各种圆定理总结.

合集下载

初三下册数学圆知识点定理总结

初三下册数学圆知识点定理总结

1.垂径定理及推论:如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径定理”“中径定理”“弧径定理”“中垂定理”.几何表达式举例:∵ CD过圆心∵CD⊥AB2.平行线夹弧定理:圆的两条平行弦所夹的弧相等.几何表达式举例:3.“角、弦、弧、距”定理:(同圆或等圆中)“等角对等弦”;“等弦对等角”;“等角对等弧”;“等弧对等角”;“等弧对等弦”;“等弦对等(优,劣)弧”;“等弦对等弦心距”;“等弦心距对等弦”.几何表达式举例:(1) ∵∠AOB=∠COD∴ AB = CD(2) ∵ AB = CD∴∠AOB=∠COD4.圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)(3)“等弧对等角”“等角对等弧”;(4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)(1)(2)(3)(4)几何表达式举例:(1)∵∠ACB=∠AOB∴……………(2)∵ AB是直径∴∠ACB=90°(3)∵∠ACB=90°∴ AB是直径(4)∵ CD=AD=BD∴ΔABC是RtΔ5.圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角.几何表达式举例:∵ ABCD是圆内接四边形∴∠CDE =∠ABC∠C+∠A =180°6.切线的判定与性质定理:如图:有三个元素,“知二可推一”;需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;※(3)经过圆心且垂直于切线的直线必经过切点;※(4)经过切点且垂直于切线的直线必经过圆心.几何表达式举例:(1)∵OC是半径∵OC⊥AB∴AB是切线(2)∵OC是半径∵AB是切线∴OC⊥AB(3)……………7.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线平分两条切线的夹角.几何表达式举例:∵ PA、PB是切线∴ PA=PB∵PO过圆心∴∠APO =∠BPO8.弦切角定理及其推论: 几何表达式举例:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(3)弦切角的度数等于它所夹的弧的度数的一半.(如图)(1)∵BD是切线,BC是弦∴∠CBD =∠CAB(2)∵ ED,BC是切线∴∠CBA =∠DEF9.相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项. 几何表达式举例:(1)∵PA·PB=PC·PD∴………(2)∵AB是直径∵PC⊥AB∴PC2=PA·PB10.切割线定理及其推论:(1)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;(2)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何表达式举例:(1)∵PC是切线,PB是割线∴PC2=PA·PB (2)∵PB、PD是割线∴PA·PB=PC·PD11.关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦;(2)如果两圆相切,那么切点一定在连心线上.(1)(2)几何表达式举例:(1)∵O1,O2是圆心∴O1O2垂直平分AB (2)∵⊙1 、⊙2相切∴O1 、A、O2三点一线12.正多边形的有关计算:(1)中心角αn ,半径R N ,边心距r n ,边长a n ,内角βn ,边数n;(2)有关计算在RtΔAOC中进行. 公式举例:(1) αn =;(2)几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:圆的几何定义和集合定义、弦、弦心距、弧、等弧、弓形、弓形高三角形的外接圆、三角形的外心、三角形的内切圆、三角形的内心、圆心角、圆周角、弦切角、圆的切线、圆的割线、两圆的内公切线、两圆的外公切线、两圆的内(外)公切线长、正多边形、正多边形的中心、正多边形的半径、正多边形的边心距、正多边形的中心角.二定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3.正n边形的半径和边心距把正n边形分为2n个全等的直角三角形.三公式:1.有关的计算:(1)圆的周长C=2πR;(2)弧长L=;(3)圆的面积S=πR2.(4)扇形面积S扇形=;(5)弓形面积S弓形=扇形面积S AOB±ΔAOB的面积.(如图)2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S圆柱侧 =2πrh; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S圆锥侧 =. (L=2πr,R是圆锥母线长;r是底面半径)四常识:1.圆是轴对称和中心对称图形.2.圆心角的度数等于它所对弧的度数.3.三角形的外心⇔两边中垂线的交点⇔三角形的外接圆的圆心;三角形的内心⇔两内角平分线的交点⇔三角形的内切圆的圆心.4.直线与圆的位置关系:(其中d表示圆心到直线的距离;其中r表示圆的半径)直线与圆相交⇔ d<r ;直线与圆相切⇔ d=r ;直线与圆相离⇔ d>r.5.圆与圆的位置关系:(其中d表示圆心到圆心的距离,其中R、r表示两个圆的半径且R≥r)两圆外离⇔ d>R+r;两圆外切⇔ d=R+r;两圆相交⇔ R-r<d<R+r;两圆内切⇔ d=R-r;两圆内含⇔ d<R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径”的方法加辅助线.7.关于圆的常见辅助线:已知弦构造弦心距.已知弦构造RtΔ. 已知直径构造直角.已知切线连半径,出垂直.圆外角转化为圆周角. 圆内角转化为圆周角. 构造垂径定理. 构造相似形.两圆内切,构造外公切线与垂直.两圆内切,构造外公切线与平行.两圆外切,构造内公切线与垂直.两圆外切,构造内公切线与平行.两圆同心,作弦心距,可证得AC=DB.两圆相交构造公共弦,连结圆心构造中垂线. PA、PB是切线,构造双垂图形和全等.相交弦出相似.一切一割出相似, 并且构造弦切角.两割出相似,并且构造圆周角.双垂出相似,并且构造直角.规则图形折叠出一对全等,一对相似.圆的外切四边形对边和相等. 若AD ∥BC都是切线,连结OA、OB可证∠AOB=180°,即A、O、B三点一线.等腰三角形底边上的的高必过内切圆的圆心和切点,并构造相似形.RtΔABC的内切圆半径:r=.补全半圆.AB=. AB=.PC过圆心,PA是切线,构造双垂、RtΔ.O是圆心,等弧出平行和相似. 作AN⊥BC,可证出:.。

