第二十五章_概率初步_复习课_教案

合集下载

初中数学《概率初步-复习课》教案

初中数学《概率初步-复习课》教案

“三部五环”教学模式设计《第25章复习课》教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》八年级上册第25章单元小结。

2.知识背景分析在现代社会里,人们面临着更多的机会和选择,常常需要在不确定情境中做出合理的决策。

统计观念、概率思想已成为人们进行信息处理的必要数学观念,而概率(与统计)是课程改革中新增的唯一一块培养学生从不确定的角度观察、认识社会,让学生了解可能性是普遍的,有助于他们理解社会的数学内容。

学生已学完本章,通过小结,可使所学知识系统化。

3.学情背景分析教学对象是九年级学生,学生已经学习本章知识,本节课的重点在于查缺补漏,使所学知识系统化。

4.学习目标4.1知识与技能目标全面复习本章内容,使所学知识系统化。

4.2过程与方法目标通过复习,培养学生归纳总结能力。

4.3情感态度与价值观目标通过练习,培养学生探究问题、分析问题、解决问题的能力。

5、学习重、难点5.1学习重点系统复习本章知识,查缺补漏。

5.2学习难点解答练习,提高学生解决实际问题的能力。

6.教法设计与学法指导6.1 教法选择根据本节教材内容特点,针对八年级学生的认知结构和心理特征,本节教学注重学生自我反思,经历观察、归纳、总结的过程,全面系统掌握本章知识。

6.2学法指导在本节课为复习课,注重指导学生自我反思、归纳总结,指导学生用数学建模思想解决实际问题。

7.学习环境与资源设计7.1学习环境:多媒体教室。

7.2学习资源:教材、教学课件(多媒体课件)。

8.教学评价设计为了最大限度地做到面向全体学生,充分关注学生的个性差异,在本节教学中,力求通过学生自评、生生互评和教师概括引领、激励测进式点评有机结合的评价方式帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。

评价方式为:随堂提问、作品展评、作业反馈。

9.教学流程设计10.教学过程设计甲乙4.桌子上放有6张扑克牌,全都正面朝下,其中恰有两张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K,则红方胜,否则蓝方胜.你愿意充当红方还是蓝方?与同伴实际做一做.活动5 推荐作业,延伸新知必做题:复习题25 1、3题选做题:复习题25 2、5题[师生互动]教师提出要求,学生按要求选择完成作业。

