八年级数学经典错题分析
初中数学错题分析与纠错(含示范课课程设计、学科学习情况总结)

初中数学错题分析与纠错第一篇范文:初中数学错题分析与纠错本文针对初中数学教学过程中学生常犯的错误进行深入剖析,以人性化的语言提出有效的错题分析与纠错策略,旨在提高学生的数学学习效果,培养学生的自主学习能力。
在初中数学教学中,我们常常发现学生存在这样或那样的错误。
这些错误往往源自于学生对知识点的理解不深,或者是解题方法的不当。
为了提高学生的数学学习效果,我们需要对这些错误进行深入分析,并采取有效的纠错策略。
初中数学错题分析知识理解错误学生在解题过程中,可能会对某些数学概念、定理或公式理解不深,导致解题错误。
例如,学生在解决分数问题时,可能会忘记分数的乘除法规则,导致计算错误。
解题方法错误学生在解题过程中,可能会采用错误的解题方法,导致解题困难或错误。
例如,学生在解决几何问题时,可能会采用不适合的解题方法,导致无法得出正确答案。
计算错误学生在解题过程中,可能会出现计算错误。
这些错误可能是由于粗心大意,也可能是由于对数学规则的理解不清。
例如,学生在计算乘法时,可能会忘记交换因数的位置,导致计算错误。
初中数学纠错策略知识点的深入讲解对于知识理解错误,我们需要对学生进行深入的知识点讲解,帮助他们理解数学概念、定理或公式的本质。
例如,在讲解分数的乘除法规则时,我们可以通过实际例题,让学生理解分数乘除法的本质。
解题方法的指导对于解题方法错误,我们需要引导学生采用合适的解题方法。
例如,在解决几何问题时,我们可以引导学生采用画图的方法,帮助他们更好地理解问题和解题思路。
计算错误的纠正对于计算错误,我们需要帮助学生养成良好的计算习惯,并加强对数学规则的理解。
例如,在计算乘法时,我们可以提醒学生注意因数的交换位置,避免计算错误。
通过对初中数学错题的深入分析,我们可以发现学生常犯的错误,并采取有效的纠错策略。
这样,我们可以提高学生的数学学习效果,培养学生的自主学习能力。
以上是关于“初中数学错题分析与纠错”的教育文档示例,内容完整,语言人性化,符合教学实际需要。
初中数学错题分类整理与分析(含学习方法技巧、例题示范教学方法)

初中数学错题分类整理与分析在初中数学教学中,错题整理与分析是提高学生数学素养的重要环节。
通过对错题的深入剖析,学生可以更好地掌握数学知识,提升解题能力。
本文将从分类整理和分析的角度,探讨初中数学错题的处理策略。
一、错题分类1.概念性错误:学生对数学概念理解不透彻,导致解题过程中出现偏差。
例如,分不清有理数和无理数,将导致有关根号的题目解答错误。
2.计算性错误:学生在计算过程中,由于疏忽、马虎等原因,出现算术错误。
例如,简单的加减乘除运算错误,或者在小数点和分数运算中出现失误。
3.逻辑性错误:学生在解题过程中,逻辑思维不严密,导致解答不完整或者答案错误。
例如,在解一元一次方程时,忽略检验解的正确性。
4.应用题错误:学生在解决应用题时,不能正确将数学知识运用到实际问题中,或者对题目的理解出现偏差。
例如,在解决几何问题时,不能准确运用面积公式。
5.构图错误:学生在作图过程中,不能准确地根据题目要求绘制图形,导致解题思路混乱。
例如,在解几何证明题时,作图不准确,导致无法找到关键证明步骤。
二、错题整理1.建立错题本:学生应养成建立错题本的的习惯,将每次考试、练习中出现的错题记录下来。
2.归纳错题类型:学生在记录错题时,应注意归纳错题的类型,以便于后续分析和复习。
3.标注错题原因:学生在整理错题时,应在每道错题旁边标注出错的原因,以便于查找和改正。
4.定期复习:学生应定期复习错题本,巩固已掌握的知识点,避免重复犯错。
三、错题分析1.自我分析:学生应对错题进行自我分析,找出自己在解题过程中的不足之处,如概念理解不深、计算不准确等。
2.寻求帮助:学生在分析错题时,如有遇到困难,可以向老师、同学请教,以便更好地掌握知识点。
3.总结经验:学生应总结错题解析过程中的经验教训,提高解题能力。
4.反馈调整:学生应对错题进行分析总结后,对自己的学习方法、复习计划等进行调整,以提高学习效果。
四、教学建议1.注重概念教学:教师应加强对数学概念的教学,让学生充分理解并掌握基本概念。
初二数学学习中的错题分析与纠正

初二数学学习中的错题分析与纠正在初二数学学习的过程中,学生们经常会遇到一些难题,甚至会犯错。
正确的对待和分析错题,并且及时纠正,对于提高数学学习效果至关重要。