九年级圆的定理总结

九年级圆的定理总结

九年级圆的定理总结如下:1.圆上三点确定一个圆,且确定一个唯一的圆心,该圆心是三点所连线段垂直平分线的交点。

2.垂径定理:垂直于弦的直径平分该弦,且平分该弦所对的两条弧。

3.切线判定定理:经过半径的外端并且垂直于该半径的直线是圆的切线。

4.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

5.弦心距定理:弦心距平分弦所对的弧。

6.相交弦定理:弦与直径垂直于弦的直径平分该弦,且平分该弦所对的两条弧。

7.割线定理:从圆外一点引圆的两条割线,这一点和圆心的连线平分两条割线的夹角。

8.直径所对的圆周角等于90度,90度的圆周角所对的弦是直径。

9.同圆或等圆的半径相等,直径等于半径的两倍。

10.圆是中心对称图形,对称中心是圆心。

11.如果两圆相交,那么连接两圆圆心的线段(公共弦)垂直平分两圆的连心线。

12.如果两圆相切,那么两圆的半径之和等于圆心距,或两圆半径之差等于圆心距。

13.两圆的半径之比等于圆心距之比等于两圆周长之比。

14.圆内接四边形的对角互补,内角和等于360度。

15.弧长公式:l=nπr/18016.扇形面积公式:s=1/2lr=1/2nπr²17.圆锥侧面积公式:s=1/2rl=πrl18.点P在圆O内,PA切圆O于A,则OP<PA。

