无机化学第七章 电子层结构

合集下载

大一化学第七章知识点

大一化学第七章知识点

大一化学第七章知识点大一化学第七章主要讲解了电子结构和周期性。

本章的知识点包括原子的电子结构、电子排布规则、周期表中的规律以及原子半径和离子半径等内容。

下面将逐一介绍这些知识点。

一、原子的电子结构1. 原子的组成:原子由质子、中子和电子组成,质子和中子位于原子核中,电子绕核运动。

2. 原子的电子层:电子按能级分布在不同的电子层,分别命名为K层、L层、M层等,能级越高离核越远。

3. 原子的电子壳层:原子的电子层按主量子数分为不同的壳层,第一壳层为K壳层,第二壳层为L壳层,以此类推。

4. 原子的电子云:电子在空间中的分布形成电子云,电子云表示了电子的可能位置。

二、电子排布规则1. 轨道和亚轨道:电子在不同壳层的电子层中沿不同轨道运动,轨道可分为s轨道、p轨道、d轨道和f轨道。

每个轨道可进一步分为不同的亚轨道。

2. 电子填充原则:按能级从低到高的顺序填充电子,每个轨道最多容纳一对电子。

3. 朗德规则:在同一轨道上填充电子时,优先尽量使电子自旋相反。

三、周期表中的规律1. 元素周期表:由元素按照一定的顺序排列形成的表格,主要包括元素的原子序数、元素符号和元素名称。

2. 周期:周期表中的横行称为一个周期,每个周期代表不同壳层的元素。

3. 主族元素和过渡族元素:周期表中,主族元素位于周期表的左侧,过渡族元素位于周期表的中间。

4. 周期表中的规律:周期表中元素的位置和性质呈现出周期性规律,例如电子层的增加、半径的变化、电离能的变化、电负性的变化等。

四、原子半径和离子半径1. 原子半径:原子半径是指原子核与最外层电子云之间的距离,通常以PM(皮克米)为单位。

2. 原子半径的变化:原子半径随着周期数的增加而逐渐减小,在同一周期内,随着原子序数的增加,原子半径逐渐增大。

3. 离子半径:当原子失去或获得电子形成带电离子时,离子半径会发生变化。

正离子的半径比原子半径小,负离子的半径比原子半径大。

以上就是大一化学第七章的主要知识点,包括原子的电子结构、电子排布规则、周期表中的规律以及原子半径和离子半径的相关内容。

《无机化学》第7章.化学键理论与分子结构

《无机化学》第7章.化学键理论与分子结构

(2)方向性
①根据原子轨道最大重叠原理,形成共价键时,原 子间总是尽可能沿着原子轨道最大重叠的方向成 键,原子轨道重叠越多,两核间电子概率密度越 大,形成的键越牢固。
②在形成共价键时,除s轨道能在任何方向最大重叠 外,其它p、d、f 轨道只能沿一定方向才能最大重 叠成键。所以,当一个 A原子与其它一个或几个 B 原子形成共价分子时,B原子在A原子周围的成键 方位是一定的,这就是共价键的方向性。
激发
2p
2s
(激发态)
杂 化
p (杂化态)
sp2
3个sp2杂化轨道
杂化轨道理论
+
σ 2 sp -p
F
F
σ 2 sp -p
+
- + - +
B
F
120° F
-
F +
B
+F
-
平面三角形
图9-8 sp2杂化轨道的空间取向和BF3分子构型
sp2杂化
BF3分子形成时中心B原子的轨道杂化情况 和分子的空间构型。
对于同核双原子分子和多原子分子,如 H2 , O2,P4,S8等,由于成键原子的电负性相同, 共用电子对不发生偏移,核间的电子云密集区 域在两核的中间位置,两原子核正电荷所形成 的正电荷重心和成键电子对的负电荷重心恰好 重合,这种键叫非极性共价键。
极性共价键
NH3 等,成键原子的电负性不同,共用电子对 发生偏移,核间的电子云密集区域偏向电负性 较大的原子一端,使之带部分负电荷,电负性 较小的原子一端则带部分正电荷,键的正负电 荷重心不重合,这种键叫极性共价键。
BF3分子的空间构型
(3) sp3杂化: 杂化轨道间夹角109.5 º ,正四面体结构。