本文将对初二数学学习中的错题进行分析,并提供一些纠正错误的方法。
一、题目一:方程求解首先,我们来看一个关于方程求解的例子:2x + 5 = 15这是一个简单的一元一次方程,我们可以通过移项和化简的方式来求解。
首先,我们可以将式子转化为标准形式:2x = 15 - 52x = 10然后,我们继续化简方程,得到:x = 10 / 2x = 5通过对这个题目的分析,我们可以发现学生们在求解方程时容易出现以下几个问题:没有正确地进行移项操作、算式化简错误或者没有得到最终结果。
对于这些问题,我们可以通过提供更多的练习题来加强练习,并且通过详细的解答过程来引导学生正确地解题。
二、题目二:几何图形计算接下来,我们来看一个关于几何图形计算的例子:已知一个等边三角形的边长为5厘米,求其面积。
对于这个题目,我们知道等边三角形的面积公式为:面积 = (边长^2 * √3) / 4带入已知条件,我们可以计算得到:面积= (5^2 * √3) / 4= (25 * √3) / 4≈ 10.83 平方厘米通过对这个题目的分析,我们可以发现学生们在几何图形计算过程中容易出现以下几个问题:对公式不熟悉、计算错误、结果保留不准确等。
我们可以通过反复练习应用几何图形计算公式来巩固学生们的知识,并且强调计算过程中的准确性,培养学生们对结果保留有效数字的意识。
三、题目三:概率与统计最后,我们来看一个关于概率与统计的例子:某班共有40个学生,学生升入高中的可能性为0.85。
请问,此班有多少学生可以升入高中?对于这个题目,我们可以通过计算概率来得到答案。
已知概率公式为:概率 = 事件发生次数 / 总事件数带入已知条件,我们可以计算得到:升入高中的学生数 = 40 * 0.85≈ 34通过对这个题目的分析,我们可以发现学生们在概率与统计计算过程中容易出现以下几个问题:对概率公式理解不深刻、计算错误或者概念模糊。
人教版八年级上册数学易错题(含解析)

八年级数学上册易错题1、下列图形中对称轴最少的是 ( )A 圆B 正方形C 等腰梯形D 线段【错解】D .【错解剖解】不能误认为线段只有一条对称轴,它有两条对称轴,分别是它的垂直平分线和它所在的直线。
【正确答案】C .2、如图,给出下列四组条件:①;②;③;④.其中,能使的条件共有( )A .1组B .2组C .3组D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .3、在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对.【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】C .4、如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△M F E D C B A【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D5、如图,由4个小正方形组成的田字格中,ABC △的顶点都是小正方形的顶点.在田字格上画与ABC △成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC △本身)共有( )A .1个B .2个C .3个D .4个【错解】B .【错解剖析】直接用图中已有的线为对称轴,只能找到两种,而把对角线作为对称轴的情况忽视了.【正确答案】D .6、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )【错解】A .【错解剖析】操作时把剪下的位置弄错.【正确答案】C .7、在正方形ABCD 中,满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形的点P 有( )个.A 、6个B 、7个C 、8个D 、9个ABC【错解】A .【错解剖析】解:(1)、如图一,当AB ,BC ,CD ,DA 分别为等腰三角形ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 的底边时,P 点为正方形ABCD 对角线AC ,BD 的交点P 1 .