25章概率初步复习教案

合集下载

初中数学《概率初步-复习课》教案

初中数学《概率初步-复习课》教案

“三部五环”教学模式设计《第25章复习课》教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》八年级上册第25章单元小结。

2.知识背景分析在现代社会里,人们面临着更多的机会和选择,常常需要在不确定情境中做出合理的决策。

统计观念、概率思想已成为人们进行信息处理的必要数学观念,而概率(与统计)是课程改革中新增的唯一一块培养学生从不确定的角度观察、认识社会,让学生了解可能性是普遍的,有助于他们理解社会的数学内容。

学生已学完本章,通过小结,可使所学知识系统化。

3.学情背景分析教学对象是九年级学生,学生已经学习本章知识,本节课的重点在于查缺补漏,使所学知识系统化。

4.学习目标4.1知识与技能目标全面复习本章内容,使所学知识系统化。

4.2过程与方法目标通过复习,培养学生归纳总结能力。

4.3情感态度与价值观目标通过练习,培养学生探究问题、分析问题、解决问题的能力。

5、学习重、难点5.1学习重点系统复习本章知识,查缺补漏。

5.2学习难点解答练习,提高学生解决实际问题的能力。

6.教法设计与学法指导6.1 教法选择根据本节教材内容特点,针对八年级学生的认知结构和心理特征,本节教学注重学生自我反思,经历观察、归纳、总结的过程,全面系统掌握本章知识。

6.2学法指导在本节课为复习课,注重指导学生自我反思、归纳总结,指导学生用数学建模思想解决实际问题。

7.学习环境与资源设计7.1学习环境:多媒体教室。

7.2学习资源:教材、教学课件(多媒体课件)。

8.教学评价设计为了最大限度地做到面向全体学生,充分关注学生的个性差异,在本节教学中,力求通过学生自评、生生互评和教师概括引领、激励测进式点评有机结合的评价方式帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。

评价方式为:随堂提问、作品展评、作业反馈。

9.教学流程设计10.教学过程设计甲乙4.桌子上放有6张扑克牌,全都正面朝下,其中恰有两张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K,则红方胜,否则蓝方胜.你愿意充当红方还是蓝方?与同伴实际做一做.活动5 推荐作业,延伸新知必做题:复习题25 1、3题选做题:复习题25 2、5题[师生互动]教师提出要求,学生按要求选择完成作业。

