人教新课标版数学高二-人教A版数学必修5【作业】2 余弦定理
人教A版高中数学必修第二册《余弦定理》名师课件

=
+ , 所以 =
+ −
+ −
,得
所以 + − = , 所以 + =
所以△ABC是直角三角形.
= ,
.
方法归纳
判断三角形形状的思路
1、转化为三角形的边来判断
(1)△ABC为直角三角形⇔ 2 = b2 + c 2 或 b2 = 2 + c 2 或 c 2 = 2 + b2
△ 中的最大角与最小角的和为∘ .
=
典例讲授
例2、在△ABC中, = , = , =
,则
= ,sin A = .
解析
根据余弦定理,得
=
+
− =
+
得 = .由 = , − , = 及余弦定理的推论,得
变式训练
2.在△ 中,已知 = 3, = 2, ( + ) =
B.
A.4
C.3
1
,则
3
=( D )
D.
解析
由三角形内角和定理可知, = [ ° − ( + )] = −( + ) = − .
又由余弦定理,得
=
+
ቐ 2 = 2 + 2 − 2cos
2 = 2 + 2 − 2cos
2 + 2 − 2
cos =
2
2 + 2 − 2
cos =
2
#高中数学必修五:1.1.2-1《余弦定理》(人教A版必修5)

∠B=120o,求 AC
A
B
120°
解:由余弦定理得
A 2 C A 2 B B 2 C 2 A B B cC B os C
3222232co1s2o0 19
AC 19
答:岛屿A与岛屿C的距离为 19 km.
例1、在△ABC中,已知a= 6 ,b=2,c= 3 ,1
解三角形。
cosA<0,A为钝角,△ABC为钝角三角形。 练习2:在锐角△ABC中,边长a=1,b=2,
求边长c的取值范围。
解:∵coCsa2b2c2 0
a2c2b2
coBs
0
2bc
2ac
3c 5
∴
余弦定理:
推论:
a2b2c22bcco As
cos
b2 A
c2 a2 2bc
b2a2c22acco BscosBc2 a2 b2
例2、已知△ABC的三边为 7 、2、1,
求它的最大内角。
解:设三角形的三边分别为a= 7 ,b=2,c=1
则最大内角为∠A
由余弦定理得coAs b2 c2 a2
2bc
22 12
2
7
221
120
练习1:在△ABC中,已知a=12,b=8,c=6, 判断△ABC的形状。
a2b2c2
设
C a B ,C b A ,A c B
由向量减法的三角形法则得
c ab
c 2 cc (a b )(a b )
﹚
aa 2a b b2b22a ab bcoCs
a2b22ac bo C s
c2a2 b 22 acbo Cs
探 究: 若△ABC为任意三角形,已知角C,
高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用

3 ,则∠BDC= π 或 2π .
62
33
3
又由 DA=DC,则 A= π 或 π . 63
(2)若△BCD的面积为 1 ,求边AB的长.
6
解:(2)由于 B= π ,BC=1,△BCD 的面积为 1 ,
4
6
则 1 BC·BD·sin π = 1 ,解得 BD= 2 .
2
46
3
由余弦定理得 CD2=BC2+BD2-2BC·BD·cos π =1+ 2 -2× 2 × 2 = 5 ,故 CD= 5 .
2
2
2
关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边
的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是
根据题中的条件选择正确的变换方向.
即时训练 1-1:在△ABC 中,已知 AB=2,AC=2 2 ,cos B= 1 . 3
(1)求sin C的值;
3
3
3
所以 sin(B+C)= 2 10 + 2 , 99
所以 sin A= 2 10 + 2 , 99
因为 AB=2,AC=2 2 ,
因为 S= 1 AB·AC·sin A,所以 S= 8 5 4 2 .
2
9
题型二 平面图形中线段长度的计算
【例2】 如图,在平面四边形ABCD中,AD=1,CD=2,AC= 7 . (1)求cos∠CAD的值;
49
3 29
3
又 AB=AD+BD=CD+BD= 5 + 2 = 2 5 ,
33
3
故边 AB 的长为 2 5 . 3
人教A版高中数学必修五1.1.2余弦定理

,
B=45°,求b和A。
3.在△ABC中,已知
,
A=45°,求边长c,B,C。
, ,
∴b=7
练习2:
在△ABC中, a 7,b 4 3, c 13 ,求△ABC的最小角。
解: a b c C为最小角
cos C a2 b2 c2 2ab
72 (4 13)2 ( 13)2 274 3
3 2
C 300
六、作业
1.在△ABC中,已知a=7,b= 5,c=3,求A。
2.在△ABC中,已知
既可以用余弦定理,也可以用正弦定理,两种方法有
什么利弊呢?
