高分子吸附材料

合集下载

吸附分离高分子材料

吸附分离高分子材料

大网均孔结构,比表面积>1000m2/g
吸附分离高分子材料
22
3、吸附树脂的主要品种
按照高分子主链的化学结构,主要有: 聚苯乙烯型 聚丙烯酸酯型 其他类型
吸附分离高分子材料
23
(1)聚苯乙烯型
优点: 80%以上吸附树脂为聚苯乙烯型 最早工业化 苯环邻对位具有活性,便于改性 缺点: 机械强度不高 抗冲击性和耐热性较差
关键技术 成球技术 成孔技术
吸附分离高分子材料
7
1、吸附树脂的成球技术
重要 悬浮聚合 方法 反向悬浮聚合
疏水性单体的悬浮聚合 含极性基团的取代烯烃单体的悬浮聚合 水溶性单体的悬浮缩聚 线形高分子的悬浮交联成球反应
吸附分离高分子材料
8
(1)疏水性单体的悬浮聚合
单体不含极性基团,如苯乙烯和二乙 烯基苯(交联剂)。 通过悬浮聚合直接成球 球体的直径和分散性通过调节分散剂 的类型与加入量、搅拌速度等控制
单体 交联剂 致孔剂 水
液体石蜡 分散剂
预聚物
油相
悬浮 缩聚
固化 吸附分 成球 离材料
吸附分离高分子材料
13
(4) 线形高分子的悬浮交联成球反应 水溶性高分子 反相悬浮交联
油溶性高分子 缺点:
正相悬浮交联
高分子化合物作为反应物,成本较高
主要用于天然高分子,如壳聚糖用戊二醛交
联成球,葡聚糖采用环氧氯丙烷交联
中极性吸附树脂
分子结构中存在酯基等极性基团,具有一定的 极性。如交联聚丙烯酸甲酯、交联聚甲基丙烯
酸甲酯及丙烯酸与苯乙烯的共聚物等
强极性吸附树脂
含有极性较强的极性基团,如吡啶基、氨基等。
亚砜类、聚丙烯酰胺类、脲醛树脂类
吸附分离高分子材料