无机化学7配位化合物

无机化学7配位化合物

第七章 配位化合物
二、配位化合物的组成 1.配合物的内界和外界 配合物根据其化学键特点和在水溶液中的离解方式不同 而分成两大部分:内界和外界。内界是配位键结合的配离子 部分,通常用方括号括起。外界是与配离子以离子键结合的 带相反电荷的离子,写在方括号外面。配位分子是只有内界 没有外界的反离子,内界配离子部分是由中心离子和配位体 组成。
第七章 配位化合物
2.中心离子(或中心原子) 中心离子是在配位个体中提供空轨道的金属离子或原子, 是配合物的核心部分,是孤对电子的接受体,如[Cu(NH3)4] 2+中的Cu2+就是中心离子。常见的中心离子多是过渡元素金属 离子如Fe2+、Cu2+、Zn2+等,这些离子的半径小,电荷多,吸 引孤对电子能力强。少数金属原子和少数高氧化态的非金属 元素也可作配合物的形成体,如Fe(CO)5]、Ni(CO)4中的Fe、 Ni及[SiF6]2-、[BF4]-中的Si(Ⅳ)、B(Ⅲ)等。
第七章 配位化合物
4.配位数 配合物中直接与中心离子配位键结合的配位原子的总数 称为该中心离子的配位数,即中心离子与配体形成配位键的 数目。中心离子的配位数取决于配离子所含配体的种类和数 目。 单齿配体形成配位键的数目等于配体的个数,多齿配体 形成配位键的数目等于配体数乘以配体中所含配位原子的数 目。如[Co(en)2(NH3)2]3+ 中的Co3+ 的配位数是6而不是4, 因为每个乙二胺配体含有两个N配位原子。通常中心离子的 配位数是2、4、6。有些中心离子在特定条件下具有一定的 特征配位数。
第七章 配位化合物
根据配位体中所含有配位原子的数目和与中心离子配位情况,配位体 还可分为以下几种。 单啮配位体:在一个配位体中,能与金属离子配位的点称为配位点, 只有一个配位点的配位体叫单啮配位体,如NH3,H2O,配位后阻碍了正 负离子间的吸引而使溶解度增大。 非螯合多啮配位体:配位体有多个配位点,但由于空间位阻使同一配 位体的几个配位点不能直接与同一个金属离子配位,例如PO43-,一般情况 下,每个配位体要和一个以上金属离子配位,而每个金属离子为了满足配 位要求又要与若干个这样的配位体配位,这样形成的多核配位化合物,往 往是不溶性的沉淀,所以非螯合多啮配位体在化学中常作沉淀剂。 螯合配位体:一个配位体中的几个配位点能直接相同一个金属离子配 位,称为螯合配位体,如EDTA。不带电的单核螯合分子一般在水中的溶 解度很小,但能溶于有机溶剂中,这种配位体在水溶液中是一种沉淀剂, 在有机溶液中能起萃取络合剂的作用,如乙酰丙酮。带电的单核螯合离子 一般很难从水溶液中沉淀出来,这种配位体可作掩蔽剂,如酒石酸盐、 EDTA。

无机化学第四版第七章思考题与知识题目解析

无机化学第四版第七章思考题与知识题目解析

第七章固体的结构与性质思考题1.常用的硫粉是硫的微晶,熔点为112.8℃,溶于CS2,CCl4等溶剂中,试判断它属于哪一类晶体?分子晶体2.已知下列两类晶体的熔点:(1) 物质NaF NaCl NaBr NaI熔点/℃993 801 747 661(2) 物质SiF4SiCl4 SiBr4 SiI4熔点/℃ -90.2 -70 5.4 120.5为什么钠的卤化物的熔点比相应硅的卤化物的熔点高? 而且熔点递变趋势相反? 因为钠的卤化物为离子晶体,硅的卤化物为分子晶体,所以钠的卤化物的熔点比相应硅的卤化物的熔点高,离子晶体的熔点主要取决于晶格能,NaF、NaCl、NaBr、NaI随着阴离子半径的逐渐增大,晶格能减小,所以熔点降低。