余弦定理 正弦定理
在已知三边和一个角的情况下:求另一个角
㈠用余弦定理推论,解唯一,可以免去判断舍取。
㈡用正弦定理,计算相对简单,但解不唯一,要进行 判断舍取。
练习1:在△ABC中,已知 a 3 3, c 2, B 150°求b
解:
=31+18 =49
1.1.2 余弦定理
一、实际应用问题
隧道工程设计,经常需要测算山脚的长度,工程技术人员 先在地面上选一适当位置A,量出A到山脚B,C的距离,再利 用经纬仪(测角仪)测出A对山脚BC的张角,最后通过计算 求出山脚的长度BC。
B
C
A
二、转化为数学问题
已知三角形的两边及它们的夹角,求第三边。
例:在△ABC中,已知AB=c,AC=b,∠BAC=A 求:a(即BC).
C
b
a=?
A
c
B
三、证明问题
C
b
a=?
A
c
B
向量法:
Cbaຫໍສະໝຸດ AcB四、余弦定理
三角形中任何一边的平方等于其他两边的平方的和减去这两边与 它们的夹角的余弦的积的两倍。
2021_2022学年高中数学第一章正弦定理和余弦定理1.1.2余弦定理作业1新人教A版必修5

1.1.2余弦定理基础巩固一、选择题1.在△ABC 中,b =5,c =53,A =30°,则a 等于( ) A .5 B .4 C .3 D .10[答案] A[解析] 由余弦定理,得a 2=b 2+c 2-2bc cos A , ∴a 2=52+(53)2-2×5×53×cos30°, ∴a 2=25,∴a =5.2.在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 等于( ) A .π3B .π6C .2π3D .π3或2π3[答案] C[解析] ∵a 2=b 2+c 2+bc ,∴cos A =b 2+c 2-a 22bc =b 2+c 2-b 2-c 2-bc 2bc =-12,又∵0<A <π,∴A =2π3.3.(2014·全国新课标Ⅱ理,4)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5B . 5C .2D .1[答案] B[解析] 本题考查余弦定理及三角形的面积公式. ∵S △ABC =12ac sin B =12×2×1×sin B =12,∴sin B =22, ∴B =π4或3π4.当B =π4时,经计算△ABC 为等腰直角三角形,不符合题意,舍去.当B =3π4时,由余弦定理,得b 2=a 2+c 2-2ac cos B ,解得b =5,故选B .4.(2014·江西理,4)在△ABC 中,内角A 、B 、C 所对应的边分别为a 、b 、c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B .932C .332D .3 3[答案] C[解析] 本题考查正弦、余弦定理及三角形的面积公式.由题设条件得a 2+b 2-c 2=2ab -6,由余弦定理得a 2+b 2-c 2=ab , ∴ab =6,∴S △ABC =12ab sin π3=12×6×32=332.选C .5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 满足b 2=ac ,且c =2a , 则cos B =( ) A .14 B .34 C .24D .23[答案] B[解析] 由b 2=ac ,又c =2a ,由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+4a 2-a ×2a 2a ·2a =34.6.(2015·广东文,5)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若a =2,c =23, cos A =32,且b <c ,则b =( ) A .3 B .2 2 C .2 D . 3[答案] C[解析] 由余弦定理,得a 2=b 2+c 2-2bc cos A , ∴4=b 2+12-6b ,即b 2-6b +8=0, ∴b =2或b =4. 又∵b <c ,∴b =2.二、填空题7.以4、5、6为边长的三角形一定是________三角形.(填:锐角、直角、钝角) [答案] 锐角[解析] 由题意可知长为6的边所对的内角最大,设这个最大角为α,则cos α=16+25-362×4×5=18>0,因此0°<α<90°. 8.若2、3、x 为三边组成一个锐角三角形,则x 的取值范围为________. [答案] (5,13)[解析] 长为3的边所对的角为锐角时,x 2+4-9>0,∴x >5, 长为x 的边所对的角为锐角时,4+9-x 2>0,∴x <13, ∴5<x <13.三、解答题9.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b .[解析] 解法一:在△ABC 中,由A +C =2B ,A +B +C =180°,知B =60°.a +c =8,ac =15,则a 、c 是方程x 2-8x +15=0的两根.解得a =5,c =3或a =3,c =5. 由余弦定理,得b 2=a 2+c 2-2ac cos B =9+25-2×3×5×12=19.∴b =19.解法二:在△ABC 中,∵A +C =2B ,A +B +C =180°, ∴B =60°. 由余弦定理,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B=82-2×15-2×15×12=19.∴b =19.10.在△ABC 中,已知sin C =12,a =23,b =2,求边c .[解析] ∵sin C =12,且0<C <π,∴C 为π6或5π6.