六年级下册数学知识点归纳

合集下载

小学六年级下册数学重点知识点整理

小学六年级下册数学重点知识点整理

小学六年级下册数学重点知识点整理六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如,把化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1去除以这个数,例如,1/等于4 ,所以的倒数4 ,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

六年级数学下册知识点汇总

六年级数学下册知识点汇总

六年级数学下册知识点汇总一、负数。

1. 负数的定义。

- 为了表示两种相反意义的量,如零上温度和零下温度、收入与支出等,我们引入了负数。

像 - 3、- 5、- 20等这样带有负号的数叫做负数。

2. 负数的读写法。

- 读负数时,先读“负”字,再读数,如 - 5读作“负五”。

- 写负数时,先写“ - ”,再写数,如负八写作“ - 8”。

3. 数轴上的负数。

- 在数轴上,0左边的数是负数,从0向左,数越来越小。

例如 - 1比 - 2大。

二、百分数(二)1. 折扣。

- 商店有时降价出售商品,叫做打折扣销售,通称“打折”。

几折就表示十分之几,也就是百分之几十。

例如,八折就是原价的80%,七五折就是原价的75%。

- 原价×折扣 = 现价;现价÷折扣 = 原价;现价÷原价 = 折扣。

2. 成数。

- 成数表示一个数是另一个数的十分之几,通称“几成”。

例如,“一成”就是十分之一,改写成百分数就是10%;“三成五”就是十分之三点五,改写成百分数就是35%。

3. 税率。

- 应纳税额与各种收入(销售额、营业额……)的比率叫做税率。

应纳税额=各种收入×税率。

4. 利率。

- 单位时间内利息与本金的比率叫做利率。

利息 = 本金×利率×存期。

三、圆柱与圆锥。

1. 圆柱。

- 圆柱的认识。

- 圆柱有两个底面,是完全相同的两个圆;圆柱有一个侧面,是曲面,展开后可能是长方形(或正方形),长方形的长等于圆柱底面的周长,宽等于圆柱的高。

圆柱有无数条高,且高都相等。

- 圆柱的表面积。

- 圆柱的表面积 = 侧面积+两个底面积。

侧面积 = 底面周长×高,底面积 = πr ²(r为底面半径),所以圆柱的表面积公式为S = 2πr²+2πrh。

- 圆柱的体积。

- 圆柱的体积 = 底面积×高,公式为V = πr²h。

2. 圆锥。

- 圆锥的认识。

六年级下册数学全部知识点总结

六年级下册数学全部知识点总结

六年级下册数学全部知识点总结
1.分数运算:
-分数加减法:同分母、异分母分数的加减法则及其混合运算。

-分数乘法:分数与整数、分数与分数的乘法法则,理解倒数概念,掌握分数乘法的简便算法。

-分数除法:分数除以整数、分数除以分数的运算规则,以及分数除法转化为乘法运算的方法。

2.比和比例:
-比的意义和性质,比的基本性质,求比值和化简比。

-比例的意义,比例的基本性质,解比例方程,正比例和反比例的概念及应用。

3.百分数:
-百分数的意义,百分数与小数、分数之间的互化。

-百分数的应用,如折扣、税率、利率等问题的解决。

4.圆:
-圆的基本概念,直径、半径、周长、面积的计算公式。

-圆心角、弧、扇形、圆锥和圆柱的相关计算。

-圆周率π的认识和应用。

5.统计与概率:
-复式统计表和复式条形统计图的理解和绘制。

-可能性的大小比较,简单事件发生的可能性计算。

6.平面图形与立体图形:
-平行四边形、梯形的性质和面积计算。

-三角形、平行四边形、梯形的高线定义和画法。

-长方体、正方体、圆柱、圆锥的体积和表面积计算。

7.代数初步:
-用字母表示数,列含未知数的等式(方程)解决问题。

-解简易方程,包括一步方程和两步方程。

8.解决问题策略:
-应用所学知识解决生活中实际问题,如行程问题、工程问题、浓度问题等。

六年级数学下册总复习知识点整理版

六年级数学下册总复习知识点整理版

六年级数学下册总复习知识点整理版常用的数量关系式:1.每份数×每份数=总数;总数÷每份数=份数;总数÷份数=每份数。

2.速度×时间=路程;路程÷速度=时间;路程÷时间=速度。

3.单价×数量=总价;总价÷单价=数量;总价÷数量=单价。

4.工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率。

5.加数+加数=和;和-一个加数=另一个加数。

6.被减数-减数=差;被减数-差=减数;差+减数=被减数。

7.因数×因数=积;积÷一个因数=另一个因数。

8.被除数÷除数=商;被除数÷商=除数;商×除数=被除数。

小学数学图形计算公式:1.正方形(C:周长;S:面积;a:边长):周长=边长×4;C=4a;面积=边长×边长;S=a×a。

2.正方体(V:体积;a:棱长):表面积=棱长×棱长×6;S表=a×a×6;体积=棱长×棱长×棱长;V=a×a×a。

3.长方形(C:周长;S:面积;a:边长):周长=(长+宽)×2;C=2(a+b);面积=长×宽;S=ab。

4.长方体(V:体积;S:面积;a:长;b:宽;h:高):表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh);体积=长×宽×高;V=abh。

