由肋板盒焊接引论如何合理控制焊接变形

合集下载

控制变形及减小消除焊接应力的方法

控制变形及减小消除焊接应力的方法

控制变形及减小消除焊接应力的方法一、控制焊接变形的方法1、设计措施(1)选择合理的焊缝尺寸:焊缝尺寸增加,变形随之增大,但是过小的焊缝尺寸将降低结构的承载能力,并使焊接接头的冷却速度加快,热影响区硬度增高,容易产生裂纹等缺陷,因此应在满足结构承载能力和保证焊接质量的前提下,随着板的厚度来选取工艺上可能选用的最小的焊缝尺寸。

(2)尽量减少焊缝数量;适当选择板的厚度,减少肋板数量,从而可减少焊缝和焊接后变形的校正量,如薄板结构件,可用压型结构代替肋板结构,以减少焊缝数量,防止或减少焊后变形。

(3)合理安排焊缝位置:焊缝对称于焊件截面的中性轴或使焊缝接近中性轴均可减少弯曲变形。

(4)预留收缩余量:焊件焊后纵向横向收缩变形可通过对焊缝收缩量的估算,在设计时预先留出收缩余量进行控制。

(5)留出装焊卡具的位置:在结构上留有可装焊夹具的位置,以便在焊接过程中可利用夹具来控制技术变形。

2、反变形法(1)板厚8~12mm钢板单边V型坡口对接焊,装配时反变形1.5°焊接后几乎无角变形。

(2)工字梁焊后因横向收缩引起的角变形,若采用焊前预先把上、下盖板压成反变形(塑性变形),然后装配后进行焊接,即可消除上、下盖板的焊后角变形。

但是上下盖板反变形量的大小主要与该板的厚度和宽度有关,同时还与腹板厚度和热输入有关。

(3)锅炉、集装箱的管接头都集中在上部,焊后引起弯曲变形所以要借用强制反变形夹紧装置,并配以对称均匀加热的痕迹顺序,交替跳焊法这样采用了在外力作用下的弹性反变形再配合以合理的受热的施焊顺序,焊后基本上可消除弯曲变形。

(4)桥式起重机的两根主梁是由左、右腹板和上、下盖板组成的箱型结构的为提高该梁的刚性,梁内设计有大、小肋板,且这些肋板角焊缝大多集中在梁的上部,焊后会引起下桡弯曲变形。