初中数学人教九年级上册(2023年新编)第二十五章 概率初步第二十五章概率初步教案

初中数学人教九年级上册(2023年新编)第二十五章 概率初步第二十五章概率初步教案

第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件学习目标1.借助典型事例了解必然事件、不可能事件、随机事件的概念;2.会正确判断生活中的简单事件哪些是随机事件、必然事件或不可能事件.重点:能对必然事件、不可能事件、随机事件的类型作出正确判断.难点:必然事件、不可能事件、随机事件的区别与转化关系.学习过程一、创设问题情境1.试分析:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况.图①图②图③2.思考:下图中三人每次都能摸到红球吗?二、揭示问题规律归纳必然事件、不可能事件、随机事件的概念.三、解决问题【例1】五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字会是0吗?(3)抽到的数字会是6吗?(4)抽到的数字会是1吗?(5)你能说出一个与问题(3)相似的问题吗?【例2】阅读日记:划横线的事件中,哪些是必然事件? 哪些是不可能事件? 哪些是随机事件?2023年3月11日晴早上,我迟到了,在楼梯上遇到了班主任,她批评了我一顿.我想我真不走运,她经常在办公室的啊,今天我真倒霉.我明天不能再迟到了,不然明天早上我将在楼梯上遇到班主任.中午放学回家,我看了一场篮球赛,我想长大后我会比姚明还高,我将长到10米高.看完比赛后,我又回到学校上学.下午放学后,我开始写作业.今天作业太多了,我不停地写啊写,一直写到太阳从西边落下.四、变式训练1. 现有背面相同的两张牌(红牌和黑牌),下列事件属于哪类事件?(1)洗匀后任意抽一张,抽到黑牌;(2)洗匀后任意抽一张,抽到红牌或黑牌;(3)抽一张牌 ,放回,洗匀后再抽一张牌.这样先后抽得的两张牌都是红牌.(4)抽一张牌,不放回,再抽一张牌.这样先后抽得的两张牌都是红牌.2.请你举一些生活中的必然事件、随机事件和不可能事件的例子.五、课堂小结1.通过本节课教学,借助典型事例让学生了解必然事件、不可能事件、随机事件的概念;2.会正确判断生活中的简单事件哪些是随机事件、必然事件或不可能事件.六、达标测试一、选择题1.在一个不透明的袋子中装有5个除颜色外完全相同的小球,其中黄球2个,红球1个,白球2个.“从中任意摸出3个球,它们的颜色相同”这一事件是()A.必然事件 B.不可能事件C.随机事件 D.确定事件2.下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《十二在线》C.射击运动员射击一次,命中十环D.方程x2-2x-1=0必有实数根3.中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.14B.15C.16D.134.在一个不透明的口袋中装有大小,外形等一模一样的5个红球,4个蓝色球和3个白球,则下列事情中,是必然发生的是()A.从口袋中任意取出1个,这是一个红色球B.从口袋中一次任取出5个,全是蓝色球C.从口袋中一次任取出7个,只有蓝色球和白色球,没有红色球D.从口袋中一次任取出10个,恰好红,蓝,白色球三种颜色的球都齐二、填空题5.写出一个所描述的事件是不可能事件的成语_______.6.袋中有4只白球,2只红球,这些球除了颜色以外完全相同,将袋中的球搅拌均匀后,小强同学闭上眼睛随机从袋中抽出三个球,这三个球都是_____球是可能发生的,都是______球是不可能发生的.7.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数)______P(奇数).三、解答题8.如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:(1)小猫踩在白色的正方形地板上,这属于哪一类事件?(填“必然”,“不可能”或“不确定”)(2)小猫踩在白色或黑色的正方形地板上,这属于哪一类事件?(3)小猫踩在红色的正方形地板上,这属于哪一类事件?(4)小猫踩在哪种颜色的正方形地板上可能性较大?9.不透明的口袋里装有2个红球2个白球(除颜色外其余都相同).事件A:随机摸出一个球后放回,再随机摸出一个球,两次都摸到红球;事件B:随机摸出一个球后不放回,再随机摸出一个球,两次都摸到相同颜色的球.试比较上述两个事件发生的可能性哪个大?请说明理由.。

第25章概率初步复习教案

第25章概率初步复习教案

• 1本章的主要内容是随机事件的定义,概率 的定义; • 2.计算简单事Байду номын сангаас概率(古典概率类型)的方 法,主要是列举法(包括列表法和画树形 图法);. • 3利用频率估计概率(试验概率)即通过大 量重复试验,对获得的数据进行统计整理, 求出频率,然后进行研究分析,得出某一 随机事件发生的概率。
1.下列事件中必然发生的是( ) A.随意翻到一本书的某页,这页的页码是奇数 B.地球上,抛出的铁球最后总往下落 C.购买一张彩票,中奖 D.篮球队员在罚球线上投篮一次,投中 2.给甲乙丙三人打电话,若打电话的顺序是任 意的,则第一个打电话给甲的概率为( ) A. 1/6 B. 1/3 C. 1/2 D. 2/3
例1、下列事件中,是必然事件的是( ) A.购买一张彩票中奖一百万 B.打开电视机,任选一个频道,正在播新闻 C.在地球上,上抛出去的篮球会下落 D.掷两枚质地均匀的骰子,点数之和一定大于6 例2.在一场足球比赛前,甲教练预言说:“根据我掌 握的情况,这场比赛我们队有60%的机会获胜”意思 最接近的是( ) A.这场比赛他这个队应该会赢 B.若两个队打100场比赛,他这个队会赢60场 C.若这两个队打10场比赛,这个队一定会赢6场比赛. D.若这两个队打100场比赛,他这个队可能会赢60场 左右.
第25章
概率初步复习
• • • • • • • • •
1.基本概念 (1)必然事件 (2)不可能事件 (3)随机事件 (4)随机事件的可能性 (5)概率 (6)可能性与概率的关系 (7)古典概率 (8)几何图形的概率
• 2.概率的理论计算方法有: • 3.通过大量重复实验得到的频率估计事件发 生概率的值 • 4.利用概率的知识解决一些实际问题,如利 用概率判断游戏的公平性等