(2)、如图二,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且A 与D 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以A 为圆心,以AB 为半径的圆弧与线段AD 的中垂线交点P 2和P 3 .(3)、如图三,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且B 与C 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以B 为圆心,以BA 为半径的圆弧与线段AD 的中垂线交点P 4和P 5 .与(2)和(3)同理如图三、四、五得到以当AD ,BC 分别为ΔPAD 和ΔPBC 的腰而AB 和CD 分别为ΔPBC 和ΔPAD 的底边时;P 点的另外四个位置为P 6,P 7 ,P 8 和P 9 .【正确答案】D .8、计算()4323b a --的结果是( )A .12881b a B.7612b a C.7612b a - D.12881b a -【错解】: 选A 或B 或C .【错解剖析】: 幂的乘方运算运算错误和符号错误.【正确答案】:选D .9、下列运算结果正确的是( ).A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷.【错解】:D【错解剖析】:本题考查整式乘除运算,其基础是幂的运算。
初中数学错题分析方法(含示范课课程设计、学科学习情况总结)

初中数学错题分析方法第一篇范文:初中数学错题分析方法在初中数学教学过程中,错题分析是提高学生数学素养的重要环节。
本文将从以下几个方面阐述初中数学错题分析方法:错题分类、错因分析、纠错策略及巩固提高。
一、错题分类对错题进行分类,有助于我们找出学生在数学学习中存在的问题。
常见的错题分类有以下几种:1.概念性错误:学生对数学概念理解不透彻,导致解题过程中出现偏差。
2.计算错误:学生在计算过程中出现的算术错误。
3.逻辑错误:学生在解题过程中,逻辑思维不严密,导致答案错误。
4.应用题错误:学生在解决应用题时,不能正确运用所学知识,或对题意理解不准确。
5.解决问题策略错误:学生在面对问题时,选择了错误的解决方法。
二、错因分析了解错因,有助于我们针对性地采取措施,避免学生在今后的学习中再次犯同样的错误。
常见的错因有以下几种:1.基础知识不扎实:学生对数学基本概念、定理、公式掌握不牢固。
2.学习方法不当:学生没有形成良好的学习习惯,如课前预习、课后复习等。
3.思维能力不足:学生逻辑思维、发散思维能力不强。
4.心理因素:学生对数学学科缺乏兴趣,或存在焦虑、恐惧等情绪。
5.教学因素:教师教学方法不适合学生,或教学内容安排不合理。
三、纠错策略针对不同类型的错题和错因,采取相应的纠错策略,有助于学生提高数学学习成绩。
以下是一些建议:1.概念性错误:引导学生加强对数学概念的理解,可通过举例、讲解等方式,让学生在实际问题中正确运用概念。
2.计算错误:加强学生的计算训练,培养学生的计算能力。
3.逻辑错误:培养学生严谨的逻辑思维,可通过逻辑游戏、思维训练等方式进行。
4.应用题错误:引导学生正确理解题意,培养学生的应用能力。
5.解决问题策略错误:引导学生学会分析问题,形成正确的解决问题思路。
四、巩固提高在错题分析的基础上,采取以下措施,有助于学生巩固所学知识,提高数学素养:1.定期复习:引导学生定期复习错题,加深对知识点的理解。
初中数学错题分析与应对(含学习方法技巧、例题示范教学方法)

初中数学错题分析与应对第一篇范文在初中数学教学过程中,学生常常会遇到各种困难,导致在解题时出现错误。
为了提高学生的数学学习效果,教师需要对学生的错题进行分析,找出错误产生的原因,并采取相应的应对策略。
本文将从心理、教学、学生个体差异等方面对初中数学错题进行分析,并提出相应的应对措施。
一、错题分析1. 知识性错误知识性错误主要是由于学生对基本数学概念、定理、公式等掌握不牢固导致的。
学生在解题过程中,可能会出现概念混淆、公式使用错误等情况。
例如,在解一元二次方程时,学生可能会忘记移项、合并同类项等基本步骤,导致解题结果错误。
2. 逻辑性错误逻辑性错误主要是学生在解题过程中,推理不严谨、论证不充分导致的。
这类错误可能体现在学生对题目的理解不准确,或者在解题过程中跳跃性思维过大,导致答案不完整或错误。