高分子材料在环境保护中的应用与发展

高分子材料在环境保护中的应用与发展

高分子材料在环境保护中的应用与发展一、引言高分子材料是一类由重复单体分子通过共价键连接而成的大分子化合物,具有分子量大、可塑性强、耐腐蚀、绝缘性能好等特点。

在当今社会,高分子材料已经广泛应用于日常生活和工业生产中,但其大量使用也带来了环境污染和资源浪费问题。

因此,高分子材料在环境保护中的应用和发展显得尤为重要。

二、高分子材料在环境保护中的应用1. 生物降解材料随着人们对环境保护意识的提高,生物降解材料作为一种环保型材料受到越来越多的关注。

生物降解高分子材料具有生物降解速度快、对环境友好、降解产物无毒无害等优点,被广泛应用于生活用品、包装材料等领域。

2. 再生高分子材料再生高分子材料是通过废弃的塑料制品、橡胶制品等再生产新的高分子材料,可以减少原始资源的消耗,降低生产成本,同时减少废弃物对环境的危害。

再生高分子材料在包装、建筑材料等领域得到了广泛应用。

3. 环保型高分子材料环保型高分子材料是指具有良好的性能和环保特点的高分子材料,如可降解聚合物、可再生高分子材料等。

这类材料对环境影响较小,逐渐替代了传统的对环境造成较大危害的材料,成为环境保护的重要选择。

4. 高分子吸附剂高分子吸附剂是一种利用高分子材料具有较大比表面积和空隙结构,能有效吸附水污染物、有机污染物等的吸附剂。

这种材料广泛应用于水处理、废气处理等环境工程中,对提高环境质量和保护人类健康起到了积极作用。

三、高分子材料在环境保护中的发展趋势1. 绿色化随着全球对环境保护的需求越来越迫切,高分子材料的发展趋势也越来越向绿色化方向发展。

未来的高分子材料将更加注重环保特性,降解速度快、无毒无害、可循环利用等特点将成为高分子材料发展的重点。

2. 多功能化未来高分子材料将朝着多功能化方向发展,不仅保持高分子材料的基本性能,还具有抗菌、抗氧化、防腐蚀等功能。

这样一来,高分子材料可以在更多领域得到应用,提高其利用率和降低对环境的影响。

3. 微纳结构微纳结构技术的发展为高分子材料的性能提升提供了新的途径,通过微纳结构改性可以使高分子材料具有更好的力学性能、光学性能等,同时降低其成本。

功能高分子材料有哪些

功能高分子材料有哪些

功能高分子材料有哪些
功能高分子材料是一类具有特殊性能和功能的材料,它们在各个领域都有着重
要的应用。

下面我们将介绍一些常见的功能高分子材料及其特点。

首先,聚合物凝胶是一种具有三维网状结构的高分子材料。

它具有良好的吸附
性能和多孔性,可以用于吸附分离、催化反应和药物控释等领域。

聚合物凝胶的制备方法多样,可以通过溶胶-凝胶法、自组装法等途径得到不同结构和性能的材料。

其次,形状记忆聚合物是一种具有记忆形状的高分子材料。

它可以在外界刺激
下发生形状改变,并在去除刺激后恢复原状。

这种材料广泛应用于医疗器械、纺织品、航空航天等领域,具有巨大的市场潜力。

另外,功能高分子材料中的聚合物复合材料也是一种重要的类型。

它由两种或
两种以上的高分子材料组成,通过物理或化学方法加工而成。

聚合物复合材料具有优异的力学性能、耐磨性和耐腐蚀性,被广泛应用于汽车、航空航天、建筑等领域。

此外,具有光学、电子、磁性等功能的高分子材料也备受关注。

例如,光敏高
分子材料可以在光照下发生化学或物理变化,被广泛应用于光刻、光纤通信等领域;导电高分子材料具有优异的导电性能,可以替代传统的金属导电材料,被应用于柔性电子、电池等领域;磁性高分子材料则具有磁响应性能,可以用于磁记录、磁医疗等领域。