人教新课标九年级数学上册第25章概率初步复习课教案

人教新课标九年级数学上册第25章概率初步复习课教案

人教新课标九年级数学上册第25章概率初步复习课教案人教新课标版初中九上第25章概率初步复习课教案【学习目标】1.能正确指出自然和社会现象中的一些必然事件、不可能事件、不确定事件.2.能从实际问题中了解概率的意义,能用列举法计算随机事件发生的概率.3.能用大量重复试验时的频率估计事件发生的概率.【学习重点】能从实际问题中了解概率的意义,能用列举法计算随机事件发生的概率.【学习难点】如何用大量重复试验时的频率估计事件发生的概率.【学习过程】知识点1、事件的有关概念:1、必然事件:在现实生活中必然发生的事件称为必然事件。

2、不可能事件:在现实生活中必然不会发生的事件称为不可能事件。

必然事件和不可能事件统称确定事件。

3、随机事件:在现实生活中,有可能发生,也有可能不发生的事件称为随机事件。

知识点2、概率及其计算:1、定义:在随机事件中,一件事发生的可能性的大小的数值叫做这个事件的概率。

2、适用条件:(1)可能出现的结果只有有限个;(2)各种结果发生的可能性相等。

3.求法:(1)利用列表法或树形图法的方法列举出所有机会均等的结果;(2)弄清我们关注的是哪个或哪些结果;(3)求出关注的结果数与所有等可能出现的结果数的比值,即关注事件的概率.列表法一般应用于两个元素,且结果的可能性较多的题目,当事件涉及三个或三个以上元素时,用树形图列举:4、概率的应用:概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象作出评判,如解释摸奖,配紫色,评判游戏活动的公平性,数学竞赛获奖的可能性等等,还可以对某些事件作出决策.跟踪练习:1、有两个事件,事件A: 367人中至少有2人生日相同;事件B :抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是( D )A .事件A 、B 都是随机事件.B .事件A 、B 都是必然事件.C .事件A 是随机事件,事件B 是必然事件.D .事件A 是必然事件,事件B 是随机事件.2、下列事件中不是必然事件的是( A )A.面积相等的两个三角形全等.B.三角形任意两边之和大于第三边.C.角平分线上的点到角两边的距离相等.D.三角形内心到三边距离相等.3、如图,有牌面数字都是2,3,4的两组牌.从每组牌中各随机摸出一张,请用画树状图或列表的方法,求摸出的两张牌的牌面数字之和为6的概率.4、把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)试求取出的两张卡片数字之和为奇数的概率;解:画树状图如下:∵共有九种情况,数字之和为6的共有3种,∴随机摸出的两张牌的牌面数字之和为6的概率为39=13.(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.小结:通过本节课的学习,你有什么收获?。

第25章概率初步教案

第25章概率初步教案

第25章概率初步教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第二十五章概率初步25.1.1随机事件25.1.2 概率的意义问题:在上节课的问题2 中,掷一枚六个面上分别刻有 1到6 的点数的骰子,向上一面上出现的点数有几种可能每种点数出现的可能性大小是多少归纳:一般地,对于一个随机事件 A,我们把刻画其发生可能性大小的数值,称为随机事件 A 发生的概率,记为 P(A).注意指出:概率是随机事件发生的可能性的大小的数量反映.问题:在问题 1 和问题 2 的试验中,有哪些共同特点?(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.问题:在问题 1 中,你能求出“抽到偶数”、“抽到奇数”这两个事件的概率吗对于具有上述特点的试验,如何求某事件的概率归纳:一般地,如果在一次试验中,有 n 种可能的结果,并且它们发生的可能性都相等,事件 A 包含其中的 m 种结果,那么事件 A 发生的概率 P(A)= .问题:根据上述求概率的方法,事件 A 发生的概率取值范围是怎样的?例1掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为 2;(2)点数为奇数;(3)点数大于 2 且小于 5.练习1 抛掷 1 枚质地均匀的硬币,向上一面有几种可能的结果它们的可能性相等吗由此能得到“正面向上”的概率吗?练习2 把一幅普通扑克牌中的 13 张黑桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,求下列事件的概率:(1)抽出的牌是黑桃 6;(2)抽出的牌是黑桃 10;(3)抽出的牌带有人像;(4)抽出的牌上的数小于 5;(5)抽出的牌的花色是黑桃.四.归纳总结,交流收获:(1)什么是概率?(2)如何求事件的概率求概率时应注意哪些问题作业必做完成P134 习题25.1 2、3、25.1.3 古典概型个相同的扇形,颇色分为红、绿、黄三种颇色,指针的位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指针所指的位里(指针指向两个扇形的交线25.2 用列举法求概率(第一课时)25.2 用列举法求概率(第三课时)25.3利用频率估计概率第二十五章小结与复习C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件4.小明的讲义夹里放了大小相同的试卷共 12 页,其中语文 4 页、数学 2 页、英语 6 页,他随机地从讲义夹中抽出 1 页,抽出的试卷恰好是数学试卷的概率为____.5.在一个不透明的摇奖箱内装有 20 个形状、大小、质地等完全相同的小球,其中只有 5 个球标有中奖标志,则随机抽取一个小球中奖的概率是_____.6. 在一个不透明的布袋中装有红色、白色玻璃球共 40 个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的概率稳定在 15%左右,则口袋中红色球可能有().A.4个 B.6个 C.34个 D.36个7.如图,A、B 两个转盘分别被平均分成三个、四个扇形,分别转动 A 盘、B 盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之和小于 6 的概率.。

