【飞机结构与系统】5-4_飞行辅助操纵系统

合集下载

飞机机械与系统-第五章飞行操纵系统

飞机机械与系统-第五章飞行操纵系统

上海交通职业技术学院
5.3 传动机构
• 5.3.1 硬式传动机构的主要构件
(1)传动杆
传动杆又称为拉杆。它通常采用硬铝管制成,两端有接头,
其一端的接头通常是可以调整的。在调整拉杆长度时,为了防止接
头的螺杆长度调出过多,而使螺纹的结合圈数过少,在管件端部应
有检查小孔。把传动杆调长时,接头螺杆的末端不应超过小孔的位
上海交通职业技术学院
5.3 传动机构
5.3.4 非线性传动机构
• 操纵系统中,如果没有特殊的机构来改变传动比,在舵面偏转过程中,传 动系数基本上是不变的,舵偏角A随杆行程X 的变化近似地成正比例关系, 即线性关系。
• 线性传动的操纵系统对低速飞机比较合适,但往往不能满足高速飞机的操 纵性要求,在操纵系统中设置了专门的非线性传动机构,靠它来改变整个 操纵系统的传动系数,以满足高速飞机的操纵性要求。
行姿态很快地随操纵动作而改变。要操纵灵敏,操纵系统中的各构件在工 作时的变形和构件之的间隙必须尽可能小。 3. 飞行中,当飞机机体结构应力变形时,操纵系统不应发生卡阻现象。 4. 各舵面的操纵要求互不干扰。 5. 进行操纵时,既要轻便,也要有适当的感觉力,而且这种感觉力应随舵面 偏转角度、飞行速度、飞行高度的改变而改变。要操纵轻便,操纵系统的 摩擦力必须尽可能小,即应保持各相互连接处的清洁和润滑。
性 间隙。钢索的弹性间隙太大,就会使操纵的灵敏性变差。
为了减小弹性间隙,操纵系统中的钢索在装配时都是预先拉 紧的,预先拉紧的力称为预加张力。有预先张力的钢索能减小弹 性间隙。 第一、钢索被预先拉紧后,就把各股钢丝绞紧,传动时钢索就不
容易被拉长 第二、钢索在传动中张力增加得较少
上海交通职业技术学院
5.3 传动机构