例如,在解决几何问题时,学生可能会忽略某些条件,导致论证不充分,从而得出错误的结论。
3. 计算性错误计算性错误是学生在解题过程中,由于运算规则掌握不牢固、粗心大意等原因导致的。
这类错误在数学学习中非常常见,如加减乘除运算错误、小数点位置错误等。
这些错误往往会导致解题结果与正确答案相差甚远。
4. 策略性错误策略性错误主要是学生在解题过程中,选用不当的解题方法或策略导致的。
这类错误可能源于学生对题目的分析不准确,或者在解题过程中缺乏灵活变通的能力。
例如,在解决应用题时,学生可能会固定思维,无法找到最合适的解题方法,导致解题过程复杂化或错误。
二、应对措施1. 加强基础知识教学针对知识性错误,教师需要加强对基本数学概念、定理、公式等知识的教学。
可以通过举例子、讲解应用场景等方式,帮助学生加深对知识点的理解。
同时,教师要注重知识点的巩固,通过布置相关的练习题,让学生在实践中掌握知识。
2. 培养逻辑思维能力针对逻辑性错误,教师需要培养学生的逻辑思维能力。
可以在教学过程中,引导学生进行有条理的推理和论证。
同时,教师要教会学生如何分析题目,抓住关键条件,避免跳跃性思维。
初二数学学习中常见的易错题分析

初二数学学习中常见的易错题分析数学作为一门理科学科,对于初中生而言,往往是一门让人又爱又恨的学科。
在学习数学的过程中,常常会遇到一些易错题,这些题目看似简单,却往往容易让学生犯错。
本文将对初二数学学习中常见的易错题进行深入分析,并给出相应的解题技巧,帮助同学们更好地应对这些题目。
一、整数的绝对值问题整数的绝对值题目属于初二数学中一个常见的易错点。
很多同学在解这类题目时容易混淆绝对值的概念。
例如,有一道题目如下:|-5| + |3| = ?在解这道题时,很多同学会将|-5|和|3|的值分别计算出来,然后进行相加,得出答案为8。
然而,这种做法是错误的,因为绝对值符号的作用是将其内部的值变为正数。
所以,正确的解题步骤应该是先计算|-5|和|3|的值,得到5和3,然后再进行相加,得到答案为8。
二、分数与小数的比较分数与小数的比较题目在初二数学中也很常见。
例如,有一道题目如下:将以下四个数按从小到大的顺序排列:0.5,1/4,0.3,2/5很多同学在解这类题目时容易混淆分数和小数的大小关系。
一种常见的错误做法是将分数转换成小数后再进行比较。
例如,将1/4转换成小数后是0.25,将2/5转换成小数后是0.4,然后再进行比较。
然而,这种做法是错误的,因为小数的计算结果可能会带来计算误差。
正确的做法是将所有的数都转换成相同的形式进行比较。
在这个例子中,可以将0.5转换成1/2,将0.3转换成3/10,然后再进行比较。
按照这种方法,从小到大的顺序排列为:1/4,3/10,2/5,1/2。
三、平方根和立方根的计算初二数学中经常会遇到一些关于平方根和立方根的计算题目,而这也是一些同学容易出错的地方。
例如,有一道题目如下:√(16 - 9) = ?在解这道题时,很多同学容易将16-9的结果计算出来,然后再求它的平方根,得出答案为1。
然而,这是一个错误的做法。
我们知道,平方根的运算优先于减法运算,所以正确的解题步骤应该是先计算√16和√9的值,得到4和3,然后再进行相减,得到答案为1。
八年级上册数学常见易错题(内含答案解析)

八年级数学上册常见易错题1、下列图形中对称轴最少的是 ( )A 圆B 正方形C 等腰梯形D 线段【错解】D .【错解剖解】不能误认为线段只有一条对称轴,它有两条对称轴,分别是它的垂直平分线和它所在的直线。
【正确答案】C .2、如图,给出下列四组条件:①;②;③;④.其中,能使的条件共有( )A .1组B .2组C .3组D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .3、在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对.【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】C .4、如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△M F E D C B A【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D5、如图,由4个小正方形组成的田字格中,ABC △的顶点都是小正方形的顶点.