九年级数学人教版上册第25单元复习 教学设计 教案

九年级数学人教版上册第25单元复习 教学设计 教案

第25单元概率初步
复习教案
B.了解一批电视机的使用寿命适合用抽样调查
C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件
4.小明的讲义夹里放了大小相同的试卷共12 页,其中语文4 页、数学2 页、英语6 页,他随机地从讲义夹中抽出1 页,抽出的试卷恰好是数学试卷的概率为____.
5.在一个不透明的摇奖箱内装有20 个形状、大小、质地等完全相同的小球,其中只有5 个球标有中奖标志,则随机抽取一个小球中奖的概率是_____.
6. 在一个不透明的布袋中装有红色、白色玻璃球共40 个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的概率稳定在15%左右,则口袋中红色球可能有().A.4个B.6个C.34个D.36个
7.如图,A、B 两个转盘分别被平均分成三个、四个扇形,分别转动A 盘、B 盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之和小于 6 的概率.。

人教版九年级数学教案设计 第25章 概率初步 复习课

人教版九年级数学教案设计 第25章   概率初步 复习课

概率复习课教学目标1.会运用列举法,画树状图,计算简单事件发生的概率。

2.了解大量重复实验时频率可作为事件发生概率的估计值。

3.通过概率的计算,解决一些简单的实际问题。

教学重点与难点重点:理解事件发生的频率与概率之间的关系, 能运用列表法计算简单事件发生的概率.能设计符合要求的简单概率模型.难点:1.让学生初步体会如何评判某件事情是否“合算”,并利用它对现实生活中的一些现象进行评判.2.用实验或模拟实验的方法估计一些复杂的随机事件发生的概率。

教学准备:多媒体课件教学过程:易混易错1.对事件的判断要注意能联系实际,积累相关知识经验。

2.类似摸球实验等问题,要注意审题是“取出后放回”还是“取出后不放回”,以避免审题“南辕北辙”的错误。

3.求简单事件的概率时,用列举法要做到不重不漏。

设计意图:先让学生通过查阅课本或小组合作解决知识回顾,再让学生分组展示,在学生展示同时,教师引出相应考点,生回答师强调补充完善,从而达到以下目的:1、能正确判断自然和社会现象中的一些必然事件、不可能事件、不确定事件。

2、会在具体情境中了解概率的意义,运用列举法计算简单事件发生的概率。

3、能通过实验,获得事件发生的频率。

4、能运用概率和统计的相关知识综合解决一些实际问题。

5、通过易混易错这一环节,达到他山之石可以攻玉。

一、典例探究发散思维师:出示课件:例1 有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确..的是【】A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件生1:在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,据此直接得出结果。