当C =π6时,cos C =32,此时,c 2=a 2+b 2-2ab cos C =4,即c =2. 当C =5π6时,cos C =-32,此时,c 2=a 2+b 2-2ab cos C =28,即c =27.能力提升一、选择题1.在△ABC 中,AB =3,BC =13,AC =4,则AC 边上的高为( ) A .322B .332C .32D .3 3[答案] B[解析] 由余弦定理,可得cos A =AC 2+AB 2-BC 22AC ·AB =42+32-1322×3×4=12,所以sin A =32. 则AC 边上的高h =AB sin A =3×32=332,故选B . 2.在△ABC 中,∠B =60°,b 2=ac ,则这个三角形是( ) A .不等边三角形 B .等边三角形 C .等腰三角形 D .直角三角形[答案] B[解析] 由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =12,则(a -c )2=0,∴a =c ,又∠B =60°, ∴△ABC 为等边三角形.3.在△ABC 中,三边长AB =7,BC =5,AC =6,则AB →·BC →等于( ) A .19 B .-14 C .-18 D .-19[答案] D[解析] 在△ABC 中AB =7,BC =5,AC =6, 则cos B =49+25-362×5×7=1935.又AB →·BC →=|AB →|·|BC →|cos(π-B ) =-|AB →|·|BC →|cos B =-7×5×1935=-19.4.△ABC 的三内角A 、B 、C 所对边的长分别为a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则C 的大小为( ) A .π6B .π3C .π2D .2π3[答案] B[解析] ∵p =(a +c ,b ),q =(b -a ,c -a ),p ∥q , ∴(a +c )(c -a )-b (b -a )=0, 即a 2+b 2-c 2=ab .由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,∵0<C <π,∴C =π3.二、填空题5.(2015·重庆文,13)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________. [答案] 4[解析] ∵3sin A =2sin B , ∴3a =2b ,又∵a =2,∴b =3. 由余弦定理,得c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×(-14)=16,∴c =4.6.如图,在△ABC 中,∠BAC =120°,AB =2,AC =1,D 是边BC 上一点,DC =2BD ,则AD →·BC →=________.[答案] -83[解析] 由余弦定理,得BC 2=22+12-2×2×1×(-12)=7,∴BC =7,∴cos B =4+7-12×2×7=5714.∴AD →·BC →=(AB →+BD →)·BC →=AB →·BC →+BD →·BC → =-2×7×5714+73×7×1=-83.三、解答题7.已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积. [解析] 如图,连结AC .∵B +D =180°,∴sin B =sin D .S 四边形ABCD =S △ABC +S △ACD =12AB ·BC ·sin B +12AD ·DC ·sin D =14sin B .由余弦定理,得AB 2+BC 2-2AB ·BC ·cos B =AD 2+DC 2-2AD ·DC ·cos D , 即40-24cos B =32-32cos D .又cos B =-cos D , ∴56cos B =8,cos B =17.∵0°<B <180°,∴sin B =1-cos 2B =437. ∴S 四边形ABCD =14sin B =8 3.8.设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且a +c =6,b =2,cos B =79.(1)求a 、c 的值; (2)求sin(A -B )的值.[解析] (1)由余弦定理,得b 2=a 2+c 2-2ac cos B 得,b 2=(a +c )2-2ac (1+cos B ),又已知a +c =6,b =2,cos B =79,∴ac =9.由a +c =6,ac =9,解得a =3,c =3. (2)在△ABC 中,∵cos B =79,∴sin B =1-cos 2B =429. 由正弦定理,得sin A =a sin Bb =223,∵a =c ,∴A 为锐角,∴cos A =1-sin 2A =13.∴sin(A -B )=sin A cos B -cos A sin B =223×79-13×429=10227.9.在△ABC 中,角A 、B 、C 所对边分别为a 、b 、c 且a =3,C =60°,△ABC 的面积为332,求边长b 和c .[解析] ∵S △ABC =12ab sin C ,∴332=12×3b ×sin60°=12×3b ×32, ∴b =2.由余弦定理,得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×cos60° =9+4-2×3×2×12=7,∴c =7.。
高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5

∴A=60°,C=180°-(A+B)=75°.