但桥式起重机技术要求规定,主梁焊后应有一定的上拱度,为解决焊后变形与技术要求的矛盾,常采用预制腹板上拱度的方法,即在备料时,预先使两块腹板留出上拱度。

安全管理之防止焊接变形的措施

安全管理之防止焊接变形的措施

安全管理之防止焊接变形的措施焊接变形是指焊接过程中由于温度和变形力的作用,导致工件的形状和尺寸发生变化。

焊接变形的产生会导致工件质量不合格,甚至无法使用,严重影响企业生产效益。

因此,在进行焊接过程中,必须采取一定的措施来预防和减少焊接变形。

本文将介绍几种常见的防止焊接变形的措施。

1. 优化工件结构焊接变形的产生与工件结构密切相关,因此,通过优化工件结构可以有效防止焊接变形。

具体措施包括:•合理设计焊缝形式和数量,减少焊接长度和面积。

•在工件的底部或周围设置支撑件,使工件能够保持稳定的姿态。

•调整板料的厚度和减小工件截面形状不对称性。

2. 控制焊接热量焊接热量是导致焊接变形的主要原因之一。

因此,通过控制焊接热量也可以有效防止焊接变形。

具体措施包括:•采用适当的焊接电流和电压,控制焊接热输入。

•采用节能焊接方法,如激光焊接、电子束焊接等,控制焊接热输入。

•焊接过程中及时进行水冷或风冷,控制焊接温度。

3. 采用局部预热与后续热处理局部预热和后续热处理是一种广泛应用的防止焊接变形方法。

具体措施包括:•在焊接前,对焊接部位进行局部预热,使材料的热膨胀趋势一致,减小焊接变形。

•在焊接后进行恒温回火或退火处理,稳定焊接组织结构,消除焊接变形。

4. 针对特殊焊接材料采取相应措施有些特殊材料在焊接过程中的物理化学性质和热膨胀系数等与大部分金属材料不同,容易引起焊接变形。

因此,针对不同材料,需要采取相应的焊接防变形措施。

具体措施包括:•对于不同材料,采用合适的焊接方法和参数,如钨极氩弧焊、气保焊等。

•在焊接过程中采用压力来限制变形,如透平焊、插板焊等。

5. 加强焊接人员的技能培训焊接人员是焊接过程中的关键环节,他们的技能水平和操作技巧直接影响焊接质量和防止焊接变形的效果。

因此,加强焊接人员的技能培训是防上述问题的关键措施。

具体措施包括:•合理安排技能培训的时间和内容,让焊接人员了解防止焊接变形的重要性和必要性。

•培训焊接人员掌握各种焊接方法和技能,增强其对焊接变形的识别和处理能力。

控制焊接变形的设计措施

控制焊接变形的设计措施

控制焊接变形的设计措施在焊接行业中,焊接变形一直是一个非常头痛的问题。

焊接过程中由于高温和热应力的作用,焊件会发生变形,这会影响焊接质量和工件的性能。

为了控制焊接变形,需要采取一些设计措施,下面介绍几种常见的方法。

1.合理选择焊接方法不同的焊接方法对焊接变形的影响不同,因此在选择焊接方法时需要考虑变形因素。

例如,TIG焊接和激光焊接都是低热输入的焊接方法,可以减少焊接变形。

而电弧焊接和气焊则会产生较大的热影响区,容易引起焊接变形。

因此,在选择焊接方法时应根据具体情况进行合理选择。

2.控制焊接热输入焊接热输入是焊接变形的主要原因之一,因此需要控制焊接热输入。

可以通过降低焊接电流和增加焊接速度来减少焊接热输入。

此外,选择合适的焊接电极和焊接材料也可以降低焊接热输入。

3.使用预热和后热处理预热可以降低焊接材料的冷却速度,减少焊接变形。

后热处理可以消除焊接残余应力,进一步减少变形。

因此,在一些对焊接变形要求较高的工件上,可以采用预热和后热处理的方法。

4.采用多道焊接多道焊接可以减少每次焊接的热输入量,从而减少焊接变形。

在多道焊接中,可以采用交叉焊接的方式,即先焊接一侧,然后焊接另一侧,以此类推,从而减少残余应力的积累。

5.使用夹具和支撑物在焊接过程中,夹具和支撑物可以起到固定工件的作用,减少焊接变形。

夹具和支撑物的设计应考虑到焊接变形的方向和程度,以便实现更好的固定效果。

控制焊接变形需要综合考虑多种因素。

以上几种设计措施可以帮助我们减少焊接变形,提高焊接质量和工件的性能。

在实际应用中,需要根据具体情况进行合理选择和调整,以达到最佳的效果。

如何控制焊接变形(5篇材料)

如何控制焊接变形(5篇材料)

如何控制焊接变形(5篇材料)第一篇:如何控制焊接变形大型复杂结构件焊接工艺措施随着焊接技术的发展,尤其是焊接设备的更新换代,焊接辅材的丰富,焊接母材含碳量的有效控制,合金元素的增多,材料强度级别大幅的提高,使许多低合金高强度钢的可焊性越来越好,大型复杂结构件的制作难度大幅降低,从而为大型结构件的设计,通过合适的焊接工艺措施,把设计模型变为实物而成为现实。

对于大型结构件制作来说,最常见的就是两大问题:一是焊接变形;二是焊接裂纹。

下面从焊接工艺方面说明如何解决上述两大问题。

焊接变形是大型结构件最关键也是最难控制的问题之一,大型结构件一旦产生超出控制量的变形,是很难校正的,不但会造成极大的直接经济损失,同时也极大地影响制作周期,我们通常采取如下工艺措施对变形进行控制:1.母材(钢板)选用控制:选用大钢厂的材料,因为大钢厂设备先进,注重轧制工艺,热处理工艺规范到位,板材平展,内应力小,既能保证机械性能,也能保证化学成分的稳定。