必然事件表示在一定条件下,必然出现的事情。

生2:因此,∵全年共365天,∴事件A:367人中至少有2人生日相同是必然事件。

九年级数学上册 第25章 概率初步章末复习教案 新人教版

九年级数学上册 第25章 概率初步章末复习教案 新人教版

概率初步章末复习一、复习导入1.导入课题:同学们,通过对本章的学习,你对本章的知识结构和重要知识点及其运用是否有一个清晰的认识呢?为了强化同学们对本章的知识认知和应用,下面我们一起来对本章学习内容进行回顾总结.2.复习目标:(1)通过复习,进一步认清本章的知识结构.(2)熟悉本章重要的知识要点和解题方法.(3)熟练地用列举法和频率估算法求随机事件的概率.3.复习重、难点:重点:巩固准确运用两种求概率的方法以及用频率估计概率的方法.难点:用列表法或树形图法求概率的合理选用.4.复习指导:(1)复习内容:教材127页到第151页的内容.(2)复习时间:10分钟.(3)复习要求:对照本章的知识展开图重新看课本重点知识点的讲解,边看书,边记忆,边归纳,对存在疑问的地方进行交流.(4)复习参考提纲:①说说必然事件、不可能事件和随机事件有什么本质区别.必然事件一定发生;不可能事件一定不发生;随机事件有可能发生,也有可能不发生.②必然事件、不可能事件和随机事件的概率各是多少?必然事件的概率为1,不可能事件的概率为0,随机事件的概率介于0和1之间.③在什么事件中适合用P(A)=mn得到事件的概率?随机事件④求一个事件的概率,如果发生的可能结果数目较多时且涉及两个因素,通常适合采用什么方法?列表法⑤用画树状图的方法求一个随机事件的概率时,事件涉及的因素应满足什么条件?因素等于或多于两个.⑥事件发生的概率与事件发生的频率有何关系?概率是指这件事发生的可能性.频率表示事件发生的次数与总次数的比值.频率不等同于概率.但当重复实验的次数逐渐增大时,频率逐渐趋近于概率.二、自主复习学生可参照自学指导进行自学.三、互助复习1.师助生:(1)明了学情:倾听学生讨论的问题,看学生完成提纲的情况.(2)差异指导:对学生在自学中的方法和认识理解偏差进行指导,帮助学生理顺知识网络.2.生助生:学生之间相互交流,帮助整理和解决疑难问题.四、强化1.知识结构图表:2.3.4.5.练习:已知电流在一定时间内正常通过电子元件的概率是0.5,分别求在一定时间段内,A,B之间和C,D之间电流能够正常通过的概率.(提示:在一次试验中,每个电子元件的状态有两个可能(通电,断开),并且这两种状态的可能性相等,用列举的方法可以得出电路的四种可能状态.解:设A,B之间从左到右的两个电子元件依次为R1和R2,则在A,B之间的电路有4种可能状态:(R1通电、R2通电),(R1通电、R2断开),(R1断开、R2通电),(R1断开、R2断开).其中只有1种状态,即R1和R2都通电时A,B之间的电流才正常通过,所以P(A,B之间电流能够正常通过)=14.设C,D之间从上到下的两个元件依次为R3和R4,则在C,D之间的电路也有4种可能状态:(R3通电、R4通电),(R3通电、R4断开),(R3断开、R4通电),(R3断开、R4断开),其中前三种状态都能使C,D之间的电流正常通过,所以P(C,D之间电流能够正常通过)=34.五、评价1.学生的自我评价(围绕三维目标):各小组学生代表交流自己的学习收获和学后体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成效及不足进行点评.(2)纸笔评价:课堂评价作业.3.教师的自我评价(教学反思):本节课一方面对全章知识进行系统归纳与总结,提升学生的整体观念,另一方面是对前面新课学习的回顾.本节课重点复习了用列举法求概率、用频率估计概率.通过实际问题的解答,提高学生分析问题的能力,增强了用数学解决问题的意识.同时让学生通过本课的复习,掌握运用概率知识的一些基本方法和步骤.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列事件中,不是随机事件的是(D )A.篮球队员在罚球线上投篮一次,未投中B.经过某一有交通信号灯路口,遇到了红灯C.小伟掷两次硬币,每次向上的都是正面D.测量一下三角形的三个内角,其和为360°2.(10分)从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是(D ) A. 15 B. 16 C. 13 D. 3103.(10分)如图所示,有两个可以自由转动的均匀转盘A ,B ,转盘A 被均匀地分成4等份,每份分别标上1,2,3,4四个数字;转盘B 被均匀地分成6等份,每份分别标上1,2,3,4,5,6六个数字,分别转动转盘A 和B ,A 盘停止后指针指向奇数的概率和B 盘停止后指针指向奇数的概率哪个大?为什么?(如果指针恰好指在分格线上,取分格线右边的数字.)解:A 转盘停止后,指针指向奇数的概率为=2142.B 转盘停止后,指针指向奇数的概率为=3162,所以两者相等. 4.(30分)一个批发商从某服装制造公司购进了50包型号为L 的衬衫,由于包装工人的疏忽,在包裹中混进了型号为M 的衬衫,每一包中混入的M 号衬衫数见下表:M 号衬衫数0145791011包数7310155433一位零售商从50包中任意选取了一包,求下列事件的概率:(1)包中没有混入的M 号衬衫;(2)包中混入的M 号衬衫数不超过7;(3)包中混入的M 号衬衫数超过10.解:(1)P (包中没有混入M 号衬衫)=750. (2)P (包中混入M 号衬衫数不超过7)=++++=73101554505. (3)P (包中混入的M 号衬衫数超过10)=350. 5.(10分)同时掷两枚质地均匀的骰子,求点数和小于5的概率.解:同时投掷两枚骰子,点数和的所有可能的结果列表如下:共有36种可能性相等的结果,其中点数和小于5的结果有6种,所以P (点数和小于5)==61366. 二、综合应用(20分)6.(20分) 随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域,如果指针恰好指在分格线上,取分格线右边的数字).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程b ax x ++=2304有实数根的概率. 解:(1)用树状图表示二者的数字之积为4的结果如下:由上图可知,共有20种可能性相等的结果,其中数字之积为4(记为事件A )的结果有3种,所以()P A =320. (2)若方程b ax x ++=2304有实数根(记为事件B ),则9-ab≥0,即ab≤9,由(1)可知满足ab≤9的结果有14种,所以()P B ==1472010. 三、拓展延伸(10分)7.(10分)把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同三段,然后将上、中、下三段分别混合洗匀,从三堆图片中随机地各抽出一张,求这三张图片恰好组成一张完整风景图片的概率.解:不妨设三张风景图片为A ,B ,C ,各自平均剪成的三段分别为A 上,A 中,A 下, B 上,B 中,B 下,C 上,C 中,C 下,用树状图表示从三堆中随机地各抽出一张后的搭配结果.由图可知共有27种搭配结果,其中三张图片恰好组成一张完整风景图片(记为事件M )的结果有(A 上,A 中,A 下),(B 上,B 中,B 下),(C 上,C 中,C 下)三种.所以()P M ==31279. 如有侵权请联系告知删除,感谢你们的配合!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题第二十五章概率与初步小结与复习
教学目标一、知识与技能
掌握本章重要知识点,会求事件的概率,能用概率的知识解决实际问题.
二、过程与方法
通过梳理本章知识,回顾解决生活中的概率问题,培养学生的分析问题和解决问题的能力
三、情感态度与价值观
在用本章知识解决具体问题的过程中,进一步增强数学的应用意识,感受数学的应用价值,激发学习兴趣.
课型复习课课时第1课时
教学重点本章知识结构梳理及其应用.
教学难点利用概率知识解决实际问题.
教具三角板多媒体
教学过程备注德育三分钟:
社会主义核心价值观是社会主义核心价值体系的内
核,体现社会主义核心价值体系的根本性质和基本特征,
反映社会主义核心价值体系的丰富内涵和实践要求,是社
会主义核心价值体系的高度凝练和集中表达。