初中数学人教九年级上册(2023年新编)第二十五章 概率初步第二十五章概率初步教案

初中数学人教九年级上册(2023年新编)第二十五章 概率初步第二十五章概率初步教案

第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件学习目标1.借助典型事例了解必然事件、不可能事件、随机事件的概念;2.会正确判断生活中的简单事件哪些是随机事件、必然事件或不可能事件.重点:能对必然事件、不可能事件、随机事件的类型作出正确判断.难点:必然事件、不可能事件、随机事件的区别与转化关系.学习过程一、创设问题情境1.试分析:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况.图①图②图③2.思考:下图中三人每次都能摸到红球吗?二、揭示问题规律归纳必然事件、不可能事件、随机事件的概念.三、解决问题【例1】五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字会是0吗?(3)抽到的数字会是6吗?(4)抽到的数字会是1吗?(5)你能说出一个与问题(3)相似的问题吗?【例2】阅读日记:划横线的事件中,哪些是必然事件? 哪些是不可能事件? 哪些是随机事件?2023年3月11日晴早上,我迟到了,在楼梯上遇到了班主任,她批评了我一顿.我想我真不走运,她经常在办公室的啊,今天我真倒霉.我明天不能再迟到了,不然明天早上我将在楼梯上遇到班主任.中午放学回家,我看了一场篮球赛,我想长大后我会比姚明还高,我将长到10米高.看完比赛后,我又回到学校上学.下午放学后,我开始写作业.今天作业太多了,我不停地写啊写,一直写到太阳从西边落下.四、变式训练1. 现有背面相同的两张牌(红牌和黑牌),下列事件属于哪类事件?(1)洗匀后任意抽一张,抽到黑牌;(2)洗匀后任意抽一张,抽到红牌或黑牌;(3)抽一张牌 ,放回,洗匀后再抽一张牌.这样先后抽得的两张牌都是红牌.(4)抽一张牌,不放回,再抽一张牌.这样先后抽得的两张牌都是红牌.2.请你举一些生活中的必然事件、随机事件和不可能事件的例子.五、课堂小结1.通过本节课教学,借助典型事例让学生了解必然事件、不可能事件、随机事件的概念;2.会正确判断生活中的简单事件哪些是随机事件、必然事件或不可能事件.六、达标测试一、选择题1.在一个不透明的袋子中装有5个除颜色外完全相同的小球,其中黄球2个,红球1个,白球2个.“从中任意摸出3个球,它们的颜色相同”这一事件是()A.必然事件 B.不可能事件C.随机事件 D.确定事件2.下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《十二在线》C.射击运动员射击一次,命中十环D.方程x2-2x-1=0必有实数根3.中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.14B.15C.16D.134.在一个不透明的口袋中装有大小,外形等一模一样的5个红球,4个蓝色球和3个白球,则下列事情中,是必然发生的是()A.从口袋中任意取出1个,这是一个红色球B.从口袋中一次任取出5个,全是蓝色球C.从口袋中一次任取出7个,只有蓝色球和白色球,没有红色球D.从口袋中一次任取出10个,恰好红,蓝,白色球三种颜色的球都齐二、填空题5.写出一个所描述的事件是不可能事件的成语_______.6.袋中有4只白球,2只红球,这些球除了颜色以外完全相同,将袋中的球搅拌均匀后,小强同学闭上眼睛随机从袋中抽出三个球,这三个球都是_____球是可能发生的,都是______球是不可能发生的.7.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数)______P(奇数).三、解答题8.如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:(1)小猫踩在白色的正方形地板上,这属于哪一类事件?(填“必然”,“不可能”或“不确定”)(2)小猫踩在白色或黑色的正方形地板上,这属于哪一类事件?(3)小猫踩在红色的正方形地板上,这属于哪一类事件?(4)小猫踩在哪种颜色的正方形地板上可能性较大?9.不透明的口袋里装有2个红球2个白球(除颜色外其余都相同).事件A:随机摸出一个球后放回,再随机摸出一个球,两次都摸到红球;事件B:随机摸出一个球后不放回,再随机摸出一个球,两次都摸到相同颜色的球.试比较上述两个事件发生的可能性哪个大?请说明理由.。

人教版九年级上册25概率初步复习课件

人教版九年级上册25概率初步复习课件
1
P(两枚正面向上)= 4 .
变式 向空中抛掷三枚质地均匀的硬币,三枚硬币全部 正面向上的概率呢?
枚举法Leabharlann 列表法树状图法 √
解:三枚硬币分别记为第1枚、第2枚、第3枚,可以画出如下
树状图:
第1枚


第2枚
正反
正反
第3枚
正反 正反
正反 正反
由树状图可以看出,所有可能出现的结果共有12种,这些结 果的可能性相等,三枚正面向上的有1种.
特别的, 必然事件如“通常加热到100℃时,水沸腾”概率为1; 不可能事件如“任意画一个三角形,其内角和是360°”概率为0.
问题5.如何求随机事件的概率呢?
(2)掷一枚硬币,正面向上; (3)篮球队员投篮一次,投中;
思考1.掷一枚硬币,正面向上的概率为多少? 思考2.运动员投篮一次,投中的概率约为多少?


正 (正,正) (反,正)
反 (正,反) (反,反)
由此表可以看出,同时抛掷两枚硬币,可能出现的结果有 4 个,并且它们出现的可能性相等,两枚正面向上的有1种.
1
P(两枚正面向上)= 4 .
方法三 解:两枚硬币分别记为第1枚、第2枚,可以画出如下树状图
第1枚


第2枚
正反
正反
由树状图可以看出,所有可能出现的结果共有4种,这些结果 的可能性相等,两枚正面向上的有1种.
例题精讲
例3.如图所示是四张质地相同的卡片.将卡片洗匀后,背面朝上放置在 桌面上.
小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为 这个游戏公平吗?请用列表法或画树状图法说明理由.
2236
游戏规则 随机抽取一张卡片,记下数字 放回,洗匀后再抽一张.将抽取的 第一张、第二张卡片上的数字分别 作为十位数字和个位数字,若组成 的两位数不超过 32,则小贝胜, 反之小晶胜.