在田字格上画与ABC △成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC △本身)共有( )A .1个B .2个C .3个D .4个【错解】B .【错解剖析】直接用图中已有的线为对称轴,只能找到两种,而把对角线作为对称轴的情况忽视了.【正确答案】D .6、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )【错解】A .【错解剖析】操作时把剪下的位置弄错.【正确答案】C .7、在正方形ABCD 中,满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形的点P 有( )个.A 、6个B 、7个C 、8个D 、9个ABC【错解】A .【错解剖析】解:(1)、如图一,当AB ,BC ,CD ,DA 分别为等腰三角形ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 的底边时,P 点为正方形ABCD 对角线AC ,BD 的交点P 1 .(2)、如图二,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且A 与D 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以A 为圆心,以AB 为半径的圆弧与线段AD 的中垂线交点P 2和P 3 .(3)、如图三,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且B 与C 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以B 为圆心,以BA 为半径的圆弧与线段AD 的中垂线交点P 4和P 5 .与(2)和(3)同理如图三、四、五得到以当AD ,BC 分别为ΔPAD 和ΔPBC 的腰而AB 和CD 分别为ΔPBC 和ΔPAD 的底边时;P 点的另外四个位置为P 6,P 7 ,P 8 和P 9 .【正确答案】D .8、计算()4323b a --的结果是( )A .12881b a B.7612b a C.7612b a - D.12881b a -【错解】: 选A 或B 或C .【错解剖析】: 幂的乘方运算运算错误和符号错误.【正确答案】:选D .9、下列运算结果正确的是( ).A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷.【错解】:D【错解剖析】:本题考查整式乘除运算,其基础是幂的运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级错题集1、如图11-1,,12,,ABE ACD B C ∆≅∆∠=∠∠=∠指出对应边和另外一组对应角。
错解:对应边是AB 与AD ,AC 与AE ,BD 与CE ,另一组对应角是∠BAD 与∠CAE 。
错误原因分析:对全等三角形的表示理解不清,在全等三角形的表示中对应顶点的位置需要对齐,不能根据对应顶点来确定对应角和对应边。
同时对全等三角形中对应角与对应边之间的对应关系也没有理解,对应角所对的边应该是对应边,如∠2所对的边是AB ,∠1所对的边是AC ,因为∠1=∠2,即∠1与∠2是对应角,所以AB 与AC 是对应边。
正解:对应边是AB 与AC ,AE 与AD ,BE 与CD ,另一组对应角是∠BAD 与∠CAE 。
2、如图11-2,在ABD ACE ∆∆和中,AB=AC ,AD=AE ,欲证ABD ACE ∆≅∆,须补充的条件是( )。
A 、∠B =∠C ; B 、∠D=∠E ; C 、∠BAC=∠DAE ;D 、∠CAD=∠DAE 。
错解:选A 或B 或D 。
错误原因分析:对全等三角形的判定定理(SAS )理解不清,运用SAS 判定定理来证明两三角形全等时,一定要看清角必须是两条对应边的夹角,边必须是夹相等角的两对应边。
上题中AB 与AC ,AD 与AE 是对应边,并且AB 与AD 的夹角是∠BAD ,AC 与AE 的夹角是∠CAE,而∠B 与∠C ,∠D 与∠E 不是AB 与AC ,AD 与AE 的夹角,故不能选择A 或B 。
∠CAD 与∠DAE 不是ABD ∆和ACE ∆中的内角,故不能选择D 。
