达代入几何方程的第一式并积分,得
——(b)
考虑位移单值性比较(a)和(b)式:
4Br-F=0B=F=0
轴对称问题的应力和位移解为:
, ,
,
A、C由两个力的边界条件确定。
对于无体力圆盘(或圆柱)的轴对称问题,
则根据圆盘(或圆柱)中心应力和
位移有限值,得
A=0
图示圆盘受力情况,得应力为r==2C= -q
然后,利用r = a时, ,得
弹性力学第二章平面问题的基本理论

应力边界条件:
在应力约束 面上: 设 面法线与x轴正向夹角
的余玄为l,与y轴正向夹角
的余玄为m。
混合条件:
位移约束与应力约束的组合。
边界条件举例
x
y q
x
y
p
圣维南原理及其应用
圣 维 南 ( Adhémar Jean Claude Barré de Saint-Venant , 1797~1886)原理:如果把物体的一小部分边界上的面力, 变换为分布不同但静力等效的面力(主矢量相同,对于同 一点的主矩也相同),那么近处的应力分布将有显著改变, 但是远处所受的影响可以忽略不计。
— 边界条件
按位移求解平面应力问题(5)
— 小结
按位移求解平面问题需要:
1. 位移分量满足微分方程:
2.边界条件:
按位移求解平面问题(5)
— 举例
x
ρg
y=h y
按位移求解平面问题(6)
— 举例
x
ρg
y=h y
按应力求解平面应力问题(1)
— 用位移表达应变(几何方程)
形变协调方程或相容方程 连续体的形变分量不是相互独立的,它们之间必须满足 相容方程,才能保证真实的位移分量存在。
因此,由 中第一式:
最后得到:
由 中第二式:
常体力情况下的简化(5)
— 平衡方程的解
通解
特解
常体力情况下的简化(6)
— 艾里应力函数表示的相容方程
应力调和方程 代入
得到:
简写为:
常体力情况下的平面问题
常体力情况下的平面问题需要满足:
1.艾里应力函数表示的相容方程:
2.边界条件
3.位移单值条件
弹性力学第二章平面问题的基本理论
在应力约束 面上: 设 面法线与x轴正向夹角
的余玄为l,与y轴正向夹角
的余玄为m。
混合条件:
位移约束与应力约束的组合。
边界条件举例
x
y q
x
y
p
圣维南原理及其应用
圣 维 南 ( Adhémar Jean Claude Barré de Saint-Venant , 1797~1886)原理:如果把物体的一小部分边界上的面力, 变换为分布不同但静力等效的面力(主矢量相同,对于同 一点的主矩也相同),那么近处的应力分布将有显著改变, 但是远处所受的影响可以忽略不计。
— 边界条件
按位移求解平面应力问题(5)
— 小结
按位移求解平面问题需要:
1. 位移分量满足微分方程:
2.边界条件:
按位移求解平面问题(5)
— 举例
x
ρg
y=h y
按位移求解平面问题(6)
— 举例
x
ρg
y=h y
按应力求解平面应力问题(1)
— 用位移表达应变(几何方程)
形变协调方程或相容方程 连续体的形变分量不是相互独立的,它们之间必须满足 相容方程,才能保证真实的位移分量存在。
因此,由 中第一式:
最后得到:
由 中第二式:
常体力情况下的简化(5)
— 平衡方程的解
通解
特解
常体力情况下的简化(6)
— 艾里应力函数表示的相容方程
应力调和方程 代入
得到:
简写为:
常体力情况下的平面问题
常体力情况下的平面问题需要满足:
1.艾里应力函数表示的相容方程:
2.边界条件
3.位移单值条件
弹性力学第二章平面问题的基本理论
5第三章弹性力学平面问题的解析解法讲解

2 X Y 2 x y y 2 x 2 ( x y ) (1 )
(平面应力情形)
(3)边界条件:
l ( x ) s m( xy ) s X m( y ) s l ( xy ) s Y
x 2 y
2
y 2 x
2
xy
2 xy
(2-28)
(无体力情形)
(3) 再让 x , y , xy满足应力边界条件和位移单值条件 (多连体问题)。
第三章 弹性力学平面问题的 解析解法
第四节 第五节 逆解法与半逆解法—多项式解答 矩形梁的纯弯曲
(2)边界条件: 位移边界条件: 应力边界条件:
(1 )
u s u , vs v
(2)
E u v 1 u v l m X 2 y s 2 y x s 1 x (3 ) v u 1 v u E m l Y 2 1 y x s 2 x y s
4.