人教版九年级数学上册《概率初步》复习教案

人教版九年级数学上册《概率初步》复习教案

第二十五章概率初步复习总结【课标要求】标要求【知识梳理】1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件,那么0<P(A)<12.随机事件发生的可能性(概率)的计算方法:①理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算。

②实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算。

要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率。

第二种:利用模拟实验的方法进行概率估算。

如,利用计算器产生随机数来模拟实验。

综上所述,目前掌握的有关于概率模型大致分为三类;第一类问题没有理论概率,只能借助实验模拟获得其估计值;第二类问题虽然存在理论概率但目前尚不可求,只能借助实验模拟获得其估计值;第三类问题则是简单的古典概型,理论上容易求出其概率。

这里要引起注意的是,虽然我们可以利用公式计算概率,但在学习这部分知识时,更重要的是要体会概率的意义,而不只是强化练习套用公式进行计算。

3.你知道概率有哪些应用吗?通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题。

【能力训练】一、填空题:1.一个口袋中装有4个白球,2个红球,6个黄球,摇匀后随机从中摸出一个球是白球的概率是。

2.若1000张奖券中有200张可以中奖,则从中任抽1张能中奖的概率为______。

第25章概率初步复习教案

第25章概率初步复习教案

• 1本章的主要内容是随机事件的定义,概率 的定义; • 2.计算简单事Байду номын сангаас概率(古典概率类型)的方 法,主要是列举法(包括列表法和画树形 图法);. • 3利用频率估计概率(试验概率)即通过大 量重复试验,对获得的数据进行统计整理, 求出频率,然后进行研究分析,得出某一 随机事件发生的概率。
1.下列事件中必然发生的是( ) A.随意翻到一本书的某页,这页的页码是奇数 B.地球上,抛出的铁球最后总往下落 C.购买一张彩票,中奖 D.篮球队员在罚球线上投篮一次,投中 2.给甲乙丙三人打电话,若打电话的顺序是任 意的,则第一个打电话给甲的概率为( ) A. 1/6 B. 1/3 C. 1/2 D. 2/3
例1、下列事件中,是必然事件的是( ) A.购买一张彩票中奖一百万 B.打开电视机,任选一个频道,正在播新闻 C.在地球上,上抛出去的篮球会下落 D.掷两枚质地均匀的骰子,点数之和一定大于6 例2.在一场足球比赛前,甲教练预言说:“根据我掌 握的情况,这场比赛我们队有60%的机会获胜”意思 最接近的是( ) A.这场比赛他这个队应该会赢 B.若两个队打100场比赛,他这个队会赢60场 C.若这两个队打10场比赛,这个队一定会赢6场比赛. D.若这两个队打100场比赛,他这个队可能会赢60场 左右.
第25章
概率初步复习
• • • • • • • • •
1.基本概念 (1)必然事件 (2)不可能事件 (3)随机事件 (4)随机事件的可能性 (5)概率 (6)可能性与概率的关系 (7)古典概率 (8)几何图形的概率
• 2.概率的理论计算方法有: • 3.通过大量重复实验得到的频率估计事件发 生概率的值 • 4.利用概率的知识解决一些实际问题,如利 用概率判断游戏的公平性等