2.备料变形控制:采用对称备料,减少热量集中引起的热应力变形,控制平弯,侧弯,扭曲变形。

对于厚板采用钻孔分段切割,对于由热切割引起的不可避免的变形,则通过机械校平直,为总装作准备。

3.装配方式控制:对于超大型结构件,首先应根据整体结构,分析容易产生变形的焊接应力区,对这些应力区通常采取“化整为零”的方法,也就是将整体细化成相对“独立”的小单元,分单元组装,局部施焊,让整体焊接应力产生在小单元中,这些小单元不但能更容易地进行机械或热校平,还能在总装发挥小单元时进行整体变形的有效控制。

4.施焊方式控制:通过分析大型结构件结构特性,确定中性线,制定合理的焊接工序,能用对称焊的采用对称焊。

对于截面较大的焊缝,采用多层多道多次填满。

对于截面突变的大型结构件,在截面附近的焊缝,要特别注意控制焊接规范,通过控制焊接规范调节工件变形,也就是朝着我们需要控制的方向变,这种方法在横梁类结构件中取得了很好的效果。

焊接变形控制措施

焊接变形控制措施

焊接变形控制措施1. 引言焊接是常见的金属连接工艺,它在制造业中起着重要的作用。

然而,焊接过程中会产生热量,导致工件变形。

焊接变形不仅会影响工件的外观,还可能导致尺寸偏差、失配和应力集中等问题。

因此,为了控制焊接变形,需要采取一系列措施来减少其影响。

本文将介绍焊接变形的控制措施,包括减少焊接热输入、优化焊接顺序和采用辅助支撑等方法。

这些措施可以帮助工程师在焊接过程中有效控制变形,提高焊接质量。

2. 减少焊接热输入焊接热输入是导致焊接变形的主要原因之一。

当焊接电流和电压较高时,焊接过程中产生的热量也较大,会使焊接接头局部加热,导致热膨胀引起变形。

因此,减少焊接热输入是一种常用的焊接变形控制措施。

以下是减少焊接热输入的方法:•降低焊接电流和电压:通过调节焊接电流和电压的大小,可以控制焊接热输入的大小。

降低电流和电压可以减少焊接过程中的热量产生,从而减少变形的可能性。

•采用脉冲焊接技术:脉冲焊接技术可以使焊接电流周期性变化,从而降低焊接热输入。

这种技术可以减少焊接热量和热膨胀,有效控制焊接变形。

•使用预热和间歇焊接:在焊接之前,可以对焊接接头进行预热,以提高材料的可塑性和焊接质量。

间歇焊接是指在焊接过程中,将焊接接头暂停冷却一段时间,再继续焊接。

这种方法可以有效控制焊接热输入,减少变形。

3. 优化焊接顺序焊接顺序是影响焊接变形的另一个重要因素。

不同焊接顺序会导致不同的温度梯度和热应力,进而影响变形的大小和方向。

因此,优化焊接顺序是控制焊接变形的一项重要措施。

以下是优化焊接顺序的方法:•从焊接应力较小的区域开始焊接:焊接过程中,焊接接头会受到热应力的影响,从而引起变形。

通过从焊接应力较小的区域开始焊接,可以减少焊接接头受力不均匀引起的变形。

•分割大尺寸焊接接头:对于大尺寸的焊接接头,可以将其分割成若干个小接头进行焊接。

这样可以减少焊接接头的热输入,降低焊接变形的风险。

•控制焊接速度和温度:在焊接过程中,合适的焊接速度和温度可以减少焊接接头的热输入,进而减少焊接变形。

控制焊接变形的工艺措施

控制焊接变形的工艺措施

控制焊接变形的工艺措施焊接变形是焊接过程中普遍存在的问题,它可能导致焊接件的尺寸、形状和性能不符合要求。

为了控制焊接变形,可以采取一系列的工艺措施。

首先,选择合适的焊接方法和工艺参数是控制焊接变形的关键。

不同的焊接方法有不同的热输入和热效应,因此应根据具体情况选择合适的焊接方法。

此外,在确定焊接方法后,还需要合理选择焊接电流、电压、焊接速度等参数,以控制焊接热量的输入和分布,从而减少变形的产生。

其次,采用适当的预热和焊后热处理是控制焊接变形的有效手段之一。