19.点P在圆O上,PA切圆O于A,则OP=PA。

20.点P在圆O外,PA切圆O于A,则OP>PA。

21.从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

22.从圆外一点因圆的两条割线,这一点到割线与圆交点的两条线段长的积等于这一点到圆心的距离与圆的半径的积。

23.直线和圆相交,则有公共点;直线和椭圆相交,则有公共点;直线和双曲线相交,则有公共点;直线和抛物线相交,则有公共点;平面解析几何适用范围要熟记。

圆的定理总结

圆的定理总结

圆的定理总结圆的定理是几何学中的重要内容,它们可以帮助我们理解和解决与圆相关的各种问题。

在本文中,我们将总结几个常见的圆的定理,并解释它们的应用。

一、圆的半径与直径的关系定理圆的半径和直径是圆的两个重要元素,它们之间有一个简单的关系。

根据圆的定义,圆的直径是通过圆心的一条直线,并且直径的长度是半径的两倍。

这个定理可以用公式表示为:D=2r,其中D表示直径,r表示半径。

这个定理的应用非常广泛,特别是在计算圆的周长和面积时非常有用。

二、相交弦的性质定理当两条弦相交时,我们可以推导出一些有用的性质。

首先是相交弦的交点到圆心的距离相等。

也就是说,如果两条弦AB和CD相交于点E,那么AE和CE的长度是相等的。

其次,相交弦的长度乘积相等于它们分别到圆心的距离的乘积。

换句话说,如果AE和CE的长度分别为x和y,那么AB和CD的长度乘积等于x乘以y。

这个定理可以用于解决许多与弦和圆心距离相关的问题。

三、切线与弦的关系定理切线是与圆相切的直线,它有一些特殊的性质。

首先,切线与半径的相交点与切点之间的线段垂直。

也就是说,如果切线与半径相交于点A,切点为B,那么线段AB与切线垂直。

其次,切线与弦的相交点与切点之间的线段平分弦。

也就是说,如果切线与弦相交于点C,切点为B,那么线段CB与弦相等。

这个定理可以帮助我们解决与切线和弦相关的问题。

四、相切弦的性质定理当两条相切于圆的弦相交时,我们可以得到一些有趣的性质。

首先,相切弦的长度相等。

也就是说,如果弦AB和弦CD相切于点E,那么AE和CE的长度是相等的。

其次,相切弦的交点到圆心的距离相等。

也就是说,如果弦AB和弦CD相切于点E,那么AE和CE的长度是相等的。

这个定理可以用于解决与相切弦相关的问题。

五、圆的切线定理当一条直线与圆相切时,我们可以推导出一些有用的性质。

首先,切线与半径的相交点与切点之间的线段垂直。

也就是说,如果切线与半径相交于点A,切点为B,那么线段AB与切线垂直。

圆的定理总结

圆的定理总结

圆的定理总结圆是几何学中重要的图形之一,涉及到了许多定理和性质。

下面就圆的相关定理进行总结,希望对大家的学习有所帮助。

一、圆的基本性质与定义1. 定义:平面上距离一个确定点恒定的点的轨迹叫做圆。

2. 圆心:确定圆的位置,记作O。

3. 半径:圆心到圆上任意一点的距离,记作r。

4. 直径:通过圆心并且两端点在圆上的线段,记作d。

直径等于半径的两倍。

5. 弦:在圆上任意两点之间的线段,记作AB。

6. 弧:在圆上连结两点的部分,记作AB。

弦对应的弧为弦心弧,没有对应弦的弧为圆周弧。

7. 锐角弧、直角弧、钝角弧:锐角弧对应的锐角,直角弧对应的直角,钝角弧对应的钝角。

二、定理一:圆周角定理1. 定理:圆周角等于其对应的圆心角。

2. 证明:设角BOA为圆周角,角BDA为对应的圆心角,连接BD,AD。

由圆的性质可知,弦BD与弧BDA相切,所以角BDA为半弧BDA的一半,即∠BDA=∠BOA。

三、定理二:垂径定理1. 定理:垂直于弦的直径经过弦的中点。