分子晶体的熔点主要取决于分子间力,随着SiF4、SiCl4、SiBr4、SiI4相对分子质量的增大,分子间力逐渐增大,所以熔点逐渐升高。

3.当气态离子Ca2+,Sr2+,F-分别形成CaF2,SrF2晶体时,何者放出的能量多?为什么?形成CaF2晶体时放出的能量多。

因为离子半径r(Ca2+)<r(Sr2+),形成的晶体CaF2的核间距离较小,相对较稳定的缘故。

4. 解释下列问题:(1)NaF的熔点高于NaCl;因为r(F-)<r(Cl-),而电荷数相同,因此,晶格能:NaF>NaCl。

所以NaF的熔点高于NaCl。

(2)BeO的熔点高于LiF;由于BeO中离子的电荷数是LiF 中离子电荷数的2倍。

晶格能:BeO>LiF。

所以BeO的熔点高于LiF。

(3)SiO2的熔点高于CO2;SiO2为原子晶体,而CO2为分子晶体。

所以SiO2的熔点高于CO2。

(4)冰的熔点高于干冰(固态CO2);它们都属于分子晶体,但是冰分子中具有氢键。

所以冰的熔点高于干冰。

(5)石墨软而导电,而金刚石坚硬且不导电。

石墨具有层状结构,每个碳原子采用SP2杂化,层与层之间作用力较弱,同层碳原子之间存在大π键,大π键中的电子可以沿着层面运动。

大学无机化学-第七章-氧化还原反应-电化学基础-课件

大学无机化学-第七章-氧化还原反应-电化学基础-课件
② 分别写出氧化剂被还原和还原剂被氧化的半反应 ③ 分别配平两个半反应方程式,等号两边的各
种元素的原子总数各自相等且电荷数相等 ④ 确定两半反应方程式得、失电子数目的最小公倍
数。将两个半反应方程式中各项分别乘以相应的 系数,使得、失电子数目相同。然后,将两者合 并,就得到了配平的氧化还原反应的离子方程式。 有时根据需要可将其改为分子方程式。
3Cl2 (g) + 6OH- = 5Cl- + ClO3- + 3H2O 3Cl2 (g) + 6NaOH = 5NaCl + NaClO3 + 3H2O
无机化学
§7.1 氧化还原反应的基本概念
例 4 配平方程式
Cr(OH)3 (s) + Br2 (l) + KOH
K2CrO4 + KBr
Cr(OH)3 (s) + Br2 (l)
电极组成:Pt , Cl2(p) | Cl- (a)
电极反应: Cl2 + 2e
2Cl-
无机化学
§7.2 电化学电池
3. 金属-金属难溶盐-阴离子电极
将金属表面涂有其金属难溶盐的固体,然后浸 入与该盐具有相同阴离子的溶液中构成的电极
电极组成:Ag ,AgCl(s)| Cl- (a) 电极反应:AgCl + e Ag + Cl电极组成:Hg ,Hg2Cl2(s)| Cl- (a) 电极反应:Hg2Cl2+2e 2Hg +2Cl-
无机化学
§7.1 氧化还原反应的基本概念
2-2 半反应法(离子—电子法) 配平原则 (1)反应过程中氧化剂得到的电子数等于还
原剂失去的电子数 (2)反应前后各元素的原子总数相等