48第25章概率初步小结与复习教案

48第25章概率初步小结与复习教案

第25章概率初步小结与复习一、教学目标(一)知识与技能:回顾本章内容,用所学的概率知识去解决某些现实问题,再自我归纳和总结实验频率与理论概率的关系.(二)过程与方法:能运用树状图和列表法计算简单事件发生的概率,能用试验或模拟试验的方法,估计一些复杂的随机事件发生的概率.(三)情感态度与价值观:形成解决问题的一些策略,体验解决问题的多样性,发展实践能力和创新精神.二、教学重点、难点重点:运用列举法计算简单事件发生的概率难点:用所学的概率知识去解决某些现实问题,理解实验频率和理论概率的关系.三、教学过程知识梳理一、事件的分类及其概念1.在一定条件下必然发生的事件,叫做必然事件;2.在一定条件下不可能发生的事件,叫做不可能事件;3.在一定条件下可能发生也可能不发生的事件,叫做随机事件.二、概率的概念1.概率:一般地,对于一个随机事件A ,我们把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记作P(A).2.概率大小:三、随机事件的概率的求法1.①当实验的所有结果不是有限个,或各种可能结果发生的可能性不相等时,我们用大量重复试验中随机事件发生的稳定频率来估计概率.②频率与概率的关系:两者都能定量地反映随机事件可能性的大小,但频率具有随机性,概率是自身固有的性质,不具有随机性.2.概率的计算公式:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,那么出现每一种结果的概率都是. 如果事件A 包括其中的m 种可能的结果,那么事件A 发生的概率P(A)=四、列表法当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.⎪⎩⎪⎨⎧⎩⎨⎧随机事件不可能事件必然事件确定性事件事件n1n m在所有可能的情况n 中,再找到满足条件的事件的个数m ,最后代入公式计算.四、树状图法当一次试验中涉及两个因素或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用“树状图”.考点讲练考点一 事件的判断和概率的意义例1 下列事件是随机事件的是( )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心针对训练1.下列事件中是必然事件的是( )A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹的自行车轮胎被钉子扎坏C.小红期末考试数学成绩一定得满分D.将油滴入水中,油会浮在水面上2.“闭上眼睛从布袋中随机地摸出1个球,恰是红球的概率是”的意思是( ) A.布袋中一定有2个红球和5个其他颜色的球 B.如果摸球次数很多,那么平均每摸7次,就有2次摸中红球 C.摸7次,就有2次摸中红球D.摸7次,就有5次摸不中红球考点二 用列举法求概率例2 如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( )A. B. C. D.例3 如图所示,有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡7221314161片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b .(1)写出k 为负数的概率;(2)求一次函数y =kx +b 的图象经过二、三、四象限的概率.解:(1)P(k 为负数)=.(2)画树状图如右图:由树状图可知,k 、b 的取值共有6种情况,其中k <0且b <0的情况有2种.∴ P(一次函数y =kx +b 的图象经过第二、三、四象限)=.或(2)列表如右:由表格可知,k 、b 的取值共有6种情况,其中k <0且b <0的情况有2种.∴ P(一次函数y =kx +b 的图象经过第二、三、四象限)=.针对训练3.一个袋中装有2个黑球和3个红球,这些球除颜色外,大小、形状、质地完全相同,在看不到球的情况下,随机的从这个袋子中摸出一个球不放回,再随机的从这个袋子中摸出另一个球,两次摸到的球颜色相同的概率是( )A. B. C. D.4.张三同学投掷一枚骰子两次,两次所投掷的点数分别用字母m 、n 表示.(1)求使关于x 的方程x 2-mx +2n =0有实数根的概率;(2)求使关于x 的方程mx 2+nx +1=0有两个相等实根的概率.解:(1)画树状图为:共有36种等可能的结果数,其中满足△=m 2-8n ≥0的结果数为10,所以使关于x 的方程x 2-mx +2n =0有实数根的概率==.