飞机系统知识点总结

飞机系统知识点总结

飞机系统知识点总结飞机是由许多复杂的系统组成的,这些系统相互配合,确保飞机的安全和性能。

本文将对飞机系统的各个方面进行总结,包括飞行控制系统、动力系统、舱内系统和通信系统等。

通过本文的阅读,读者可以对飞机系统有一个全面的了解。

一、飞行控制系统飞行控制系统是飞机的关键系统之一,它包括飞行操纵系统、飞行辅助系统和自动驾驶系统。

1. 飞行操纵系统飞行操纵系统包括操纵杆、脚蹬、副翼、升降舵和方向舵等部件。

通过这些部件,飞行员可以控制飞机的姿态、航向和俯仰。

飞机的操纵系统通常由液压系统或者电动系统驱动,确保飞机操纵的精准和灵活。

2. 飞行辅助系统飞行辅助系统是为了提高飞机的操纵性能而设计的系统。

比如说,阻尼器系统可以减小飞机的振动,减少飞机受到外部环境的影响。

此外,气动弹性补偿系统可以改善飞机的飞行品质,使得飞行更为平稳。

3. 自动驾驶系统自动驾驶系统是现代飞机的一大特色,它可以帮助飞行员更轻松地控制飞机。

自动驾驶系统可以自动调整飞机的姿态、航向和速度,减轻飞行员的负担,提高飞行的安全性。

二、动力系统动力系统是飞机的心脏,负责提供飞机的动力和推进力。

飞机的动力系统通常由发动机和推进系统组成。

1. 发动机发动机是飞机的动力来源,它可以根据不同的原理分为涡轮喷气发动机和螺旋桨发动机。

涡轮喷气发动机是现代喷气式飞机最常用的发动机,它通过燃烧燃料产生高温高压的气流,驱动涡轮产生推进力。

螺旋桨发动机则是一种传统的发动机,通过旋转螺旋桨产生推进力。

2. 推进系统推进系统包括发动机的引擎控制系统、涡轮喷气发动机的涡轮增压系统和螺旋桨发动机的传动系统。

这些系统可以有效地将发动机产生的动力传递到飞机的推进装置上,保证飞机的动力输出。

三、舱内系统舱内系统是为了提供乘客舒适和飞行员工作环境而设计的系统,它包括气压控制系统、空调系统和供氧系统等。

1. 气压控制系统在飞行高度较高的情况下,大气压会急剧下降,可能导致乘客和机组人员出现高原反应。

飞机操纵系统的组成

飞机操纵系统的组成

飞机操纵系统的组成
飞机操纵系统由主操纵系统和辅助操纵系统组成。

主操纵系统主要用于控制飞机的升降舵、副翼和方向舵,而辅助操纵系统则包括调整片、襟翼、减速板、可调安定面和机翼变后掠角操纵机构等,用于控制飞机的运动状态。

主操纵系统通过驾驶杆和脚蹬来控制飞机的升降舵、副翼和方向舵的操纵机构,以控制飞机的飞行轨迹和姿态。

中央操纵机构由驾驶杆和脚蹬组成,通过传动装置直接偏转舵面,传递操纵信号。

辅助操纵系统则包括调整片、襟翼、减速板、可调安定面和机翼变后掠角操纵机构等。

这些机构仅靠驾驶员选择相应开关、手柄位置,通过电信号接通电动机或液压作动筒来完成操作。

此外,机械操纵系统还包括驾驶员通过机械传动装置直接偏转舵面的部分。

这种系统由两部分组成:位于驾驶舱内的中央操纵机构和构成中央操纵机构和舵面之间机械联系的传动装置。

飞机操纵系统的组成因飞机类型和设计而异,但上述部分是常见于现代飞机的操纵系统的重要组成部分。

随着技术的发展,一些新型的飞机还采用了电传操纵系统和主动控制技术等更先进的技术。

第五章 飞行操纵系统

第五章 飞行操纵系统

第三节 助力机械操纵系统
助力机械操纵系统的提出
舵面铰链力矩是随舵面尺寸和飞行速压的增加而增加! 当舵面铰链力矩变得很大时,即使利用当时的空气动力补偿法,也不能使驾 驶杆(脚蹬)力保持在规定的范围之内:
1. 研究效率更高的空气动力补偿; 2. 研究液压助力器,以实现液压助力操纵!
助力机械操纵系统的分类
钢索承受拉力时,容易伸长。由于操纵系统的弹性变形而产 生的“间隙”称为弹性间隙; 钢索的弹性间隙太大,会降低操纵的灵敏性; 钢索预紧(施加予张力)是减小弹性间隙的措施! 常见故障:断丝与锈蚀,主要部位是滑轮或导索板处。
几个注意问题: 1、为了改善软式操纵系统的灵敏性,钢索在未安 装之前,必须用相当于设计强度50%~60%的力进 行予拉伸处理; 2、装在飞机上的钢索必须根据周围温度的高低而 保持一定的予张力; 3、在飞机主操纵系统中,可以使用的钢索最小直 径是1/8英寸; 4、钢索不可气割,不可焊接,只能用钢索剪剪断 或用錾子錾断; 5、在改变钢索方向不大于 3º的情况下,可以使用 导索板或导索环。
中央操纵机构—手操纵机构
驾驶杆式手操纵机构
推拉驾驶杆操纵升降舵; 左右压杆操纵副翼!
横纵向操纵的独立性
驾驶杆要操纵升降舵和副翼, 但两者不会互相干扰!
独 立 性 分 驾驶杆左右摆时,传动杆沿着以b-b线为中 析 心轴,以c点为顶点的锥面运动;
由于圆锥体的顶点c到底部周缘上任一点的 距离相等,所以当驾驶杆左右摆动时,摇 臂1不会绕其支点前后转动,因而升降舵不 会偏转!