总的来说,功能高分子材料具有多样的种类和广泛的应用前景。

随着科学技术
的不断进步,功能高分子材料必将在更多领域展现出其独特的价值和作用。

希望本文对功能高分子材料有关的内容有所帮助,谢谢阅读。

高分子材料的吸附性能研究

高分子材料的吸附性能研究

高分子材料的吸附性能研究标题:高分子材料的吸附性能研究摘要:高分子材料因其良好的吸附性能在水处理、废气处理以及环境污染治理等领域得到广泛应用。

本论文针对高分子材料的吸附性能进行研究,并探讨了其影响因素、吸附机制以及未来发展方向。

通过实验和文献综述,发现高分子材料的吸附性能受到其结构特征、孔隙结构、表面性质等多个因素的影响。

同时,不同类型的高分子材料对不同污染物的吸附也存在差异,因此需要针对具体的应用场景选择合适的高分子材料。

未来的研究可以通过优化高分子材料的结构和性能,开发新的功能化高分子材料,以提高其吸附性能和应用效果。

1. 引言高分子材料广泛应用于吸附材料领域,其良好的吸附性能能有效地去除水中的有害物质和废气中的污染物。

吸附是一种物理吸附过程,通过分子间的非共价作用力将目标物质从流体中吸附到固体表面。

本文旨在综述高分子材料的吸附性能研究,并探讨其应用领域以及未来的研究方向。

2. 高分子材料的吸附性能研究方法2.1 吸附实验方法吸附实验是研究高分子材料吸附性能的重要手段。

常用的实验方法包括批量吸附实验和动态吸附实验。

批量吸附实验通过固液分离后的溶液中目标物质的浓度变化来研究吸附过程。

动态吸附实验则模拟实际处理过程中连续进料和出料的情况,通过监测入口和出口水中目标物质的浓度变化来评估材料的吸附性能。

2.2 吸附机理研究吸附机理研究通过对高分子材料的表面性质和结构特征进行分析,探讨吸附过程中的相互作用机制。

常用的研究方法包括扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)等。

3. 影响高分子材料吸附性能的因素3.1 材料结构特征材料结构特征包括孔隙结构、比表面积、孔径分布等。

具有大比表面积和多孔结构的高分子材料能提供更多的吸附位点,从而增强吸附性能。

3.2 表面性质高分子材料表面的化学性质对其吸附性能也有重要影响。

例如,具有亲水性表面的高分子材料对水中的有机污染物有较好的吸附性能。

高分子材料的吸附与分离性能研究

高分子材料的吸附与分离性能研究

高分子材料的吸附与分离性能研究高分子材料是一类由大分子化合物构成的材料,具有多样化的性质和广泛的应用领域。

其中,吸附与分离性能是高分子材料的重要特征之一,对于环境保护、资源利用和工业生产具有重要意义。

本文将探讨高分子材料的吸附与分离性能研究。

高分子材料的吸附性能指的是其对溶液中各种组分的吸附能力。

高分子材料的吸附可以通过物理吸附和化学吸附两种方式实现。

物理吸附主要是通过材料表面的物理结构和力场与溶液中的组分相互作用引起的,比如范德华力、静电作用力等。

化学吸附则是通过化学键的形成和断裂来实现,如氢键、离子键、共价键等。

高分子材料的吸附性能与其表面特性、孔隙结构、功能基团等密切相关。

不同类型的高分子材料具有不同的吸附选择性,可以选择性地吸附特定组分或一类组分。

例如,离子交换树脂可以通过交换树脂上的阴离子或阳离子基团选择性地捕捉溶液中的离子;吸附树脂则可以选择性地吸附有机物。

此外,高分子材料的吸附性能还受到溶液pH值、温度、物质浓度等因素的影响。

高分子材料的分离性能是指其在分离过程中对混合物组分的选择性分离效果。

分离过程一般包括吸附、脱附和再生等步骤。

在吸附步骤中,高分子材料通过吸附选择性地将目标组分与混合物分离。

然后,在脱附步骤中,改变吸附条件使吸附在高分子材料上的目标组分从材料表面脱附出来。

最后,通过再生步骤将高分子材料恢复到吸附前的状态,以便下一轮的分离。

高分子材料的分离性能研究主要集中在以下几个方面。

首先,研究高分子材料的吸附选择性,探索不同类型材料对目标组分的吸附能力和选择性。

其次,优化高分子材料的分离工艺参数,如溶液的pH值、温度、流速等,以获得最佳的分离效果。

此外,还可以通过改变高分子材料的孔隙结构和表面性质来提高分离性能。

最后,研究高分子材料的再生和循环利用技术,减少材料的损耗和环境污染。

在研究高分子材料的吸附与分离性能时,需要采用一系列的实验技术和理论方法。

常用的实验技术包括吸附等温线、选择吸附等温线、脱附等温线、透析实验等。

功能高分子05第2章吸附性高分子材料PPT

功能高分子05第2章吸附性高分子材料PPT
特性
具有高吸附容量、高选择性和稳定性 等特性,广泛应用于分离、净化、催 化剂载体、离子交换等领域。
吸附性高分子材料的分类
根据吸附机理
物理吸附高分子材料和化学吸附 高分子材料。
根据功能性质
离子交换树脂、活性炭、沸石等。
根据应用领域
水处理、气体分离、催化剂载体等。
吸附性高分子材料的应用领域
01
02
03
现对特定物质的吸附分离。
吸附性高分子材料的环境友好性
总结词
随着环保意识的增强,环境友好型吸附性高分子材料成为研究热点,旨在降低对环境的 负面影响。
详细描述
研究者们致力于开发可生物降解、低毒或无毒的高分子材料,以替代传统的高分子吸附 剂。同时,研究高分子材料的循环利用和废弃物处理方法,以降低对环境的影响。此外,
03
吸附性高分子材料的性能研究
吸附性能研究
吸附性能
吸附性高分子材料能够有效地吸 附气体、液体或固体物质,具有
较高的吸附容量和选择性。
吸附机理
吸附性高分子材料的吸附机理主 要包括物理吸附和化学吸附,其 中物理吸附主要依靠分子间的范 德华力,而化学吸附则涉及到化
学键的形成。
影响因素
影响吸附性能的因素包括高分子 材料的结构、孔径、比表面积、 极性等,这些因素都会对吸附性
能产生影响。
分离性能研究
1 2 不同组分进 行有效的分离,从而实现混合物的净化和纯化。
分离机理
分离机理主要包括筛分作用、亲和作用和选择性 吸附等,这些机理的协同作用使得吸附性高分子 材料具有出色的分离性能。
分离技术
常见的分离技术包括固定床吸附、移动床吸附、 流化床吸附等,这些技术能够根据不同的分离需 求进行选择和应用。