(一)导入新课
针对本章的内容,你能画出思维导图吗?试试看。

教师
给出思维导图。

(二)讲授新课
例1一张圆桌旁有四个座位,A先坐在如
图的座位上,B、C、D三人随机坐在其他三
个座位上,求A与B不相邻的概率.
分析:按题意,可列举出各种可能的结果,在依次计
算A与B不相邻的概率.
解:按顺时针方向依次对B、C、D进行排位,如下:
三个座位被B、C、D三人随机坐的可能性共有6种,由图可知:
P(A与B不相邻)=2/6=1/3
例2有两个可以自由转动的均匀转盘A、B,分别被分成4等份,3等份,并在每份
内均标有数字,如图所示:
王扬和刘菲同学用这两个
转盘做游戏,游戏规则如下:
①分别转动转盘A与B:
②两个转盘停止后,将两个指针所指的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止).若和为0,则王扬获胜;若和不为0,则刘菲获胜.
问:(1)用树状图法求王扬获胜的概率.
(2)你认为这个游戏公平吗?说明理由.
解:(1)由题意可画树状图为:
这个游戏有12种等可能性的结果,其中和为0的有三种.
∴王扬获胜的概率为:3/12=1/4.
(2)这个游戏不公平.∵王扬获胜的概率为1/4,刘菲获胜的概率为3/4.
∴游戏对双方不公平.
例3一个口袋中放有20个球,其中红球6个,白球。

相关文档
最新文档