初中化学离子的电子层结构与解析

初中化学离子的电子层结构与解析

初中化学离子的电子层结构与解析元素的电子层结构是指元素中各个电子所占据的不同能级和轨道。

在化学中,离子的电子层结构与原子的电子层结构有着密切关系。

本文将探讨初中化学中离子的电子层结构和解析。

1. 元素的电子层结构元素的电子层结构由原子核周围的电子组成。

电子根据能级的不同而分布在不同的轨道上。

最内层的能级称为1s,第二内层为2s和2p,第三内层为3s、3p和3d,依此类推。

每个轨道最多能容纳一定数量的电子。

例如,1s轨道最多容纳2个电子,2s轨道和2p轨道分别最多容纳2个和6个电子。

2. 离子的电子层结构离子是指在化学反应中失去或获得了电子的原子。

离子的电子层结构与原子的电子层结构有所不同。

正离子是指失去了一个或多个电子的原子,而负离子则是指获得了一个或多个电子的原子。

2.1 正离子的电子层结构当一个原子失去了一个或多个电子时,它会变成正离子。

在正离子中,电子的数目少于原子的电子数目。

例如,钠原子的电子层结构为[2, 8, 1],而钠离子Na+的电子层结构为[2, 8]。

失去了一个电子后,钠原子的第三层只剩下两个电子。

2.2 负离子的电子层结构当一个原子获得了一个或多个电子时,它会变成负离子。

在负离子中,电子的数目多于原子的电子数目。

例如,氧原子的电子层结构为[2, 6],而氧离子O2-的电子层结构为[2, 8]。

获得了两个电子后,氧原子的第二层变满,共有八个电子。

3. 解析离子的电子层结构要解析离子的电子层结构,可以按照以下步骤进行:3.1 确定原子的电子层结构首先,查找原子的电子层结构。

这可以通过元素的原子序数和电子组态规则来确定。

例如,氧的原子序数为8,根据电子组态规则,氧的电子层结构为[2, 6]。

3.2 根据离子的电荷确定电子数目变化根据离子的电荷变化,确定离子相对于原子来说是失去了电子还是获得了电子。

正离子会失去一个或多个电子,电子数目减少;负离子会获得一个或多个电子,电子数目增加。

例如,氧原子获得了两个电子,变成氧离子O2-。

无机化学第七章S区元素

无机化学第七章S区元素

无机化学第七章S区元素第七章主要介绍了S区元素的性质和应用。

S区元素是指周期表中第16族元素,包括氧、硫、硒、碲和钋。

这些元素具有一些共同的性质和特点,包括氧化态的规律和趋势、同族元素的化学性质等。

S区元素的氧化态规律和趋势是其重要的特点之一、氧化态是指元素在化合物中的电荷数。

在S区元素中,氧通常呈-2的氧化态,露卜那呈-1的氧化态,硫、硒和碲的氧化态则比较复杂,可以是正或负的多个值。

这种规律是由于这些元素的外层电子结构决定的。

氧的外层有6个电子,可以通过接受2个电子来填满外层,从而达到稳定的8个电子的结构。

而露卜那的外层只有一个电子,可以通过捐赠一个电子来达到稳定的结构。

而硫、硒和碲的外层电子结构类似,有6个电子,可以通过得失2个电子来达到稳定的8个电子的结构。

在S区元素中,氧是一个非金属元素,而硫、硒和碲则是亚稳金属。

氧具有较高的电负性,能够与其他元素形成较强的电负性键。

它在自然界中广泛存在,包括空气中的氧气、水中的水分子等。

由于氧的高电负性,它可以与其他元素形成氧化物,包括过氧化物、酸性氧化物和碱性氧化物等。

氧化物有着重要的应用,例如过氧化氢可用作漂白剂和消毒剂。

硫、硒和碲是黄顺子亚稳金属,它们具有较高的化学活性。

它们主要存在于矿石中,包括铁矿石中的硫化铁矿石。

硫还广泛存在于化学品中,包括硫酸、硫酸铜等。

硫还可以形成众多的无机化合物,例如硫化物和亚硫酸盐。

硫化物在冶金工业中有重要应用,例如焦炭的熔融炉和脱硫设备。

在亚稳金属中,硒是比较特殊的元素。

它可以形成六亚硒酸盐,具有良好的光敏性。

六亚硒酸盐可以用于摄影中的胶片和相纸的显影剂,以及红外线辐射计的探测剂。

此外,硒还可以形成硒化物,具有一定的半导体性能。

碲也是一种亚稳金属,具有类似硒的性质。

它可以形成一种黑色固体的碲化铋,具有比较好的半导体性能。

碲化铋被广泛应用于红外线成像和热电传感器等领域。

除了硫、硒和碲,S区元素中还有钋,它是一种放射性元素。

无机化学基本原理第七章原子结构与周期表2

无机化学基本原理第七章原子结构与周期表2
24Cr:3d5, Cr:
15