预热可以提高焊接零件的温度,减轻热应力,从而降低变形的风险。

而焊后热处理则可以通过控制钢材的组织状态和应力分布,减少焊接件的变形。

预热和焊后热处理需要根据材料的特性以及焊接情况,制定相应的温度和时间控制方案。

此外,合理安排焊接顺序和焊接顺序也是控制焊接变形的重要措施。

将焊接分为多道次进行,可以减少热应力的积累,并且逐渐平衡焊接件的应力分布,降低变形的程度。

此外,在进行多道次焊接时,还可以通过合理的交替焊接顺序,进一步控制热应力的分布,减小变形的尺寸。

最后,选择适当的夹具和支撑方式也能有效控制焊接变形。

夹具和支撑物可以稳定焊接件,固定其形状,减少变形的风险。

通过合理设计夹具和选择适当的支撑方式,可以提供足够的支撑和约束,使焊接件在焊接过程中保持稳定和正确的位置。

综上所述,控制焊接变形的工艺措施包括选择合适的焊接方法和工艺参数、采用预热和焊后热处理、合理安排焊接顺序和焊接顺序,以及选择适当的夹具和支撑方式。

通过综合应用这些措施,可以有效地减小焊接变形,提高焊接件的质量和性能。

焊接变形的原因及控制方法

焊接变形的原因及控制方法焊接变形是指焊接过程中产生的结构形状、尺寸和应力的改变。

变形对于焊接结构的质量和使用寿命都具有重要影响,因此需要采取控制措施来减少焊接变形。

1.熔融区的体积收缩:在焊接中,熔融区的温度升高,熔化的金属液体会发生体积收缩。

当焊接过程中发生多次的局部加热和熔化,熔融区收缩现象将会导致焊接件变形。

2.焊接应力:焊接过程中形成的焊接应力是导致焊缝及周边材料变形的重要原因。

焊接引起的应力主要有热应力和残余应力两种。

3.材料的热物理性质差异:焊接过程中,不同材料的热膨胀系数和热传导系数的差异也会导致焊件变形。

为了控制焊接变形,可以采取以下方法:1.合理设计焊接结构:通过合理设计焊接结构,可以减轻焊接变形产生的程度。

例如,在设计焊接结构时可以采用对称组织,增加长交叉焊缝间的连接来减轻焊接变形。

2.使用焊接工艺参数:调整焊接工艺参数,如焊接速度、焊接电流和电压等,可以减少焊接变形。

例如,在焊接速度控制方面,可以采用逆向焊接、速度波动焊接和脉冲焊接等方法来减少焊接变形。

3.采用预应力:对焊接材料进行预应力处理可以减少焊接变形的产生,常见的方法有热拉伸和压力留置法。

4.使用夹具和支撑物:采用夹具和支撑物对焊接结构进行支撑和固定,可以减少焊接变形的产生。

夹具可以限制材料的收缩和变形,支撑物能够提供必要的支撑力和刚度。

5.控制焊接热输入:通过控制焊接热输入来减少焊接变形。

可以采用分段焊接、小电流多道焊、局部加热等方法来降低焊接区域的温度梯度。

总之,焊接变形是焊接过程中难以避免的问题,但通过合理的设计和控制参数的调整,可以有效减少焊接变形的产生,提高焊接结构的质量和可靠性。

钢结构焊接变形的成因及控制方法

钢结构焊接变形的成因及控制方法焊接对钢结构来说是一把双刃剑,既成就了钢结构建设的快速,也会极大地影响钢结构的质量。

钢结构在焊接过程中出现变形是不可避免的,但可以通过合理的作业措施来控制。

今天我们来了解一下焊接变形的成因是什么,有哪些控制方法?焊接变形的成因及控制方法顺口溜焊接变形危害大,控制变形料工设;材料特性影响大,低膨高弹变形小;工艺参数要明确,焊接方法要正确;薄板焊接小电流,厚板多道均匀焊;结构设计要简单,板材可用型钢代;厚板代替薄板件,减少肋板焊缝少;焊道应该对称走,应力抵消变形小;控制变形方法多,参数设计找诀窍;反变拘束最常用,留够余量防缩变;复杂结构单元化,拼接总装形变小;焊缝结构不对称,少缝起焊最有效;焊缝对称不用烦,偶数工人同时焊;长缝焊接变形大,双人对称退焊法;单人焊接亦可行,分段跳焊最实用;认清形变其本质,解决问题不用烦;实践经验最重要,大家都应要记牢。