探究 2 已知三边(三边关系)解三角形 例 2 (1)在△ABC 中,若 a=7,b=4 3,c= 13,则 △ABC 的最小角为( )
πππ π A.3 B.6 C.4 D.12 (2)在△ABC 中,角 A,B,C 的对边分别为 a,b,c, 已知 a-b=4,a+c=2b,且最大角为 120°,求此三角形的 最大边长. 答案 (2)见解析
2.做一做
(1)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c, 5π
若 a=1,b= 7,c= 3,则 B=____6____. (2) 已知 △ABC 的 三边 分 别为 2,3,4 , 则此 三 角形是
___钝__角___三角形.
π (3)在△ABC 中,若 a2+b2-c2=ab,则角 C 的大小为 ___3_____.
解析 (1)因为 c<b<a,所以最小角为角 C. 所以 cosC=a2+2ba2b-c2=429×+74×8-4 133= 23, 所以 C=π6,故选 B.
(2)已知 a-b=4,且 a>b,且 a=b+4,又 a+c=2b, 则 b+4+c=2b,所以 b=c+4,则 b>c,从而 a>b>c,所以 a 为最大边,A=120°,b=a-4,c=a-8.
解 利用边的关系判断, 由正弦定理,得sinC=c,
sinB b 由 2cosAsinB=sinC,得 cosA=2ssininCB=2cb, 又 cosA=b2+2cb2c-a2,∴2cb=b2+2cb2c-a2,即 a=b.
又(a+b+c)(a+b-c)=3ab,∴(a+b)2-c2=3ab, ∴b=c, 综上 a=b=c,∴△ABC 为等边三角形.
高中数学《1.1.2 余弦定理》教案 新人教A版必修5

课题:1.1.2余弦定理
高二数学教·学案
【学习目标】
1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。
2.利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题
【学习重点】余弦定理的发现和证明过程及其基本应用;
【学习难点】勾股定理在余弦定理的发现和证明过程中的作用。
【授课类型】新授课
【教具】课件、电子白板
高二数学教·学案
课后反思:。
人教版高中数学必修5(A版) 1.1.2《余弦定理》 PPT课件

A
c a
B
C
余弦定理:
三角形中任何一边的平方等于其他 两边的平方的和减去这两边与它们的夹 角的余弦的积的两倍.
余弦定理:
三角形中任何一边的平方等于其他 两边的平方的和减去这两边与它们的夹 角的余弦的积的两倍. 即:
a b c 2bc cos A 2 2 2 b a c 2ac cos B 2 2 2 c a b 2ab cos C
复习引入
运用正弦定理能解怎样的三角形?
A
C
B
复习引入
运用正弦定理能解怎样的三角形? ①已知三角形的任意两角及其一边; ②已知三角形的任意两边与其中一边 的对角.
A C B
情境设置
问题1:
如果已知三角形的两边及其夹角, 根据三角形全等的判定方法,这个三 角形是大小、形状完全确定的三角形. 从量化的角度来看,如何从已知的两 边和它们的夹角求三角形的另一边和 两个角?
练习:
教材P. 8练习第1题. 在△ABC中,已知下列条件,解三角
形(角度精确到1 , 边长精确到0.1cm):
(1) a=2.7cm,b=3.6cm,C=82.2 ; (2) b=12.9cm,c=15.4cm,A=42.3 .
o o
o
课堂小结
1. 余弦定理是任何三角形边角之间存在 的共同规律,勾股定理是余弦定理的特 例; 2. 余弦定理的应用范围: ①已知三边求三角; ②已知两边及它们的夹角,求第三边.
思考4:
勾股定理指出了直角三角形中三边 平方之间的关系,余弦定理则指出了一 般三角形中三边平方之间的关系,如何 看这两个定理之间的关系?
思考4:
勾股定理指出了直角三角形中三边 平方之间的关系,余弦定理则指出了一 般三角形中三边平方之间的关系,如何 看这两个定理之间的关系?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业2 余弦定理
时间:45分钟 分值:100分
一、选择题(每小题6分,共计36分)
1.在△ABC 中,a =4,b =4,C =30°,则c 2等于( ) A .32-16 3 B .32+16 3 C .16
D .48
解析:由余弦定理得c 2=a 2+b 2-2ab cos C =42+42-2× 4×4×3
2=32-16 3.