(2)满足△=n 2-4m =0的结果数为2,所以使关于x 的方程mx 2+nx +1=0有两个相等实根的概率==列表如下:323131525325825133610185362181考点三 用频率估计概率例4 在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率例5 在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同,小明通过多次摸球试验后发现从中摸到红色球、黑色球的频率稳定在15%和45%,则布袋中白色球的个数最有可能是( )A.24个B.18个C.16个D.6个针对训练5.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球. 如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为____.6.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,他在封闭图形内划出了一个半径为1米的圆,在不远处向图形内掷石子,且记录如下:(1)随着次数的增多,小明发现m 与n 的比值在一个常数k 附近波动,请你写出k 的值.(2)请利用学过的知识求出封闭图形ABC 的大致面积.解:(1)根据统计表可得,k ==(2)由(1)得,圆的面积约占封闭图形ABC 的,因此封闭图形ABC 的面积约为3S 圆=3π.考点四 用概率作决策例6在一个不透明的口袋里分别标注2、4、6的3个小球(小球除数字外,其余都相同),另有3张背面完全一样,正面分别写有数字6、7、8的卡片.现从口袋中任意摸出一个小球,再从这3张背面朝上的卡片中任意摸出一张卡片.(1)请你用列表或画树状图的方法,表示出所有可能出现的结果;(2)小红和小莉做游戏,制定了两个游戏规则,规则1:若两次摸出的数字,至少有一次是“6”,小红赢,否则,小莉赢;规则2:若摸出的卡片上的数字是球上数字的整数倍时,小红赢,否则,小莉赢.小红想要在游戏中获胜,她会选择哪一条规则,并说明理由.解:(1)列表如下共有9种等可能结果;解:(2)规则1:P(小红赢)=,规则2:P(小红赢)=.∵ >5118693213195949594∴ 小红选择规则1.7.A 、B 两个小型超市举行有奖促销活动,顾客每购满20元就有一次按下面规则转动转盘获奖机会,且两超市奖额等同.规则是:①A 超市把转盘甲等分成4个扇形区域、B 超市把转盘乙等分成3个扇形区域,并标上了数字(如图所示);②顾客一回转动转盘要转两次,第一次与第二次分别停止后指针所指数字之和为奇数时就获奖(若指针停在等分线上,那么重转一次,直到指针指向某一份为止).(1)利用树状图或列表法分别求出A 、B 两超市顾客一回转盘获奖的概率;(2)如果只考虑中奖因素,你将会选择去哪个超市购物?说明理由.解:(1)列表如下:甲转盘 乙转盘∴ P(甲)==,P(乙)=.(2)选甲超市.理由如下:∵ P(甲)>P(乙),∴ 选甲超市能力提升1.如图,放在平面直角坐标系中的正方形ABCD 的边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(如图,它有四个顶点,各顶点数分别是1、2、3、4),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P 的坐标(第一次的点数为横坐标,第二次的点数为纵坐标).(1)求点P 落在正方形面上(含边界,下同)的概率;(2)将正方形ABCD 平移数个单位,是否存在一种平移,使点P 落在正方形面上的概率为25%?若存在,指出其中的一种平移方式;若不存在,说明理由.解:(1)列表如下:结合图形和表格可知,点P 落在正方形面上(含边界)的情况有(1,1),(2,1),(3,1),(1,2),(2,2),(3,2),(1,3),(2,3),(3,3),因此概率是.(2)如图所示,将正方形ABCD 先向左平移一个单位,再向下平移一个单位,平移后落在正方形面上的点P 有(1,1),(2,1),(1,2),(2,2)四个,概率为25%.2.在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如图所示,当一实心小球从入口落下,1862194169它在依次碰到每层菱形挡块时,会等可能地向左或向右落下.求小球下落到A 、B 、C 三个位置的概率各是多少?解:根据帕斯卡三角的仪器特点可画出如下树状图,得小球下落到A 、B 、C 三个位置的概率分别是,,.218341。