所以只有选择C ,因为∠BAC+∠CAD=∠DAE+∠CAD ,即:∠BAD=∠CAE 。
正解:选C 。
3、如图11-3所示,点0为码头,A ,B 两个灯塔与码头的距离相等,0A 、OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B的距离相等,试问轮船航行是否偏离指定航线?错解:不能判断,因为应该是到角两边距离相等(即垂线段相等)的点才在角平分线上。
错误原因分析:生搬硬套“角的内部到角的两边的距离相等的点在角的平分线上”,而忽略了角平分线的实质是所分得的两个角相等,本题由OA=OB ,轮船到两灯塔的距离相等,再加上已行的航线,可构造出一对全等三角形,从而可得到已行航线把∠AOB 分成相等的两个角,即没有偏离指定航线。
正解:没有偏离指定航线,如图11-4,依题意可得:OA=OB ,AC=BC ,OC=OC ,AOC BOC ∆≅∆,∴∠AOC=∠BOC ,即OC 平分∠AOB ,∴没有偏离指定航线。
4、如图11-5,,CAB DBA C D ∠=∠∠=∠,E 为AC 和BD 的交点,ADB ∆与BCA ∆全等吗?说明理由。
错解:ADB BCA ∆≅∆。
理由如下:,,,()CAB DBA C D CBA DBA ADB BCA AAA ∠=∠∠=∠∴∠=∠∴∆≅∆错误原因分析:两个三角形全等是正确的,但说明的理由不正确,三个角对应相等不能作为三角形全等的判定方法。
在初中数学中,往往有较多同学会从自己错误的主观意识出发,自己去编造一些不正确的定理,用来证明和计算。
这就要求我们学生在学习的过程中,要准确地理解和掌握自己所学过的一些性质和判定定理。
另外,在书写的要求上也要养成严谨的习惯。
象上面问题中,三组对应角相等的两个三角形全等,这不是三角形全等的判定方法。
在书写上也没有按照全等三角形书写的形式来规范书写。
正解:ADB BCA ∆≅∆。
理由如下:(),,()DBA CAB D C AB BA ADB BCA AAS ∠=∠∠=∠=∴∆≅∆公共边5、已知,如图11-6,ABD AEC ∆∆和都是等边三角形,求证:BE=DC 。
错解:ABD AEC ∆∆和都是等边三角形,0060,120.,.,.BAD CAE CAD EAB AB AD AE AC ABE ADC BE DC ∴∠==∠∠==∠==∴∆≅∆∴=又 错误原因分析:只靠眼睛直观,主观臆断,误认为D 、A 、E 三点在同一直线上,是造成解题的错误的主要原因。
实际上由于BAC ∠的大小不确定,所以D 、A 、E 三点不一定在同一直线上,而应该寻找DAC BAE ∠∠和相等。
象这种错误在初中学生解答有关几何题时经常出现的,这要求我们学生在审题时一定要审清楚题目中的已知条件及隐含条件,题目中没有出现的,我们不能去编造。
正解:ABD AEC ∆∆和都是等边三角形,060,,.,.,.BAD CAE BAD BAC CAE BAC DAC BAE AB AD AE AC ABE ADC BE DC ∴∠==∠∴∠+∠=∠+∠∴∠=∠==∴∆≅∆∴=又6、到三角形三边所在的直线的距离相等的点有 个。
错解:1个。
错误原因分析:三角形的三个内角角平分线会相交于一点,且这个点到三角形三边的距离相等。
由于所求的点是到三边所在直线的距离相等,因此,相邻两个外角的角平分线的交点到三边所在直线的距离也相等,所以符合条件的点有4个。
正解:4个。
如图11-7,四个点分别是D 、E 、F 、G 。
7、写出下列各图形的对称轴。
(1)、角的对称轴是;(2)、等腰三角形的对称轴是;(3)、圆的对称轴是。
错解:(1)角的平分线;(2)等腰三角形底边上的高;(3)圆的每一条直径。
错误原因分析:对对称轴的概念理解不准确,对称轴指的是一条直线,不能将它误认为是射线和线段。
象角平分线是射线而不是直线,所以它不是角的对称轴,等腰三角形底边上的高是线段,也不是直线,所以它也不是等腰三角形的对称轴,圆的直径是线段,也不是直线,所以它也不是圆的对称轴。
正解:(1)、角平分线所在的直线;(2)、等腰三角形底边上的高所在的直线;(3)、过圆心的每一条直线。
8、已知点A(1-a,5)与点B(3,b)关于y轴对称,求a-b的值。
错解:∵点A(1-a,5)与点B(3,b)关于y轴对称,∴1-a=3,b=-5,∴a=-2,∴a-b=-2-(-5)=3 。