按应力求解平面问题的基本方程 说明:
(1)对位移边界问题,不易按应力 求解。
(1)平衡方程
x xy X 0 x y yx y Y 0 x y
(2)相容方程(形变协调方程)
(2)对应力边界问题,且为单连通 问题,满足上述方程的解是唯 一正确解。
(3)对多连通问题,满足上述方程 外,还需满足位移单值条件, 才是唯一正确解。
按应力求解平面问题(X = 常量、Y = 常量)的归结为: (1) 先由方程(2-27)求出应力函数: ( x ,7) 0 4 2 2 4 x x y y x , y , xy (2) 然后将 ( x , y ) 代入式(2-26)求出应力分量:
有限元2-弹性力学平面问题(24矩形单元,25六节点三角形单元)

u 1 1 2 3 4 u 2 1 2 3 4
u 3 1 2 3 4
u 4 1 2 3 4
有限单元法
土木工程学院
P-9/44
解方程组便可求得待定常数。将这些参数代回式 (2-4-4),经整理得:
(1,1)
有限单元法
土木工程学院
P-6/44
二、结点位移列阵和结点力列阵
每个结点2个位移分量,共8个位移分量, 设结点位移和结点力列阵分别为:
d u v u v u v u v
e
2 4 2 e T F X Y X Y X Y X Y 1 1 2 2 3 3 4 4 2 4 3
有限单元法
土木工程学院
P-18/44
第2章 弹性力学平面问题有限单元法
2.1 三角形单元 2.2 三角形单元中几个问题的讨论 2.3 平面问题有限元程序设计 2.4 矩形单元 2.5 六结点三角形单元 2.6 四结点四边形单元 2.7 八结点曲线四边形等参元 2.8 几个问题的补充
有限单元法
土木工程学院
3
1
2
(1 ,1 )
(1,1)
有限单元法
土木工程学院
P-11/44
如果引进参数: ξ0=ξiξ, η0=ηiη(i=1, 2, 3, 4), (ξi, ηi)是矩形单元4个结点的局部坐标。结点i(ξi, ηi)的 坐标值分别是 (-1,-1), (1,-1),(1,1), (-1,-1)。代入 上式,则可将上式简记成:
Ai Li A
Lj Aj A
Am Lm A
i
m
Aj
弹性力学平面问题总结

P
思考题
① 试证明微分体绕 z 轴的平均转动分量是
1 2 v x u . y
② 当应变为常量时,x=a, y=b, xy=c, 试 求对应的位移分量。
第二章 平面问题的基本理论
2-1 平面应力问题与平面应变问题 2-2 平衡微分方程 2-4 几何方程 刚体位移 2-5 物理方程
物理方程
物理方程描述应力分量和应变分量之间
z
x
y
z
x
y
xy
zx
zy
1 G 1 G 1 G
xy ,
xy
) E
0,
xy ,
zx ,
zx
zy .
zy
0.
物理方程
平面应力问题的物理方程:
x
y
1 E 1 E 2(1
x
y
, ,
y
x
) E
xy
xy .
此外, z
E
x
y
,
zx
zy
0.
平面应力问题,虽然 σz=0,但一般 εz≠0。
物理方程
平面应变问题: z
0,
(在V 中)
xy 存在。
故只有平面应力 σx , σy ,
平面应力问题
(2) 由于板为等厚度,外力、约束沿 z 向不变, 故应力 x , y , xy 仅为 f x , y 。
所以归纳为平面应力问题:
a.应力中只有平面应力 x , y , xy 存在;
b.且仅为 f x , y 。
几何方程
平面问题中的几何方程:
x
u , x
y
v , y
xy
v x
u . y
当弹性体的位移分量完全确定时,应变分 量即完全确定。反之,当应变分量完全确定时, 位移分量却不能完全确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
z 载荷与 z 轴垂直沿 z 轴不变
x , y , xy(x,y) xz= zy=0,z=m(x+ y ) z = yx = zx = 0 x , y , xy (x,y)
u (x,y), v (x,y); w=0
5.1、 5.2 平面应力与平面应变问题
一. 平面应力问题
1.引例: 墙壁、座舱隔板等
x
x
y
y
xy
yx
z
z
由于 1 [ m( )] 0 m( )
zE z
x
y
z
x
y
对于平面应变问体,真正独立的应力分量只有三个。
x , y , xy yx , z zx zy 0
3.平面应变问题的定义
对于无限长柱体, 所有的应变与位移都发生xoy
面内,就称为平面应力问题。这类问题称为平面
1 E
y
m ( z
x)
( ) ( ) x
1 E
x
m
y
m x
m y
1 E
(1 m 2 ) x m(1 m ) y
E
1 /(1
m 2 ) x
m 1 m
y
1 E1
(
x
m1
y)
式中:
简化为图示等厚度板 受载情况--平行于板 面且沿板厚均匀分布 前后板面没有载荷; 此种情况即属平面应 力问题。
2.平面应力问题的特征
y
x
Z
t/2
y