人教新课标九年级数学上册第25章概率初步复习课教案

人教新课标九年级数学上册第25章概率初步复习课教案

人教新课标九年级数学上册第25章概率初步复习课教案人教新课标版初中九上第25章概率初步复习课教案【学习目标】1.能正确指出自然和社会现象中的一些必然事件、不可能事件、不确定事件.2.能从实际问题中了解概率的意义,能用列举法计算随机事件发生的概率.3.能用大量重复试验时的频率估计事件发生的概率.【学习重点】能从实际问题中了解概率的意义,能用列举法计算随机事件发生的概率.【学习难点】如何用大量重复试验时的频率估计事件发生的概率.【学习过程】知识点1、事件的有关概念:1、必然事件:在现实生活中必然发生的事件称为必然事件。

2、不可能事件:在现实生活中必然不会发生的事件称为不可能事件。

必然事件和不可能事件统称确定事件。

3、随机事件:在现实生活中,有可能发生,也有可能不发生的事件称为随机事件。

知识点2、概率及其计算:1、定义:在随机事件中,一件事发生的可能性的大小的数值叫做这个事件的概率。

2、适用条件:(1)可能出现的结果只有有限个;(2)各种结果发生的可能性相等。

3.求法:(1)利用列表法或树形图法的方法列举出所有机会均等的结果;(2)弄清我们关注的是哪个或哪些结果;(3)求出关注的结果数与所有等可能出现的结果数的比值,即关注事件的概率.列表法一般应用于两个元素,且结果的可能性较多的题目,当事件涉及三个或三个以上元素时,用树形图列举:4、概率的应用:概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象作出评判,如解释摸奖,配紫色,评判游戏活动的公平性,数学竞赛获奖的可能性等等,还可以对某些事件作出决策.跟踪练习:1、有两个事件,事件A: 367人中至少有2人生日相同;事件B :抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是( D )A .事件A 、B 都是随机事件.B .事件A 、B 都是必然事件.C .事件A 是随机事件,事件B 是必然事件.D .事件A 是必然事件,事件B 是随机事件.2、下列事件中不是必然事件的是( A )A.面积相等的两个三角形全等.B.三角形任意两边之和大于第三边.C.角平分线上的点到角两边的距离相等.D.三角形内心到三边距离相等.3、如图,有牌面数字都是2,3,4的两组牌.从每组牌中各随机摸出一张,请用画树状图或列表的方法,求摸出的两张牌的牌面数字之和为6的概率.4、把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)试求取出的两张卡片数字之和为奇数的概率;解:画树状图如下:∵共有九种情况,数字之和为6的共有3种,∴随机摸出的两张牌的牌面数字之和为6的概率为39=13.(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.小结:通过本节课的学习,你有什么收获?。

第25章概率初步教案

第25章概率初步教案

第25章概率初步教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第二十五章概率初步25.1.1随机事件25.1.2 概率的意义问题:在上节课的问题2 中,掷一枚六个面上分别刻有 1到6 的点数的骰子,向上一面上出现的点数有几种可能每种点数出现的可能性大小是多少归纳:一般地,对于一个随机事件 A,我们把刻画其发生可能性大小的数值,称为随机事件 A 发生的概率,记为 P(A).注意指出:概率是随机事件发生的可能性的大小的数量反映.问题:在问题 1 和问题 2 的试验中,有哪些共同特点?(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.问题:在问题 1 中,你能求出“抽到偶数”、“抽到奇数”这两个事件的概率吗对于具有上述特点的试验,如何求某事件的概率归纳:一般地,如果在一次试验中,有 n 种可能的结果,并且它们发生的可能性都相等,事件 A 包含其中的 m 种结果,那么事件 A 发生的概率 P(A)= .问题:根据上述求概率的方法,事件 A 发生的概率取值范围是怎样的?例1掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为 2;(2)点数为奇数;(3)点数大于 2 且小于 5.练习1 抛掷 1 枚质地均匀的硬币,向上一面有几种可能的结果它们的可能性相等吗由此能得到“正面向上”的概率吗?练习2 把一幅普通扑克牌中的 13 张黑桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,求下列事件的概率:(1)抽出的牌是黑桃 6;(2)抽出的牌是黑桃 10;(3)抽出的牌带有人像;(4)抽出的牌上的数小于 5;(5)抽出的牌的花色是黑桃.四.归纳总结,交流收获:(1)什么是概率?(2)如何求事件的概率求概率时应注意哪些问题作业必做完成P134 习题25.1 2、3、25.1.3 古典概型个相同的扇形,颇色分为红、绿、黄三种颇色,指针的位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指针所指的位里(指针指向两个扇形的交线25.2 用列举法求概率(第一课时)25.2 用列举法求概率(第三课时)25.3利用频率估计概率第二十五章小结与复习C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件4.小明的讲义夹里放了大小相同的试卷共 12 页,其中语文 4 页、数学 2 页、英语 6 页,他随机地从讲义夹中抽出 1 页,抽出的试卷恰好是数学试卷的概率为____.5.在一个不透明的摇奖箱内装有 20 个形状、大小、质地等完全相同的小球,其中只有 5 个球标有中奖标志,则随机抽取一个小球中奖的概率是_____.6. 在一个不透明的布袋中装有红色、白色玻璃球共 40 个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的概率稳定在 15%左右,则口袋中红色球可能有().A.4个 B.6个 C.34个 D.36个7.如图,A、B 两个转盘分别被平均分成三个、四个扇形,分别转动 A 盘、B 盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之和小于 6 的概率.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十五章概率初步复习课教学设计
一、教学目标:
1、知识技能目标
了解必然发生的事件、不可能发生的事件、随机事件的特点.
2、数学思考目标
学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.
3、解决问题目标
能根据随机事件的特点,辨别哪些事件是随机事件.
4、情感态度目标
引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.
二、重点难点:
重点:随机事件的特点.
难点:判断现实生活中哪些事件是随机事件.
三、教学过程:
(一).知识网络
自我梳理本章知识网络:
设计意图:使学生进一步对概率
初步中涉及的各个知识点有了较
为系统的认识,正确理解频率与
概率的关系,进而认识数学是与
实际问题密不可分,人们的需要
产生数学。