2. 证明:设弦AB,弦的中点为M,作弦与直径的垂线,分别与直径交于C和D。

由中位线的性质可知,AM=BM;又由圆的性质可知,三角形ACD和BCD都是直角三角形,所以AD=BD。

因此,AM=BD=BM,即垂直于弦的直径经过弦的中点。

四、定理三:相交弦定理1. 定理:相交弦所夹的两个弧的和等于全圆的弧。

2. 证明:设弦AB和CD相交于E点,连接CE、DE和AE。

根据定理二可知,直径AE经过弦CD的中点M,所以AM=ME,由圆的性质可知,三角形AME和DME都是直角三角形,所以∠AEM=∠DEM=90°。

由于∠BEM=∠CEM=∠AEM,所以四边形ABME是一个平行四边形。

又由平行四边形的性质可知,AE=BM=CD。

因此,相交弦所夹的两个弧的和等于全圆的弧。

五、定理四:切线性质1. 定理一:切线与半径垂直。

2. 证明:设切点为A,切线为AC,作圆心O到切点的半径BO,连接AB。

圆的性质及相关定理

圆的性质及相关定理

圆的性质及相关定理圆是几何学中的一个基本概念,是由平面上所有距离等于定值的点构成的图形。

在这篇文章中,我们将探讨圆的性质及相关定理,帮助读者更好地理解和应用圆的知识。

一、圆的基本性质1. 圆心和半径:每个圆都有一个圆心和一个半径。

圆心是圆上所有点的中心位置,通常用字母O表示。

半径是从圆心到圆上的任意点的距离,通常用字母r表示。

2. 直径:直径是通过圆心的任意两点间的线段。

直径的长度等于半径的两倍。

3. 弧:圆上两点之间的弧是连接这两点的圆上的一部分。

圆上的弧可以根据其长度分为弧长和弧度。

4. 弦:弦是连接圆上任意两点的线段。

直径是最长的弦。

5. 弧度和角度:弧度是一个与圆的半径相关的度量单位,用符号rad表示。

角度是以度为单位的度量,用符号°表示。

二、圆的定理1. 切线定理:从圆外一点引一条切线,切线与半径的连线垂直。

2. 切线与弦定理:切线和弦的交点处的角等于从该点到弦的两个割线所夹的弧对应的角。

3. 弧中角定理:在同一个圆上,弧所对的圆心角相等,而弧所对的弦所夹的角则相等。

4. 圆心角定理:在同一个圆上,圆心角是其所对弧的两倍。

5. 弧长定理:同样大小的圆心角所对应的弧长相等。

6. 切割圆定理:如果有两个弧相交于圆心,它们所对的圆心角互补(和为180°)。

三、应用示例1. 计算圆的面积:圆的面积公式为A = πr²,其中A表示面积,π是一个近似值,约等于3.14,r为半径。

2. 计算圆的周长:圆的周长公式为C = 2πr,其中C表示周长,π是一个近似值,约等于3.14,r为半径。

3. 判断点是否在圆内:计算点到圆心的距离,如果小于半径,则点在圆内。

4. 判断两个圆是否相交:计算两个圆心之间的距离,如果小于两个半径之和,则两个圆相交。

总结:本文介绍了圆的基本性质和相关定理。

通过学习圆的性质,我们可以更好地理解和应用圆的知识,解决与圆相关的几何问题。

希望本文对读者有所帮助,并在几何学学习中起到指导作用。

各种圆定理总结

各种圆定理总结

各种圆定理总结各种圆定理总结圆定理,是指在圆内、圆外、圆周、圆弧、切线等圆的各个部分之间成立的一系列定理。

这些定理在几何中有广泛的应用,在解决一些复杂问题的时候也是十分常用的。

下面将会对一些重要的圆定理进行总结。

1. 垂直平分线定理在一个平面内,若过一点P作圆的两条切线,两条切线相交于点A,则AP为该点P到圆心的一条垂直平分线。

证明:如图1所示,过点P作两条切线AC、BD于圆心O处相交于点A。

连线PO,则有:∠APO = 1/2∠ACO =1/2∠BDO,但∠APO = ∠BPO(PA、PB是切线),所以∠BPO = 1/2∠BDO,由此可得PO⊥AB,即AP为AB的垂直平分线。