操纵系统
主操纵系统
副翼
升降舵
辅助操纵系统
前缘襟翼缝翼
后缘襟翼 扰流板 水平安定面
警告系统

《飞行操纵系统》课件

《飞行操纵系统》课件

THANKS
感谢观看
飞行员通过Байду номын сангаас纵杆、脚蹬等输入装置 ,将控制指令传递给飞行操纵系统, 以改变飞机的飞行姿态和轨迹。
它包括主操纵系统和辅助操纵系统, 主操纵系统包括升降舵、方向舵和副 翼,辅助操纵系统包括襟翼、缝翼和 起落架收放机构等。
飞行操纵系统的动力学基础
飞行操纵系统的动力学基础包 括空气动力学和飞行力学。
空气动力学是研究气体流动和 物体在气体中运动的科学,它 为飞行操纵系统的设计和性能 提供了理论基础。
分类
根据飞行器类型和设计需求的不同,飞行操纵系统有多种分类方式。例如,按照传力介质的不同,可以分为机械 式操纵系统、液压式操纵系统和电气式操纵系统等;按照控制方式的不同,可以分为助力操纵系统和主动控制系 统等。
发展历程与趋势
发展历程
飞行操纵系统的发展经历了多个阶段,从早期的机械操纵系统到现代的电传操纵系统和 主动控制系统。随着科技的不断进步,飞行操纵系统的性能和安全性得到了极大的提升
权限管理与安全认证
限制飞行员对系统的操作权限,防止误操作或 恶意干扰。
自适应容错控制
在系统发生故障时,自动调整控制策略,降低故障对飞行安全的影响。
05
飞行操纵系统的应用与案例分析
飞行操纵系统在无人机中的应用
1 2 3
无人机飞行操纵系统概述
无人机飞行操纵系统是无人机控制的重要组成部 分,负责无人机的起飞、巡航、降落等操作。
飞行操纵系统的传感器
01
02
03
04
角位移传感器
检测飞行员的操纵角度,转换 为电信号。
力矩传感器
检测飞行员施加在操纵杆上的 力矩,转换为电信号。
侧杆传感器

第五章 飞机飞行操纵系统

第五章 飞机飞行操纵系统
飞机结构与系统
Page34
五、飞机飞行操纵系统的传动系数、传动比及非线 性传动机构
㈠ 操纵系统的传动系数 舵偏角△δ与杆位移△X的比值
飞机结构与系统
Page35
㈡ 操纵系统的传动比
飞机结构与系统
Page36
㈢ 改变传动比和传动系数的机构 ——非线性传动机构
❖传动系数不变的操纵系统, 不能满足对飞机操纵性的要求:
飞机结构与系统
Page50
颤振
弹性结构在气动力 和惯性及自身弹性 结构力的作用下, 由于作用力相互耦 合而形成的剧烈自 激振动。
飞机结构与系统
Page51
颤振的形式
机翼弯曲扭转颤振 机翼弯曲-舵面偏转颤振 操纵面本身颤振
飞机结构与系统
Page52
机翼的弯扭颤振 • 由于机翼扭转而产生激振力
飞机结构与系统
脚操纵机构有脚蹬平放式和脚蹬立放式两种。
飞机结构与系统
Page18
㈡ 脚操纵机构
脚操纵机构有脚蹬平放式和脚蹬立放式两种。 脚蹬平放式脚操纵机构
平行四边形机构保证脚蹬只做平移而不转动
飞机结构与系统
Page19
脚蹬立放式脚操纵机构
之一
飞机结构与系统
之二
Page20
四、传动机构的构造和工作原理 四、传动机构的构造和工作原理
飞机结构与系统
Page22
摇臂的作用
• 支持传动杆 • 改变传动力的大小 • 改变位移 • 改变传动速度 • 改变传动方向 • 实现差动操纵
飞机结构与系统
2、摇臂 摇臂通常由硬铝材料制成,在与传动杆和支
座的连接处都装有轴承。
⑴ 放大或缩小力的作用
飞机结构与系统
nF

飞机结构与系统

飞机结构与系统

4.
主要应用于副翼和升降舵构造,也称为副翼平衡板
5. 和升降舵平衡板。
副翼平衡板
飞行操纵与传动机构
3. 内封补偿
三、舵面补偿装置
飞行操纵与传动机构
三、舵面补偿装置
4. 随动补偿片 安装在舵面后缘,
不能单独操纵。
飞行操纵与传动机构
三、舵面补偿装置
5. 反补偿片 多用于方向舵,与方
向舵同向偏转,以增加 方向舵效能。
1〕配平调整片
9.
舵面后缘的活动
小片,可以在飞行中操
纵。
10. 减少、消除操纵力;
11. 控制飞机姿态。
飞行操纵与传动机构
三、舵面补偿装置
6. 调整片
7.
2〕伺服调整片〔
操纵〕
8.
舵面后缘的活
动小片,直接和操纵系
统的操纵摇臂连接,驾
驶员直接操纵的不是舵
面,而是伺服调整片。
主操纵系统
一、副翼操纵系统 横向〔滚〕运动
求,稳定性缺乏; 7. 将人工操纵系统与自动控制系统结合,参加增稳系统。 8. 增稳系统操纵权限为 9. 舵面全权限的3%~6%。
飞行操纵系统概述
四、飞机主操纵系统的开展
5. 具有控制增稳功能的全助力操纵系统 • 将飞行员操纵驾驶杆的指令信号变换为电信号, 并经过一定处理后引入到增稳系统; • 可以较好解决操纵性和稳定性的矛盾; • 控制增稳权限增大到30%。