第八章超强吸水高分子材料

第八章超强吸水高分子材料
纤维素类 纤维素接枝共聚物 纤维素衍生物交联物 其它
其它
多糖类(琼脂糖、壳多糖)、蛋白质类等
三、基本结构
合成超高吸水高分子材料
目前主要分为聚丙烯酸(盐) ,聚乙烯醇两大类。 其中,聚丙烯酸(盐)类的研究最多,产量最大。
类别 比

聚 丙烯酸(盐)类
聚乙烯醇类
吸水性强,工艺成
吸水倍率不及聚丙烯酸 类,但它的特点是吸水速度
从物理结构看: 低交联度的三维网络。网络的骨架可以 是淀粉、纤维素等天然高分子,也可以是合成树脂(如聚 丙烯酸类)。
微观结构
多孔网状结构
淀粉-聚丙烯酸钠接枝聚合物模型图
五、合成高吸水分子中一些重要术语
术语 引
解释
引发自由 发
基聚合反应


令聚合物
链相互交联

决定了树
剂 脂空间网络 的大小


用量:一般为单体的0.01~0.8%
均是葡萄糖的多聚体,可以采用 相类似的单体、引发剂、交联剂进行 吸水树脂的制备
解,吸水后凝胶 强度大,保水性 强.抗菌性好.但 可降解性差.适 用于工业生产
甲壳质衍生物
四、SAP结构
从化学结构看: 主链或侧链上含有亲水性基团,如 -SO3H、 -COOH、 -CONH2、 -OH等
吸水能力:-SO3H>-COOH>-CONH2>-OH
• 大孔型 树脂内部有永久微孔;不需溶胀的状态也 可使用
弱酸型阳离子大孔树脂 凝胶树脂
制备
• 一般采用常规的悬浮聚合方法
大孔型树脂母体的制备 大孔型树脂母体主要是通过在共聚单体中添加致
孔剂的方法制备的。一般合成过程如下
致孔剂通常是一类不参与聚合,能与单体混溶, 使交联共聚物溶胀或沉淀的有机溶剂。 聚合过程 中,致孔剂分布在单体及已聚合的共聚物中。随着 聚合转化率提高,油珠逐渐固化。聚合反应完成后, 用水蒸气蒸馏或溶剂提取方法除去致孔剂,结果留 下孔穴,形成具大孔结构的球状树脂母体。