薄板如图:厚度为t,以薄板的中面为xy面,以垂 直于中面的任一直线为z轴,建立坐标系如图所 示。因板面上(z=t/2)不受力,所以有:
( )z z t 0, ( )zx z t 0, ( )zy z t 0
2
2
2
由于板很薄,外力又不沿厚度变化,应力沿板的厚度又是连续
分布的,因此,可以认为在整板的所有各点都有:
z 0, zx 0, zy 0
根据剪应力互等定理可知
xz 0, yz 0,
x
z
t/2 t/2
y
y
所以,在薄板中只剩下平行于x、y面的三个应力 分量,即:
、 x
、
y
xy
;
yx
2 x
y 2
2 y
x 2
2 xy
xy
xy
x
1 E
y
1 E
1 G
xy
x my
y mx 2(1 m)
E
平面应变问题:
m m ,E 1 m
xy
1
E
m
2
平面应变问题的物理方程:
( ) z
1 E
z
m
x
y
0
( ) z m x y
( ) x
1 E
x
m
y
z
y
此即为平面应力问题的特征。用单元体可表示如图
y
yx xy
x
x
xy
y yx
xy x
yx y
3.平面应力问题的定义
对于仅有平行于xy面的三个应力分量的均质薄板
类问题,就称为平面应力问题。 x;
; y
xy
xy
二. 平面应变问题
1.引例: 水坝、隧洞等
简化为等长度很长的截面柱体, 载荷垂直于长度方 向,且沿长度方向不变—作为无限长柱体看待。
x
z 载荷与 z 轴垂直沿 z 轴不变
x , y , xy(x,y) xz= zy=0,z=m(x+ y ) z = yx = zx = 0 x , y , xy (x,y)
u (x,y), v (x,y); w=0
弹性力学问题的基本方程
空间问题的基本方程
➢平衡微分方程
ij
x j
fi
0
➢几何方程
平面问题和应力函数
一、平面应力问题和平面应变问题
平面应力问题:
y
平面应变问题:
y
构件特征:
x
z
受力特点: 平行于板面,板面上无载荷
应力分量: 应变分量: 位移分量:
z = xz =zy =0 x , y , xy(x,y) yx = zx = 0 x , y , xy (x,y); z
u (x,y), v (x,y); w
ij
1 ui 2 x j
u j xi
x
x
yx
y
zx
z
fx
0
xy
x
y
y
zy
z
fy
0
xz
x
yz
y
zzΒιβλιοθήκη fz0xu x
xy
v x
u y
y
v y
z
w z
yz
w y
v z
zx
u z
w x
➢物理方程(广义虎克定律)
ij
1
m
E
ij
m
E
kk
ij
( )
x
1 E
x
m
y
z
y
1 E
y
(2)应变分量
yz
1 2
( v z
w y
)
0
zx
1 ( w 2 x
u ) z
0
0,故仅考虑: (x, y); (x, y); (x, y)
z
x
x
y
y
xy
xy
三个应变分量。
(3) 应力分量
(x, y); (x, y); (x, y); (x, y)
xz
y
y
yz
zy zz
y
y
yx
yx
xy
xz
z
x x
zx
xy
2)平面应变问题
z
o
x
y
48
z
x y
2. 平面应变问题的特征
(1)位移分量
对于无限长柱体,由于任一横截面都可看成对称截 面,而对称截面上的各点是不能产生沿Z向的位移 的,因此,对任一截面都应有:
w 0 z 0,且u u(x, y),v v(x, y)
应变问题 x , y , xy yx
平面应力
平面应力问题的基本假设:
x x (x, y) y y (x, y) xy xy(x, y)
z zx zy 0
平面应变问题的基本假设:
x x (x, y) y y (x, y) xy xy(x, y)
z zy zx 0
平面应变
平面问题和应力函数
一、平面应力问题和平面应变问题
平面应力问题:
y
平面应变问题:
y
构件特征:
x
z
受力特点: 平行于板面,板面上无载荷
应力分量: 应变分量: 位移分量:
z = xz =zy =0 x , y , xy(x,y) yx = zx = 0 x , y , xy (x,y); z
u (x,y), v (x,y); w
m ( z
x)
( )
z
1 E
z
m
x
y
xy
xy
G
2(1 E
m ) xy
yz
yz
G
2(1 E
m
)
yz
zx
zx
G
2(1 E
m
)
zx
应变协调方程(相容方程):
2 x
y 2
2 y
x 2
2 xy
xy
2 y
z 2
2 z
y 2
2 yz
yz
2 z
x 2
2 x
z 2
2 zx
zx
x
xy
z
zx
y
yz
x
2 2 x
yz
y
xy
z
yz
x
zx
y
2 2 y
xz
z
yz
x
zx
y
xy
z
2
2 z
xy
二、平面问题的基本方程
➢平衡方程 ➢几何方程: ➢物理方程
x
x
yx
y
fx
0
xy
x
y
y
fy
0
x
u x
y
v y
xy
v x
u y
➢协调方程(相容方程)