2. 弦长定理在圆上,从同一点出发的两条弦所夹角的大小相等,则它们所夹的弧所对应的弦的长度相等。

证明:如图2所示,从同一点A出发,过B、C作圆的两条弦,∠BAC = ∠BCA。

过AB的中点M作交于圆上的一条垂线,过AC的中点N作交于圆上的一条垂线。

由于BM = MA、CN = NA,∠AMB = ∠CNA,知∆AMB ≌ ∆CNA,从而MB = NC。

因此,AB = 2MB,AC = 2NC,即AB = AC。

3. 切割定理若有一条割线切圆于点A,圆心为O,割线与圆心的连线交割线于点B,则AO是AB的中线。

证明:如图3所示,AX为圆抛物线,圆心是O,AP为圆的半径,AP⊥OX。

设BO = x,则AB = 2x,PB = x,OP = r。

则有AP^2=AO^2-OP^2=(2x)^2-r^2,又有BP^2=AB^2-AP^2,代入AB=2x、AP=x,可得BP=x。

根据勾股定理,得到OP^2+BP^2=r^2+x^2,代入OP=r、BP=x,可得AO^2=4x^2。

所以AO=2x=AB/2,即AO是AB的中线。

4. 余切定理圆的半径r和圆周上一条弦所夹角的余切值相等,则弦的长度等于半径的两倍乘以余切值的倒数。

证明:如图4所示,有一条弦AB,圆心为O,角AOB = θ,半径为r。

六年级圆的知识点总结

六年级圆的知识点总结

六年级圆的知识点总结
一、圆的定义
圆是平面上离定点距离等于定长的点的集合。

这个定点叫做圆心,这个定长叫做半径。


O为圆心,以r为半径做出的圆记为Γ。

二、圆的性质
1. 圆的直径:圆的直径是过圆心,并且两端点在圆上的线段。

圆的直径恰好是其半径的两倍。

2. 圆周长:圆的周长等于圆的直径和π的乘积。

即C=2πr。

3. 圆的面积:圆的面积等于半径的平方乘π。

即A=πr²。

4. 弧长和扇形面积:圆的弧长和扇形的面积与圆的周长和面积有很密切的关系。

三、圆的相关定理
1. 钝角圆周定理:在同一个圆中,对于一个圆周上的三个点A、B、C,如果角ABC是钝角,那么对应于这个圆面积内的两条弧AB和AC所对的圆心角分别是直角和钝角。