五、元素周期表 1. 能级组与元素周期的划分 周期的划分就是核外电子能级的划分,各能级 组容纳的电子数就等于相应周期元素的数目。 2.原子的电子构型及周期表中族的划分 2.原子的电子构型及周期表中族的划分 主族的族数 = 最外层电子数的总和 主族元素的最高氧化态 =最外层电子数 一般:族数 = (n-1)d + ns 电子数的总和 VIIIB, IB, IIB 副族元素的族数 = 反应中失去的电子数
8
例:试应用Slater计算方法求算氧原子的第一电离能
解:氧原子O结构为1s2, 2s2 2p4, 氧离子结构为1s2, 2s2 2p3,氧原子的电离能 (I) O = O+ + e I = E (O+) - E (O) = E(2s2 2p3) - E(2s2 2p4) O+: (1s2) (2s2 2p3) ZO+* = 8 - (4×0.35 + 2×0.85) = 4.9 (4 0.35 2 0.85) E(O+) = 5×(-13.6)× = 5×(- 81.63) = 408.17eV O: (1s2) (2s2 2p4) ZO* = 8 - (5×0.35 + 2×0.85) = 4.55 E(O) = 6 ×(-13.6)× = -422.34eV
11
二、钻穿效应 n相同,l不同的轨道,由于电子云径向分布不 同,电子穿过内层到达核附近以回避其他电子 屏蔽的能力不同,而使电子具有不同的能量, 这种由于s,p,d,f 轨道径向分布不同而引起 的能量效应(penetrating effect)。 对于单电子体系: 对于单电子体系:E3s = E3p = E3d 对于多电子体系: 对于多电子体系: E3s < E3p < E3d 能级交错: 能级交错: 由于屏蔽效应和钻穿效应,使不同轨道上的电 子能级发生变化,从而引起能级上的交错。 ns电子能量变的更低,nd, nf 电子能量变的更 电子能量变的更低, 电子能量变的更低 高。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列各套量子数(n,l,m,ms)是否合理?
A.2,0,0,-1/2 2s轨道一个电子,反时针自旋
B.3,1,-1,+1/2
C.3,2,+2,+1/ D2.3,1,+2,-1/2
3p轨道一个电子,顺时针自旋 3d轨道一个电子,顺时针自旋 不合理
12
1s
1s
S电子云图的叠合过程
2s
2s
3s
3s
3s
9
四个量子数的物理意义
n 决定了电子离核的远近(或电子层数),也是 决定原子轨道能量高低的主要因素。
l 决定原子轨道形状、种类和亚层数,同时也 是影响电子能量的一个因素。 m 决定原子轨道的空间伸展方向,每一个伸 展方向代表一个原子轨道。
ms 决定电子的自旋方向。
n,l,m 共同决定了1个原子轨道; n,l,m,ms 共同决定了1个电子的运动状态;
s电子云
球形
哑铃形
p电子云
3、磁量子数m
物理意义:决定原子轨道在空间的延伸方向。 可取的数值:0、±1、±2…±l等整数,磁量子 数有(2l+1)个取值,意味着该形状的轨道有 (2l+1)个。
四叶花瓣形7
每层中原子轨道数
主角 量量 子子 数数
nl
亚层 符号
磁量子数 m
轨道 空间 取向 数
每层 中轨 道数
的远近,是决定电子能量的主要因素。 符号:n
n 1 2 3 4…
光谱学符号 K L M N 分别表示 一 二 三 四 …电子层
2、角量子数 l
物理意义:l 值决定轨道或电子云的形状;
可取的数值:0 ~ n-1的整数 (n个取值)
n1
2
3
4
l 00 1 0 1 2 0 1 2 3
符号 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f
统计力学原理
课本图7-2
注意!注意!注意!
1、原子核是原子体积的百万亿分之一!原 子几乎是空的。(电子有足够大的运动空间) 2、无法确定单个电子在核外的运动轨迹 (不确定原理),即电子不可能绕核做传 统意义上的固定轨道运动。
3、电子所出现的区域叫做“原子轨道”。
四个量子数
1、主量子数n
决定电子在核外空间出现概率最大的区域离核
1s2 2s22p1 1s2 2s22p2 1s2 2s22p3 1s2 2s22p4 1s2 2s22p5 1s2 2s22p6
原子 序数
元素 符号
11
Na
12
Mg
13
Al
14
Si
15
P
16
Si
17
Cl
18
Ar
中文 名称
电子结构式