高分子吸附材料

高分子吸附材料
纤维素等
根据材料来源
• 天然高分子吸附材料:活性炭、硅藻土、 氧化铝、甲壳质和纤维素等
• 合成高分子吸附材料:离子交换树脂、高 分子螯合剂、吸附性树脂、吸水性树脂等
根据高分子材料的性质和用途
• 非离子型吸附树脂 • 吸水性高分子吸附剂 • 金属阳离子配位型吸附树脂 • 离子型吸附树脂
二、吸附性高分子材料的结构及制 备方法
• 微孔型吸附树脂 • 大孔型吸附树脂 • 米花型吸附树脂 • 交联大网状吸附树脂
• 微孔型吸附树脂外观呈颗粒状,在干燥状 态下树脂内的微孔很小,也很少,因此作 为吸附剂使用时必须用一定溶剂进行溶胀 ,溶胀后树脂内的三维网状结构被扩张,
三、聚合物化学结构与吸附性能之 间的关系
• 化学组成与功能基团
1、元素组成的影响 2、功能基团的影响 3、分子极性的影响
聚合物的链结构和超分子结构 吸附树脂的宏观结构
四、影响吸附树脂性能的外部因素
• 温度因素 • 树脂周围介质的影响 • 其他影响因素
吸附性高分子材料的结构
吸附性高分子材料主要由单体和适 量的交联剂通过共聚反应合成。
吸附性高分子材料
微孔型(凝胶型)
大孔型
米花型
大网状树脂
悬浮聚合 制备方法本体聚合
溶液聚合
微孔型吸附树脂
• 制备方法:一般都是用悬浮聚合的方法制 成粒经为0.3~1.0mm的吸附树脂。特点, 外观呈颗粒状,树脂内部空隙小。
例如,单体(二乙烯基苯)、致孔剂(甲苯 )和引发剂(过氧化二苯甲酰)按一定的 比例混合,用悬浮聚合的方法即可制得非 极性的吸附树脂。
交联大网状吸附树脂
• 大网状吸附树脂是三维交联的网状聚合物 ,主要是在线性聚合物的基础上,加入交 联剂进行交联反应制备的。聚合过程中需 加入成孔剂。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大孔型吸附树脂
一般也采用悬浮聚合法制备,主要特点是 干燥状态时有较高的孔隙率和较大的孔径。
米花型吸附树脂
• 外观:白色不透明颗粒,类似于膨化的米
花。 • 特点:具有多孔性、不溶解性和较低的体 积密度。不溶于大多数溶剂,不溶胀。
交联大网状吸附树脂
大网状吸附树脂是三维交联的网 状聚合物,主要是在线性聚合物 的基础上,加入交联剂进行交联 反应制备的。聚合过程中需加入 成孔剂。
成粒经为0.3~1.0mm的吸附树脂。特点, 成粒经为0.3~1.0mm的吸附树脂。特点, 外观呈颗粒状,树脂内部空隙小。 例如,单体(二乙烯基苯)、致孔剂(甲苯) 和引发剂(过氧化二苯甲酰)按一定的比 例混合,用悬浮聚合的方法即可制得非极 性的吸附树脂。
采用悬浮聚合主要优点:反应易控制, 散热比本体聚合快。另外直接生成球状 颗粒,无需再加工
•Thank you!
•制作: 丁波音 韦祥龙 卢书辉 叶龙福 刘广学
四、影响吸附树脂性能的外部因素
温度因素 树脂周围介质的影响 其他影响因素
吸附性高分子材料的结构
吸附性高分子材料主要由单体和适 量的交联剂通过共聚反应合成。
吸附性高分子材料
微孔型(凝胶型)
大孔型
米花型ห้องสมุดไป่ตู้
大网状树脂
悬浮聚合 制备方法 本体聚合 溶液聚合
微孔型吸附树脂
• 制备方法:一般都是用悬浮聚合的方法制
第八章 吸附性高分子材料
第一节 吸附性高分子材料概述
一、吸附性高分子材料的定义和分类
定义:吸附性材料主 要是指那些对某些特 定离子或分子有选择 性亲和作用,是两者 之间发生暂时或永久 性结合,进而发挥各 种功效的材料。
根据材料的结构和属性
无机吸附材料:分子筛、硅胶、活性炭等 有机吸附材料:聚苯乙烯、葡聚糖凝胶、 纤维素等
微孔型吸附树脂外观呈颗粒状,在干燥状态 下树脂内的微孔很小,也很少,因此作为吸 附剂使用时必须用一定溶剂进行溶胀,溶胀 后树脂内的三维网状结构被扩张,
三、聚合物化学结构与吸附性能之间 的关系
1、元素组成的影响 2、功能基团的影响 3、分子极性的影响
化学组成与功能基团
聚合物的链结构和超分子结构 吸附树脂的宏观结构
根据材料来源
天然高分子吸附材料:活性炭、硅藻土、 氧化铝、甲壳质和纤维素等 合成高分子吸附材料:离子交换树脂、高 分子螯合剂、吸附性树脂、吸水性树脂等
根据高分子材料的性质和用途
非离子型吸附树脂 吸水性高分子吸附剂 金属阳离子配位型吸附树脂 离子型吸附树脂
二、吸附性高分子材料的结构 及制备方法
• • • • 微孔型吸附树脂 大孔型吸附树脂 米花型吸附树脂 交联大网状吸附树脂
相关文档
最新文档