2. 相交圆周定理:当两个不同圆的圆心不在一直线上,但它们却有一个公共点,则这两个
圆相交。

此时,两个不在一条直线上的圆的交点在圆周上形成四个交点。

两个圆的圆周在
它们两个交点之间有两个弧。

对应于任意这样的一个圆周上的交点P,到P的两条圆周所
对的圆心角是互补的。

3. 切线定理:切线是与圆的圆周相切的直线。

圆周上任意一点到相切点的切线所构成的角
恰好是直角。

切线与半径的关系紧密,在圆心的两边与切点相连的线段构成直角三角形。

以上是关于圆的一些基本知识点和相关定理,通过学习这些知识,我们可以更好地理解和
应用圆的几何特性。

希望同学们在学习中能够加深对圆的理解,更好地掌握圆的相关知识。

圆知识点总结公式

圆知识点总结公式

圆知识点总结公式圆的性质及公式1. 圆的周长C= 2πr,其中r是半径。

2. 圆的面积A= πr^2。

3. 圆的直径d= 2r。

4. 圆心角的弧度表示= 圆心角度数* π / 180。

5. 圆心角的弧长L = 圆心角度数* π / 180 * r。

6. 切线长度t = √(rs),其中s是切线和切点的距离。

7. 弧长L= θ/360 * 2πr,其中θ 是圆心角的度数。

8. 圆的扇形的面积= θ/360 * πr^2,其中θ 是圆心角的度数。

9. 圆环的面积A= π(R^2-r^2),其中R是外圆半径,r是内圆半径。

10. 圆锥的表面积S= πr(r+√(r^2+h^2)),其中r是底圆的半径,h是斜高。

11. 圆锥的体积V= 1/3* πr^2h,其中r是底圆的半径,h是高。

圆的相关定理1. 直径定理:在同一个圆内,如果两条弦之一经过圆心,则这条弦的长度等于另一条弦和直径的长度之和。

2. 弧长定理:圆心角的弧长等于半径与这个圆心角所对应的圆周的比例关系。

3. 切线定理:切线和半径的关系,切线的平方等于切点到圆心的距离和直径的乘积。

4. 同切圆定理:同一直线上的两个同切圆的半径的平方之于面积的比例也是相同的。

5. 切割角定理:圆周上的两个弧所对应的圆心角之和等于180°。

6. 弧角公式:圆的周长等于2πr,圆心角是360°时所对应的弧长也是2πr。

圆的应用:1. 圆形结构设计:在建筑、机械工程、制造业和其他领域,圆形结构的设计和制造应用广泛。

2. 圆形运动:在物理学中,圆形运动和转动是非常重要的研究领域,例如,行星围绕太阳的运转。

3. 圆形信号:在电子、通信、数学、物理等领域,圆形波形和信号的应用非常广泛。

4. 圆形统计:在统计学和概率论中,圆形统计和随机过程在分析数据和预测趋势方面非常重要。

总的来说,圆是几何学中的基本图形之一,圆的性质及公式、相关定理和应用非常广泛。

对圆的深入理解和应用可以帮助我们更好地理解和处理与圆有关的问题和情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

费尔巴赫定理费尔巴赫定理三角形的九点圆与内切圆内切,而与旁切圆外切。

此定理由德国数学家费尔巴赫(K·W·Feuerbach,1800—1834)于1822年提出。

费尔巴赫定理的证明在不等边△ABC中,设O,H,I,Q,Ia分别表示△ABC的外心,垂心,内心,九点圆心和∠A所对的旁切圆圆心.s,R,r,ra分别表示△ABC的半周长,外接圆半径,内切圆半径和∠A 所对的旁切圆半径,BC=a,CA=b,AB=c.易得∠HAO=|B-C|,∠HAI=∠OAI=|B-C|/2;AH=2R*cosA,AO=R,AI=√[(s-a)bc/s],AIa=√[sbc/(s-a)]在△AHI中,由余弦定理可求得:HI^2=4R^2+4Rr+3r^2-s^2;在△AHO中,由余弦定理可求得:HO^2=9R^2+8Rr+2r^2-2s^2;在△AIO中,由余弦定理可求得:OI^2=R(R-2r).∵九点圆心在线段HO的中点,∴在△HIO中,由中线公式可求得.4IQ^2=2(4R^2+4Rr+3r^2-s^2)+2(R^2-2Rr)-(9R^2+8Rr+2r^2-2s^2)=(R-2r)^2故IQ=(R-2r)/2.又△ABC的九点圆半径为R/2,所以九点圆与内切圆的圆心距为d=R/2-r=(R-2r)/2=IQ.因此三角形的九点圆与内切圆内切。

在△AHIa中,由余弦定理可求得:IaH^2=4R^2+4Rr+r^2-s^2+2(ra)^2;在△AOIa中,由余弦定理可求得:IaO^2=R(R+2ra).在△HIaO中,由中线公式可求得.4IaQ^2=2(4R^2+4Rr+r^2-s^2+2ra^2)+2(R^2+2Rra)-(9R^2+8Rr+2r^2-2s^2)=(R+2ra) ^2故IaQ=(R+2ra)/2.九点圆与∠A的旁切圆的圆心距为d=R/2+ra=(R+2ra)/2=IaQ.故三角形的九点圆与∠A的旁切圆外切。

因此三角形的九点圆与旁切圆外切托勒密定理定理图定理的内容托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。

原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。

从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.定理的提出一般几何教科书中的“托勒密定理”,实出自依巴谷(Hipparchus)之手,托勒密只是从他的书中摘出。

证明一、(以下是推论的证明,托勒密定理可视作特殊情况。

)在任意四边形ABCD中,作△ABE使∠BAE=∠CAD ∠ABE=∠ACD因为△ABE∽△ACD所以BE/CD=AB/AC,即BE·AC=AB·CD (1)而∠BAC=∠DAE,,∠ACB=∠ADE所以△ABC∽△AED相似.BC/ED=AC/AD即ED·AC=BC·AD (2)(1)+(2),得AC(BE+ED)=AB·CD+AD·BC又因为BE+ED≥BD(仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”)所以命题得证复数证明用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、B C、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。

首先注意到复数恒等式:(a− b)(c− d) + (a− d)(b− c) = (a− c)(b− d) ,两边取模,运用三角不等式得。

等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。

四点不限于同一平面。

平面上,托勒密不等式是三角不等式的反演形式。

二、设ABCD是圆内接四边形。

在弦BC上,圆周角∠BAC = ∠BDC,而在A B上,∠ADB = ∠ACB。

在AC上取一点K,使得∠ABK = ∠CBD;因为∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD,所以∠CBK = ∠ABD。