1s2 2s22p63s1

1s2 2s22p63s2

1s2 2s22p63s23p1
n2
电子数 2n2
1 0 1s
0
1
1
2
0 2s
2
1 2p
0 -1、0、+1
1
4
8
3
0 3s
0
1
3 1 3p
-1、0、+1
3
9
18
2 3d -2、-1、0、+1、+2 5
4、自旋量子数ms
物理意义:电子自旋方向。 可取的数值:+1/2、-1/2。 常用↑、↓符号 表示电子自旋的两种取向。
四个量子数队n、l、m、ms组合一定后,该电 子的运动状态就完全确定了。也就是说原子中每 个电子的运动状态可以用n,l,m,ms四个量子数 来描述。

1s2 2s22p63s23p2

1s2 2s22p63s23p3

1s2 2s22p63s23p4

1s2 2s22p63s23p5

1s2 2s22p63s23p6
注:
表示方法问题:
为了简化起见,
可用原子实的符号表示已填满的内层轨道,
例如:基态In原子的电子排布式
1s22s22p63s23p63d10 4s2 4p6 4d105s25p1
第七章 物质结构基础
原子的电子层结构和元素周期律
主讲人:赵源
宏观物体与微观粒子对照表




运动范围
运动速度
描述方法
宏观物体
大 , m(子弹) =10-2kg
较大
较低 v=103m·s-1
经典力学原理
微观粒子
极微, m(e) =9.1×10-31kg
极小 r原子=10-10m
极快 v=106m·s-1
可以简化为:
[Kr] 4d105s25p1
图 周期表元素的分区
二、元素性质的周期律
(1)原子的共价半径(rc) 通常把同核双原子分子中相邻两原子的核间距之半,
也即共价键键长的一半,称作该原子的共价半径。
(2)原子的范德华半径(rv) 在以范德华力形成的分子晶体
中,不属于同一个分子的两个最接 近原子的核间距的一半,
2p
2p
P电子云图的叠合过程
3p
3p
3d
3d
d电子云图的叠合过程
4d
4f电子云
5f电子云
1s 2s 2p 3s
原子 元素 中文 序数 符号 名称
1H

2 He 氦 3 Li 锂
4 Be 铍
5B 硼
6 C碳 7N 氮 8O 氧 9F 氟
10 Ne 氖
核外电子的排布
电子结构式
1s1 1s2 1s2 2s1 1s2 2s2
原子半径/pm
He 122H37源自Be Li 111 152B
C
N
O
F Ne
88 77 70 66 64 160
Na
Mg
186
160
Al Si
P
S
Cl Ar
143 117 110 104 99 191
K
Ca
Sc Ti
V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
227
例题1:
n = 3的原子轨道可有哪些轨道角动量量子 和磁量 子数?该电子层有多少原子轨道?
解:
当 n = 3,l = 0,1,2; 当 l = 0,m = 0; 当 l = 1,m = -1,0,+1; 当 l = 2,m = -2,-1,0,+1,+2; 共有9个原子轨道。
11
练习题
用来表示核外某一电子运动状态的下
Cs
Ba
La Hf Ta W Re Os Ir
Pt Au Hg Tl Pb Bi Po At Rn
265
217 188 159 143 137 137 134 136 136 144 160 170 175 155 153 145 145
(一) 原子半径 同一周期:原子半径依次变小 同一主族:原子半径逐渐增大
称为范德华半径 。
共价半径与范德华半径
(3)原子的金属半径 (rM) 在金属晶体中,相互接
触的两个原子的核间距的
一半,称原子的金属半径。
但金属原子的配位数对金
属半径有影响。当配位数
金属晶体与金属半径
增大时,配位原子间相互排斥作用增强,相邻原子的核间距增
大,金属半径也增大。
第二三、节元素原性子质的的电周子期层律结构和元素周期律
197 161 145 132 125 124 124 125 125 128 133 122 122 121 117 114 198
Rb
Sr
Y
Zr Nb Mo Tc Ru Rh Pd Ag Cd In
Sn Sb Te
I
Xe
248
215 181 160 143 136 136 133 135 138 144 149 163 141 141 137 133 217
元素电负性 (chi)
定义:
在一个分子中,原子对电子的吸引能力定义为电负性。
电负性概念与电子亲和能不同,它不是一个孤立原子的性质,而是分子中 的原子在周围原子影响下,表现出来的吸引成键电子的能力,其值越大,表 示元素的原子在分子中吸引成键电子的能力越大,反之越小。
相关文档
最新文档