飞机横滚稳定性强
于偏航稳定性时发生的的
横侧短周期振荡,是一种
同时既偏航又滚转的横航
向耦合运动。
主操纵系统
➢ 偏航阻尼器
四、方向舵操纵系统
• 偏航阻尼器系统使飞机沿飞机的偏航〔垂直〕轴 保持稳定。在飞行过程中,偏航阻尼器给出指令使 方向舵与飞行的偏航力矩成比例并与其相反的方向 挪动。这样可以保持不需要的偏航挪动为最小并使 飞行平滑。

民航—飞机结构与系统-----复习资料

民航—飞机结构与系统-----复习资料

基本名词:1、飞机过载:就是飞机在某飞行状态的升力与重力的比值。

4、飞机结构强度试验包括哪些内容?飞机结构强度试验包括静力试验、动力试验和飞行试验。

5、简述结构安全系数确定的基本原则。

原则是既保证结构有足够的强度,刚度又使重量最轻,目前飞机的受力结构主要使用铝合金材料,其强度极限约为比例极限的1.5倍。

6、薄壁结构:骨架加蒙皮,以骨架为基础的一种结构形式,强度、刚度大,重量轻,广泛应用在飞行器上。

7、机翼激振力:机翼扭转产生加剧弯扭振动的附加升力。

8、主操纵系统:是实施对副翼、升降舵和方向舵的操纵,供飞行员操纵飞机绕纵轴、横轴和立轴转动,改变或保持飞机的飞行状态。

10、增升装置:提高飞机起降(低速)时的升力特性的装置,主要有前缘襟翼和后缘襟翼11、操纵力感觉装置:操纵力感觉装置也叫载荷感觉器或加载机构,是为操纵杆提供定中力和模拟感力的装置。

12、座舱热载荷:维持座舱内温度恒定时,单位时间内传入或传出座舱的净热量为座舱热载荷。

13、气动除冰——气动除冰是机械式除冰的一种,气动法是给结冰翼面前缘的除冰带充以一定压力的空气,使胶带膨胀管鼓起而破碎冰层。

14、气热防冰——将加热的空气充入防冰管道,加热翼面,从而防止结冰的一种方法。

15、液体防冰——将冰点很低的液体喷洒在防冰部位,使其与过冷水滴混合后冰点低于表面温度而防止结冰16、国际防火协会将着火分为三类:A类指的是:纸、木材、纤维、橡胶及某些塑料等易燃物品。

B类指的是:——汽油、煤油、滑油、液压油、油脂油漆、溶剂等易燃液体着火着火;C类指的是:——供电与用电设备断路、漏电、超温、跳火等引发的着火;基本概念:4、飞机过载包括设计结构强度时规定的设计过载、飞行时允许的使用过载和随飞行状态变化实际过载。