因此△ABK与△DBC相似,同理也有△ABD ~ △KBC。

因此AK/AB = CD/BD,且CK/BC = DA/BD;因此AK·BD = AB·CD,且CK·BD = BC·DA;两式相加,得(AK+CK)·B D = AB·CD + BC·DA;但AK+CK = AC,因此AC·BD = AB·CD + BC·DA。

证毕。

三、托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.得AC:BC=AD:BP,AC·BP=AD·BC ①。

又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.得AC:CD=AB:DP,AC·DP=AB·CD ②。

①+②得AC(BP+D P)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.推论1.任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点共圆时取等号。

2.托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆、推广托勒密不等式:四边形的任两组对边乘积不小于另外一组对边的乘积,取等号当且仅当共圆或共线。

简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模,得不等式AC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD注意:1.等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。

2.四点不限于同一平面。

欧拉定理:在一条线段上AD上,顺次标有B、C两点,则AD·BC+AB·CD=AC·B D塞瓦定理简介塞瓦(Giovanni Ceva,1648~1734)意大利水利工程师,数学家。

塞瓦定理载于塞瓦于1678年发表的《直线论》一书,也有书中说塞瓦定理是塞瓦重新发现。

具体内容塞瓦定理在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1 证法简介(Ⅰ)本题可利用梅涅劳斯定理证明:∵△ADC被直线BOE所截,∴(CB/BD)*(DO/OA)*(AE/EC)=1 ①而由△ABD被直线COF所截,∴(BC/CD)*(DO/OA)*(AF/FB)=1②②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1(Ⅱ)也可以利用面积关系证明∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③同理CE/EA=S△BOC/ S△AOB ④AF/FB=S△AOC/S△BOC ⑤③×④×⑤得BD/DC*CE/EA*AF/FB=1利用塞瓦定理证明三角形三条高线必交于一点:设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)] *[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]=1,所以三条高CD、AE、BF交于一点。

可用塞瓦定理证明的其他定理;三角形三条中线交于一点(重心):如图5 D , E分别为BC , AC 中点所以B D=DC AE=EC 所以BD/DC=1 CE/EA=1且因为AF=BF 所以AF/FB必等于1 所以AF=FB 所以三角形三条中线交于一点此外,可用定比分点来定义塞瓦定理:在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。

于是AL、BM、CN三线交于一点的充要条件是λμν=1。

(注意与梅涅劳斯定理相区分,那里是λμν=-1)塞瓦定理推论1.设E是△ABD内任意一点,AE、BE、DE分别交对边于C、G、F,则(BD/BC)*(CE/AE)*(GA/DG)=1因为(BC/CD)*(DG/GA)*(AF/FB)=1,(塞瓦定理)所以(BD/CD)*(CE/AE)*(AF/ FB)=K(K为未知参数)且(BD/BC)*(CE/AE)*(GA/DG)=K(K为未知参数)又由梅涅劳斯定理得:(BD/CD)*(CE/AE)*(AF/FB)=1所以(BD/BC)*(CE/AE)*(GA/DG)=12.塞瓦定理角元形式AD,BE,CF交于一点的充分必要条件是:(sin∠BAD/sin∠DAC)*(sin∠ACF/sin∠FCB)*(sin∠CBE/sin∠EBA)=1由正弦定理及三角形面积公式易证3.如图,对于圆周上顺次6点A,B,C,D,E,F,直线AD,BE,CF交于一点的充分必要条件是:(AB/BC)*(CD/DE)*(EF/FA)=1由塞瓦定理的角元形式,正弦定理及圆弦长与所对圆周角关系易证。

4.还能利用塞瓦定理证三角形三条高交于一点设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(AE*ctgB)]=1,所以三条高CD、AE、BF交于一点。

梅涅劳斯定理梅涅劳斯定理证明梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。

它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(A F/FB)×(BD/DC)×(CE/EA)=1。

或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=证明一:过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。

相关文档
最新文档