5.三角形(S:面积;a:底;h:高):面积=底×高÷2;S=ah÷2;三角形高=面积×2÷底;三角形底=面积×2÷高。

6.平行四边形(S:面积;a:底;h:高):面积=底×高;S=ah。

六年级数学下册知识点汇总(可编辑打印思维导图)

六年级数学下册知识点汇总(可编辑打印思维导图)
利润 =售出价-成本 利润 率=利润 ÷成本×100%=(售出价÷成本-1)×100%
涨 跌金额 =本金×涨 跌百分比
利润 与折扣问 题
溶质 的重量+溶剂 的重量=溶液的重量 溶质 的重量÷溶液的重量×100%=浓 度
溶液的重量×浓 度=溶质 的重量 溶质 的重量÷浓 度=溶液的重量
浓 度问 题
顺 流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺 流速度+逆流速度)÷2 水流速度=(顺 流速度-逆流速度)÷2
百分数
六年级 数学下册
一、负 数:
1、在熟悉的生活情境中初步认 识 负 数,能正确的读 、写正数和负 数,知道0既不是正数 也不是负 数。
2、初步学会用负 数表示一些日常生活中的实 际 问 题 ,体验 数学与生活的密切联 系。
3、能借助数轴 初步学会比较 正数、0和负 数之间 的大小。
二、圆 柱和圆 锥
相遇问 题 盈亏问 题
株数=段数+1=全长 ÷株距-1
全长 =株距×(株数-1)
⑴如果在非封闭 线 路的两端都要植树 ,那么:
株距=全长 ÷(株数-1)
株数=段数=全长 ÷株距
全长 =株距×株数
⑵如果在非封闭 线 路的一端要植树 ,另一端不要植树 ,那么:
1 非封闭线路上的植树问题主要可分为以下三种情形:
三、比例
1、理解比例的意义 和基本性质 ,会解比例。
2、理解正比例和反比例的意义 ,能找出生活中成正比例和成反比例量的实 例,能运用 比例知识 解决简 单 的实 际 问 题 。
3、认 识 正比例关系的图 像,能根据给 出的有正比例关系的数据在有坐标 系的方格纸 上 画出图 像,会根据其中一个量在图 像中找出或估计 出另一个量的值 。

六年级下册数学书知识点

六年级下册数学书知识点

六年级下册数学书知识点六年级下册数学书知识1第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高,且高的长度都相等。

(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。

3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。

4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。

圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。

圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。

5、圆柱的体积:一个圆柱所占空间的大小。

6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。

拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。

所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。

六年级下册数学(人教版)知识点归纳总结整理

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。

六年级下册数学复习资料六年级数学下册复习资料(精选8篇)

六年级下册数学复习资料六年级数学下册复习资料(精选8篇)又到考试了,要如何复习数学这个问题不仅学生们头疼,老师家长们也闲不下来。

本页是编辑午夜帮大家整编的8篇六年级下册数学复习资料的相关范文,欢迎借鉴,希望大家能够喜欢。

六年级下册数学复习重点归纳篇一1、认识圆柱和圆锥,掌握它们的基本特征。

认识圆柱的底面、侧面和高。

认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。

5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。

7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。

8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。

进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1.这种取近似值的方法叫做进一法。

9、圆锥只有一个底面,底面是个圆。

圆锥的侧面是个曲面。

10、从圆锥的顶点到底面圆心的距离是圆锥的高。

圆锥只有一条高。

(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)11、把圆锥的侧面展开得到一个扇形。

12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。

13、常见的圆柱圆锥解决问题:①压路机压过路面面积(求侧面积);②压路机压过路面长度(求底面周长);③水桶铁皮(求侧面积和一个底面积);④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

六年级下册数学(人教版)知识点归纳总结复习资料

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。

六年级下册数学全册知识点

六年级下册数学全册知识点一、整数运算1. 整数的概念和表示方法2. 整数的加法和减法运算3. 整数的乘法和除法运算4. 整数的混合运算二、小数与分数1. 小数的基本概念和表示方法2. 小数的加法和减法运算3. 小数的乘法和除法运算4. 分数的基本概念和表示方法5. 分数的加法和减法运算6. 分数的乘法和除法运算7. 分数与小数的相互转化三、平方根和立方根1. 正数的平方根和立方根的概念2. 平方根和立方根的计算方法3. 估算平方根和立方根的大小四、图形的性质和计算1. 平行四边形、矩形、正方形、三角形的性质和区分方法2. 长方体、正方体的性质和计算公式3. 圆的概念和相关计算公式4. 直角坐标系的基本概念和图形的坐标表示五、比例与百分数1. 等比例和不等比例的关系2. 比例的概念和解题方法3. 百分数的概念和转化4. 百分数的应用:利息、折扣、增长率等六、统计与概率1. 数据的收集和整理2. 极差、中位数、众数和平均数的计算方法3. 直方图和折线图的绘制和解读4. 概率的基本概念和计算方法七、二次根式1. 平方数和完全平方根的概念2. 二次根式的计算方法和化简3. 二次根式的加法和减法运算4. 二次根式的乘法和除法运算八、初步代数1. 代数式的概念和建立2. 代数式的加法和减法运算3. 代数式的乘法和除法运算4. 代数式的应用:简单方程的解法以上是六年级下册数学全册的知识点概述,通过学习这些知识,可以帮助孩子们更好地理解和掌握数学的基本概念和运算方法。