错误原因分析:没有正确理解和掌握关于y轴对称的点的坐标特征,在平面直角坐标系中,关于x轴对称的两个点的横坐标相等,纵坐标互为相反数;关于y轴对称的两个点的纵坐标相等,横坐标互为相反数。
即点P(a,b)关于x轴的对称点的坐标为(a,-b),关于y轴的对称点的坐标为(-a,b)。
这题是将关于x轴对称点的坐标特征与关于y轴对称点的坐标特征搞混淆了。
正解:∵点A(1-a,5)与点B(3,b)关于y轴对称,∴1-a=-3,b=5,∴a=4,b=5 ,∴a-b=4-5=-1 。
9、等腰三角形的两边长分别为4cm和9cm,试求其周长。
错解:分情况讨论:①、当腰长为4cm时,底边长就为9cm。
∴等腰三角形的周长为4×2+9=17(cm)。
②、当腰长为9cm时,底边长就为4cm。
∴等腰三角形的周长为9×2+4=22 (cm)。
错误原因分析:本题分两种情况考虑了等腰三角形的特点(即腰长为4cm 与9cm 两种情况),但忽略了构成三角形的条件(三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边。
)。
因为4+4<9,所以4cm 不能作为腰长。
只有9cm 为腰长,4cm 为底边一种情况成立。
正解:分情况讨论:①、当腰长为4cm 时,底边长就为9cm 。
∵4+4<9 ,∴这种情况不成立。
②、当腰长为9cm 时,底边长就为4cm 。
∴等腰三角形的周长为9×2+4=22 (cm )。
∴等腰三角形的周长为22cm 。
10、等腰三角形一腰上的高等于腰长的一半,求其顶角。
错解:如图12-1,AB=AC,B D ⊥AC 于D ,且12BD AB =, ∴∠A=30°,即其顶角为30°。
错误原因分析:等腰三角形是比较特殊的三角形,它有许多特性和,在解决与等腰三角形有关的问题时,一定要全面地分析问题,不漏解,上题只考虑到腰上的高线在三角形的内部是产生错解的原因。
事实上,对于本题腰上的高线还可能在三角形的外部,应分两种情况进行求解。
正解:分两种情况来讨论:①、当高线在三角形内部时,如图12-1,AB=AC,B D ⊥AC 于D ,且12BD AB =, ∴∠A=30°,即其顶角为30°。
②、当高线在三角形外部时,如图12-2,AB=AC,B D ⊥AC 于D ,且12BD AB =, ∴∠BAD=30°,∴∠BAC=150°。
∴等腰三角形的顶角为30°或150°。
11、在一次数学课上,王老师在黑板上画出图12-3,并写下了四个等式:(1)A B D C =,(2)B E C E =,(3) B C ∠=∠,(4) B A E C D E∠=∠。
要求同学从这四个等式中选出两个作为条件,推出A E D△是等腰三角形.请你试着完成王老师提出的要求,并说明理由。
(写出一种即可)已知:求证:A E D△是等腰三角形。
错解:已知:A B D C =,B E C E =, B E D A C 图-12-3求证:A E D△是等腰三角形。
证明: ∵A B D C =,B E C E =,,DEC AEB ∠=∠∴.DCE ABE ∆≅∆∴.DE AE =∴A E D△是等腰三角形. 错误原因分析:受思维定势的影响,以为三个条件就可证两个三角形全等,思维混乱,,运用了不成立的命题“SSA ”去证明题目,即犯了“虚假理由”的错误。
说明对两个三角形全等的判定定理掌握不透,上课时没真正弄懂定理的运用。
中等偏下的学生易犯这种错误。
正解:如:已知:A B D C =,B C ∠=∠,求证:A E D△是等腰三角形。
证明:∵A B D C =,B C ∠=∠,,DEC AEB ∠=∠∴.DCE ABE ∆≅∆∴.DE AE =∴A E D△是等腰三角形。
12、下列说法正确的是 ( )。
A 、 如果线段AB 和''A B 关于某条直线对称,那么AB=''A B ;B 、 如果点A 和点'A 到直线l 的距离相等,则点A 与点'A 关于直线l 对称;C 、 如果AB=''A B ,且直线MN 垂直平分A 'A ,那么线段AB 和''A B 关于直线MN对称;D 、 如果在直线MN 两旁的两个图形能够完全重合,那么这两个图形关于直线MN对称。
错解:选B 或C 或D 。
错误原因分析:对轴对称的定义和性质理解不够准确是这题解题错误的主要原因,因为线段AB 和''A B 关于某直线对称,则沿着这条直线对折AB 与''A B 一定能够重合,所以AB=''A B 。