变形的种类01线性变形1.纵向变形:是焊缝纵向收缩引起的;2.横向变形:是焊缝横向收缩引起的;02角变形贴角焊缝上层焊量大,收缩量很大,因此角变形主要是焊缝在其高度方向横向收缩不均匀引起的。

03弯曲变形对丁字型截面,焊缝收缩对重心有偏心距,因而使截面向上弯曲,所以弯曲变形是偏心焊缝的纵向收缩引起的。

04扭转变形钢结构焊接过程中,有些特殊的结构形式会出现波浪线型或螺线型变形即为扭转变形,其成因较为复杂。

焊接变形的影响因素焊接变形产生的主要原因是由于焊接过程中对焊件进行了局部的不均匀加热,以及随后的不均匀冷却作用和结构本身或外加的刚性拘束作用,通过力,温度和组织等因素,从而在焊接接头区产生不均匀的收缩变形。

011)材料因素主要是由于材料本身的物理特性造成的,尤其是材料的热膨胀系数以及屈服极限还有弹性模量等对材料的作用,膨胀系数越大的材料其焊接变形量就越大,弹性模量增大焊接变形随之减少,而屈服极限大的则会造成较高的残余应力造成变形增大。

焊接变形原因及控制方法

焊接变形原因及控制方法焊接是一种常见的金属连接方法,但在实际应用中,我们常常会遇到焊接件变形的问题。

本文将探讨焊接变形的原因以及控制方法,帮助读者更好地理解和解决这一问题。

一、焊接变形的原因1. 焊接过程中的温度梯度:焊接时,焊缝区域受到高温的加热,而其它部位则保持较低的温度。

这种温度梯度会导致焊接件产生热应力,从而引起变形。

2. 残余应力的存在:焊接后,冷却过程中会产生残余应力。

这些应力会引起焊接件的变形,尤其是在焊接接头附近。

3. 材料的物理性质:不同材料在焊接过程中会由于热影响区域的不同导致不同的变形情况。

例如,具有较高热膨胀系数的材料在焊接后更容易发生变形。

二、焊接变形的控制方法1. 优化焊接工艺:通过合理安排焊接顺序、增加焊缝长度等方式来减小温度梯度,从而降低焊接变形的发生。

2. 使用预应力技术:在焊接过程中引入预应力,可以通过反向应力来抵消残余应力,从而减小焊接件的变形。

3. 控制焊接变形方向:合理预测焊接变形的方向,并采取相应的措施来控制变形。

例如,在设计中合理选择焊接结构和间隙,减小焊接残余应力对结构的影响。

4. 应用补偿技术:通过在焊接过程中进行额外的加工,例如机械加工或热处理等,来消除或减小焊接变形。

5. 使用支撑和夹具:通过设置支撑物或夹具来限制焊接件的变形,保持其形状和位置。

6. 使用适合的焊接方法:不同的焊接方法具有不同的变形控制效果。

在实际应用中,应根据具体情况选择适当的焊接方法,以减小焊接变形。

三、小结焊接变形是焊接过程中常见的问题,其产生原因主要包括温度梯度、残余应力和材料的物理性质。

为了控制焊接变形,我们可以通过优化焊接工艺、使用预应力技术、控制变形方向、应用补偿技术、使用支撑和夹具以及选择适合的焊接方法等方式进行控制。

只有在理解了焊接变形的原因并采取相应的措施后,我们才能更好地解决这一问题,并获得满意的焊接结果。

通过本文的探讨,相信读者对焊接变形的原因及其控制方法有了更深入的了解,这将有助于在实践中更好地应对焊接变形问题。

浅谈焊接变形的控制措施及矫正方法

浅谈焊接变形的控制措施及矫正方法摘要:结构件在焊接过程中由于局部加热而造成温度分布的不均匀,结构将不可避免地产生焊接残余变形。

焊接残余变形是影响结构设计完整性、制造工艺合理性和结构使用可靠性的关键因素。

针对焊接技术的难点,本文主要阐述实用焊接变形的影响因素及控制措施和方法。

关键词:焊接变形影响因素控制措施钢材的焊接通常会采用金属的熔化焊方法。

金属的熔化焊方法是在接头局部加热,使被焊接金属(也称母材)和填充金属加热熔化成为液体金属,形成熔池,随后冷却凝固成固态金属,使原来分开的两块钢材连接成整体。

由于焊接加热,使母材产生膨胀、冷却、熔池金属和熔合线附近母材产生收缩,因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形。