5、为检查飞机结构在设计的使用条件下能否达到设计的承载能力,必须进行强度刚度试验,刚度试验包括静力试验、动力试验和飞行试验。

6、飞机载荷按其产生及作用特点可分为飞行载荷、地面载荷和座舱增压载荷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5-4 飞行辅助操纵系统
辅助操纵系统功用
• 改善操纵性 • Biblioteka 高飞机飞行性能辅助操纵系统包括
• 配平操纵 • 增升装置 • 扰流板
配平操纵
• 对无助力机械操纵的飞机,配平操纵是指对配平调整片的操纵。 • 对液压助力操纵的飞机,配平操纵是指减小或消除操纵力。
配平操纵
• 横滚配平操纵 • 通常由电门或旋钮控制配平电机。 • 被操纵的通常是感力定中配平机构。 • 重新定中,从而减小或消除操纵力。 • 方向配平操纵 • 与横滚类似。 • 主要用于单发飞行。
大型运输机增升系统
• 通常包括后缘襟翼、前缘缝翼,有时还有前缘襟翼(克努格襟翼)。 • 通常由襟翼手柄统一控制。 • 正常为液压收放,备用为电动或液压,前缘装置备用放下不能收上。 • 由襟翼指位表、灯、图形等指示。
大型运输机增升系统
增升装置的操纵
•起飞前根据要求放襟翼 •必须通过襟翼指位表(而不是襟翼手柄位 置)来判断襟翼实际位置 •如果未放好襟翼,起飞时可能导致飞机失 速 •某些大型客机在没有放好襟翼情况下推油 门起飞,可能导致起飞形态警告 •起飞后按速度计划收襟翼 •爬升、巡航、下降通常不放襟翼
• 1.俯仰操纵系统操纵机构、操纵原理、操纵方 法的讲解和演示; • 2.偏航操纵系统操纵机构、操纵原理、操纵方 法的讲解和演示; • 3.横向操纵系统操纵机构、操纵原理、操纵方 法的讲解和演示; • 4.配平调整片识别、工作原理讲解和操纵讲解 与演示,调整片指示; • 5.襟翼位置、型式、工作原理、操纵方法讲解 和演示。
表,确定襟翼是否放到要求 的位置。
襟翼差动及其保护
• 襟翼差动的概念 • 两边襟翼放下角度明显不一致。 • 危害 • 飞机横滚; • 横侧控制困难甚至无法控制; • 如控制不及时,极易导致飞行事故。
襟翼差动及其保护
• 襟翼差动保护 • 当襟翼放下时如两边出现差动并达到大约5度时,差动保护装置
使襟翼停止放下。
综合演示器实习注意事项
• 1.不要随意攀爬飞机 2.严格按程序和规定操纵 • 确认地线接地良好 • 确保运动部件附件无人 • 3.驾驶舱门很重,易滑脱(可抛离式舱盖) • 舱门打开方向的地面不能有人 • 4.注意舱内、舱外人员间的协调和配合 • 随时听从指挥 • 5.爱护飞机和设备 • 6.先注意观看老师演示,然后再实习。
增升装置的操纵
•进近时在适当时候按照速度计划放襟翼 •一旦复飞 •应按程序收襟翼到复飞要求位置。 •若出现“襟翼差动”或“部分或全部襟 翼放不下”或结冰等非正常情况时 •首先应控制住飞机姿态; •然后按相应机型QRH(快速检查单)处置。
飞机扰流板
•飞行扰流板的功用 •辅助副翼 •副翼上偏边成比例放出。 •当减速板用 •两边同时放出,减速或下降率增加。 •帮助刹车减速 •在地面,两边同时上偏最大角度。 •降低机翼突风载荷 •两边扰流板随过载变化快速收放。
飞机扰流板
•地面扰流板 •只能在地面帮助刹车减速。
本课小结
基本概念 襟翼不对称保护
基本问题 ◆水平安定面配平方式及控制顺序? ◆襟翼控制与指示?什么是襟翼不对称保护? ◆扰流板的功用? ◆现代运输机起飞形态警告有哪些? ◆偏航阻尼器、马赫数配平、突风载荷降低系 统、失速警告系统的功用?
飞机综合演示器演示和实习
配平操纵方法
• 与主操纵同方向转动手轮或搬动电门,可减小或消除主操纵力。 • 当配平故障时,应立即紧握盘、杆,断开自动驾驶仪,改用人工
配平。
配平的使用
• 起飞前 • 根据重量、重心、襟翼位置等将俯仰配平设置在绿色区内 • 否则俯仰操纵困难,对大型客机,若不在绿色区域在推油门时会导致
起飞形态警告。 • 将方向舵配平设置在本机型规定的位置 • 螺旋桨飞机设置在起飞位 • 喷气式飞机设置在中立位 • 横向配平一般在中立位
配平的使用
• 起飞后各飞行阶段 • 应根据需要及时操纵配平。
增升装置
• 襟翼 • 对称地位于两边内侧机翼后缘的
增升装置。 • 小飞机襟翼一般采用电动收放。
襟翼收放系统
• 襟翼手柄(少数为弹性电门) • 常有多个位置,用于起飞、
巡航、着陆等。
襟翼收放系统
• 襟翼指位表 • 显示襟翼的实际位置。 • 收、放襟翼后一定要看指位
配平操纵
配平操纵
配平操纵
• 俯仰配平 • 由手轮、电门或自动驾驶仪控制一个或两个电动机。 • 被操纵的是可调水平安定面 • 偏转1度相当于升降舵偏转2.5~3.5度 • 配平后升降舵回中立位,以减小阻力,提高操纵性
配平操纵
配平操纵
• 俯仰配平 • 优先次序 • 人工机械手轮操纵最优先; • 人工电动其次; • 自动驾驶配平最不优先。
本课结束
• END OF THIS LESSON
相关文档
最新文档