在学习中要多做习题和实际问题的应用,提高自己的数学思维和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• • • •
补充:圆柱和圆锥的关系
• 1.圆柱的特征:一个侧面、两个底面、无数条高且侧面沿高展开图 是长形。 • 2.圆锥的特征:一个侧面、一个底面、一个顶点、一条高且侧面展 开图是扇形。 • 圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。 • 圆柱与圆锥等底等体积,圆锥的高是圆柱高的3倍。 • 圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面 半径)是圆柱的3倍。 • 圆柱体积比等底等高圆锥体积多2倍 • 圆锥体积比等底等高圆柱体积少 • (1)等底等高:V锥:V柱=1:3 • (2)等底等体积:h锥:h柱=3:1 • (3)等高等体积:S锥:S柱=3:1
六年级下册
——————知识点归纳总结
一、负数
负数的定义:
• 在正数前面加上“-”就是负数。
注:1. 负数前面必定有“-”如果前面不是“-”(可能没有符号或
者是“+”)都是正数(0除外)。 2. 0既不属于正数,也不属于负数,它是正数和负数的分界。
负数的读法和写法
1、读法:在所读数的前面加上“负”
• • • • • 成:圆锥是以直角三角形的一直角边为轴旋转而得到的。 圆锥也可以由扇形卷曲而得到。 2.圆锥各部分的名称: 圆锥只有一个底面,底面是个圆,圆锥的侧面是个曲面,把圆锥的侧 面展开得到一个扇形。 从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。(测 量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶 点上面,竖直地量出平板和底面之间的距离。)圆锥的体积等于与它 等底等高的圆柱体积的三分之一 3.圆锥的体积: V锥= ×底面积×高= Sh = πr2h 圆锥的高=圆锥体积×3÷底面积 h =3 V锥÷S=3 V锥÷(πr2) 圆锥的底面积=圆锥体积×3÷高 S=3 V锥÷h
2、写法:在所写数的前面加上“-”
认识数轴:
• 数轴的要素:正方向(箭头表示)、原点(0刻度)、单 位长度(刻度)。 • 正方向:根据题意要求确定正方向,一般以向上或向右为 正方向。 • 原点:也就是数字0所在的位置,一般根据表示数字的分 布情况来确定,如果需要表示的正负数差不多相等时原点 在数轴中间;如果正数比负数多得多原点偏左;如果负数 比正数多得多原点偏右。 • 单位长度:由所要表示多的大小来决定刻度之间距离的大 小,如果数字偏大刻度距离可以适当小一些,如果数字偏 小刻度距离可以适当大一些。单位长度不一定每个刻度只 能表示1。
二、圆柱圆锥
一.圆柱:
• 1.圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。 • 2.圆柱也可以由长方形卷曲而得到。(两种方式:1.以长方形的长为 底面周长,宽为高;2.以长方形的宽为底面周长,长为高。其中,第一 种方式得到的圆柱体体积较大。) • 3.圆柱各部分的名称 • 圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面; 两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。 • 4. 圆柱的侧面展开图: • a 沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长, 长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面 沿高展开后是一个正方形,展开图形为正方形。 • b. 不沿着高展开,展开图形是平行四边形或不规则图形。 • C.无论如何展开都得不到梯形 • 侧面积=底面周长×高 S侧=Ch=πd×h =2πr×h
圆柱的表面积与体积
• • • • 5.圆柱的表面积 圆柱体表面的面积,叫做这个圆柱的表面积. 圆柱的表面积=2×底面积+侧面积即S表=S侧+S底×2=2πr×h + 2×πr2 (进一法:实际中,使用的材料都要比计算的结果多一些 ,因此,要保留数 的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方 法叫做进一法。) 6.圆柱的体积 圆柱所占空间的大小,叫做这个圆柱体的体积. 圆柱的体积跟长方体、正方体一样,都是底面积×高 圆柱体积=底面积×高 V柱=Sh =πr2h 圆柱的高=体积÷底面积 h =V柱÷S=V柱÷(πr2) 圆柱的底面积=体积÷高 S=V柱÷h
三、比
用数轴表示数:
• 在已给数轴上表示数:根据数字在对应的刻度上 描点表示。 • 对于非整数的表示:将刻度进一步细分如 ,需要 将0—1之间线段分为3等份则2等份处为该数。 • 对于负数的表示:负数都在0的左面,正数都在0 的右面。 • 在数轴上,从左到右的顺序就是数从小到大的顺 序。0是正数和负数的分界点,所有的负数都在0 的左边,也就是负数都比0小,而正数都比0大, 负数都比正数小。负号后面的数越大,这个数就 越小。
相关文档
最新文档