答案:A
2.在△ABC 中,a 2-c 2+b 2=-3ab ,则角C =( ) A .60° B .45°或135° C .150°
D .30°
解析:cos C =a 2+b 2-c 22ab =-3ab 2ab =-32. ∵0°<C <180°,∴C =150°. 答案:C
3.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( )
A.π3
B.π6
C.π4
D.π12
解析:∵c <b <a ,
∴最小角为角C .
∴cos C =a 2+b 2-c 22ab =49+48-132×7×43=3
2.
∴C =π
6,故选B. 答案:B
4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c 满足b 2=ac ,且c =2a ,则cos B =( )
A.14
B.34
C.24
D.23
解析:因为b 2=ac 且c =2a ,由余弦定理:cos B =a 2+c 2-b 2
2ac =a 2+c 2-ac 2ac =a 2+4a 2-2a 24a 2
=3
4,故选B. 答案:B
5.在△ABC 中,AB =5,AC =3,BC =7,则AB →·AC →等于( ) A.152 B .-152 C.1532
D .15
解析:∵cos A =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-1
2, ∴AB →·AC →=|AB →|·|AC →|·cos A =5×3×(-12)=-15
2,故选B.
答案:B
6.△ABC 中,下列结论:①a 2>b 2+c 2,则△ABC 为钝角三角形;②a 2=b 2+c 2+bc ,则A 为60°;③a 2+b 2>c 2,则△ABC 为锐角三角形;④若A :B :C =1:2:3,则a :b :c =1:2:3,其中正确的个数为( )
A .1个
B .2个
C .3个
D .4个
解析:①∵cos A =b 2+c 2-a 2
2bc <0, ∴A 为钝角,正确; ②∵cos A =b 2+c 2-a 22bc =-1
2, ∴A =120°,错误; ③∵cos C =a 2+b 2-c 2
2ab >0,
∴C 为锐角,但A 或B 不一定为锐角,错误; ④∵A =30°,B =60°,C =90°, ∴a :b :c =1:3:2,错误.故选A. 答案:A
二、填空题(每小题8分,共计24分)
7.在△ABC 中,a 2
+b 2
<c 2
,且sin C =3
2,则C =________.
解析:由余弦定理cos C =a 2+b 2-c 2
2ab <0,知C 是钝角. ∴由sin C =3
2得C =120°.
答案:120°
8.已知等腰三角形的底边长为6,一腰长为12,则顶角的余弦值为________.
解析:设顶角为A ,则cos A =b 2+c 2-a 22bc =122+122-622×12×12=78.
答案:78
9.在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是________.
解析:∵c 2=a 2+b 2-2ab ·cos C =1+4-4cos C =5-4cos C , 又∵0<C <π2,
∴cos C ∈(0,1).∴c 2∈(1,5). ∴c ∈(1,5). 答案:(1,5) 三、解答题(共计40分)
10.(10分)在△ABC 中,C =2A ,a +c =10,cos A =3
4,求b . 解:由正弦定理得 c a =sin C sin A =sin2A
sin A =2cos A , ∴c a =3
2.又a +c =10,∴a =4,c =6. 由余弦定理a 2=b 2+c 2-2bc cos A ,
得b 2+2012b =3
4,∴b =4或b =5. 当b =4时,∵a =4,∴A =B . 又C =2A ,且A +B +C =π,
∴A =π4,与已知cos A =3
4矛盾,不合题意,舍去. 当b =5时,满足题意,∴b =5.
11.(15分)(2012·浙江卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .
(1)求角B 的大小;
(2)若b =3,sin C =2sin A ,求a ,c 的值.
解: (1)由b sin A =3a cos B 及正弦定理a sin A =b
sin B ,得 sin B =3cos B .
所以tan B =3,所以B =π
3.
(2)由sin C =2sin A 及a sin A =c
sin C ,得c =2a .
由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac . 所以a =3,c =2 3.
12.(15分)在△ABC 中,a +b =10,而cos C 的值是方程2x 2-3x -2=0的一个根,求三角形周长的最小值.
解:设三角形的另一边是c ,
方程2x 2
-3x -2=0的根是x =-1
2或x =2.
∵-1<cos C<1,∴cos C=-1
2.
由余弦定理得c2=a2+b2-2ab cos C
=a2+b2-2ab(-1
2)
=(a+b)2-ab=100-ab=100-a·(10-a)
=100+a2-10a
=75+(a-5)2.
要使三角形的周长最小,只要c最小,
当a=5时,c2最小,∴c最小,c的最小值是75=53,∴三角形周长的最小值是10+5 3.。