焊接完成并冷却至常温后塑性变形残留下来。

1、焊接变形的影响因素焊接变形可以分为在焊接热过程中发生的瞬态热变形和在室温条件下的残余变形。

焊接变形包括收缩变形、弯曲变形、角变形、波浪变形、错边变形、扭曲变形等基本变形形式。

影响焊接变形的因素很多,主要有材料、结构和工艺3个方面。

1.1 焊缝在结构中的位置焊缝在焊接结构中的位置不对称,往往是造成结构整体弯曲变形的主要因素。

当焊缝处在焊件中性轴的一侧时,焊件在焊后将向焊缝一侧弯曲,且焊缝距离中性轴越远,焊件就越易产生弯曲变形。

在整个焊接结构中,如中性轴两侧焊缝的数目各不同,且焊缝距中性轴的距离也各不相同,也易引起结构的弯曲变形。

1.2 材料因素的影响材料对于焊接变形的影响不仅和焊接材料有关,而且和母材也有关系。

材料的热能参数和力学性能参数都对焊接变形的产生过程有重要的影响。

其中热能参数的影响主要体现在热传导系数上,一般热传导系数越小,温度梯度越大,焊接变形越显著。

力学性能对焊接变形的影响比较复杂,热膨胀系数的影响最为明显,随着热膨胀系数的增加焊接变形相应增加。

同时材料在高温区的屈服极限和弹性模量及其随温度的变化率也起着十分重要的作用,一般情况下,随着弹性模量的增大,焊接变形随之减少而较高的屈服极限会引起较高的残余应力,焊接结构存储的变形能量也会因此而增大,从而可能促使脆性断裂,此外,由于塑性应变较小且塑性区范围不大,因而焊接变形得以减少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1 肋板盒(材质:316)图2 肋板盒焊接未改之前
3 肋板盒焊接改善之后图
4 焊接内应力消除处理肋板盒案例分析:
结构组成:侧板(400*374*1259*46*44)3部分。

316不锈钢。

MIG焊接(氩弧焊)
型坡口,单边倒角
接使侧板与底板根部母材完全熔合。

二层、三层再利用焊丝焊接;
,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。

双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。

1.5 焊接层数的影响
1)横向收缩 :在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。

2)纵向收缩 :多层焊接时,每层焊缝的热输入比一次完成的单层焊时的热输入小得多,加热范围窄,冷却快,产生的收缩变形小得多,而且前层焊缝焊成后都对下层焊缝形成约束,因此,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小
在工程焊接实践中,由于各种条件因素的综合作用,焊接残余变形的规律比较复杂,了解各因素单独作用的影响便于对工程具体情况做具体的综合分析。

所以,了解焊接变形产生的原因和影响因素,则可以采取以下控制变形的措施 :
1)减小焊缝截面积,在得到完整、无超标缺陷焊缝的前提下,尽可能采用较小的坡口尺寸 (角度和间

316不锈钢成分及机械性能
2)对屈服强度345MPa以下,淬硬性不强的钢材采用较小的热输入,尽可能不预热或适当降低预热、层间温度;优先采用热输入较小的焊接方法,如CO2气体保护焊。

3)厚板焊接尽可能采用多层焊代替单层焊。

4)在满足设计要求情况下,纵向加强肋和横向加强肋的焊接可采用间断焊接法。

5)双面均可焊接操作时,要采用双面对称坡口,并在多层焊时采用与构件中和轴对称的焊接顺序。

6)T形接头板厚较大时采用开坡口角对接焊缝。

7)采用焊前反变形方法控制焊后的角变形。

8)采用刚性夹具固定法控制焊后变形。

9)采用构件预留长度法补偿焊缝纵向收缩变形,如H形纵向焊缝每米长可预留0.5mm~0.7mm。

相关文档
最新文档