(二).考点分类解析过程:
考点一:事件分类
1.下列事件中,必然事件是
()
A.掷一枚硬币,正面朝上
B. a是实数,|a|≥0
C.某运动员跳高的最好成绩是20.1米
D.从车间刚生产的产品中任意抽取一个,是次品
2.有4个红球、3个白球、2个黑球,放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情是()
A.随机事件B.不可能事件
C.很可能事件D.必然事件
考点二:对概率意义的理解
例1在一场足球比赛前,甲教练预言说:“根据我掌握的情况,这场比赛我们队有60%的机会获胜”意思最接近的是()
A.这场比赛他这个队应该会赢
B.若两个队打100场比赛,他这个队会赢60场
C.若这两个队打10场比赛,这个队一定会赢6场比赛.
D.若这两个队打100场比赛,他这个队可能会赢60场左右.
考点三:直接列举求简单事件的概率
例2甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
小结与反思:通过列表或画树状图可以不遗漏情况总量和成功事件数.考点四:有无放回的概率(易错)
例3(1)口袋里有4张卡片,上面分别写了数字1、2、3、4、先抽一张,不放回,再抽一张,“两张卡片上的数字一奇一偶”的概率是多少?
(2)把一枚正方体骰子连掷两次,“朝上的数字一奇一偶”的概率是多少?注意:在解答此类问题中,一定要分清实验是“有放回”还是“无放回”.考点五:判断游戏是否公平(提高)
例4在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1、2、3、4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;
(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.小结与反思:游戏公平问题实际是概率相等问题.
考点六:用频率估计概率
例5在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量反复试验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()
拓展应用
2.如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300次中,有100次是落在不规则图形内.
(1)你能估计出掷中不规则图形的概率吗?
(2)若该长方形的面积为150,试估计不规则图形的面积.
拓展小结:可以利用频率估计概率的实验方法估算不规则图形的面积
设计意图:把概率初步知识细分为六个考点,让学生通过猜想试验、分析讨论、合作探究的学习方式十分有益于加深学生对概率意义的理解,使之明确频率与概率的联系,经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。

渗透数形结合,分类讨论,由特殊到一般的思想,提
高分析问题和解决问题的能力。

使本节课教学重难点得以突破.为今后的学习打下了基础.
课堂小结
通过本节课,你对于解答概率题掌握了哪些方法,哪些方面还需要特别注意,总结一下,谈谈你的收获.
设计意图:回顾教学过程和数学方法,不仅加深了学生对知识的印象,同时也培养了学生的口头表达能力和概括总结能力.。

相关文档
最新文档