初中三角函数练习题及答案

合集下载

初中数学三角函数基础练习含答案

初中数学三角函数基础练习含答案

三角函数基础练习一.选择题(共40小题)1.如图,△ABC中,∠C=90o,tan A=2,则cos A的值为()A.B.C.D.2.在Rt△ABC中,∠C=90°,sin A=,则sin B的值为()A.B.C.D.3.如图,已知点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将()A.增大B.减小C.先增大后减小D.先减小后增大4.在Rt△ABC中,若∠ACB=90°,tan A=,则sin B=()A.B.C.D.5.一艘轮船在A处测得灯塔S在船的南偏东60°方向,轮船继续向正东航行30海里后到达B处,这时测得灯塔S在船的南偏西75°方向,则灯塔S离观测点A、B的距离分别是()A.(15﹣15)海里、15海里B.(15﹣15)海里、5海里C.(15﹣15)海里、15海里D.(15﹣15)海里、15海里6.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=()A.B.C.D.7.在Rt△ABC中,∠C=90°,∠B=α,若BC=m,则AC的长为()A.B.m•cosαC.m•sinαD.m•tanα8.如图,在Rt△ABC中,∠C=90°,BC=4,AC=2,则tan A等于()A.B.2C.D.9.如图,测得一商场自动扶梯的长为l,自动扶梯与地面所成的角为θ,则该自动扶梯到达的高度h为()A.l•sinθB.C.l•cosθD.10.如图,在Rt△ABC中,直角边BC的长为m,∠A=40°,则斜边AB的长是()A.m sin40°B.m cos40°C.D.11.如图,在△ABC中,∠ACB=90°,AB=5,AC=3,则tan∠B的值为()A.B.C.D.12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A.B.C.D.13.如图,在Rt△ABC中,∠CAB=90°,AD⊥BC于点D,BD=2,tan∠C=,则线段AC的长为()A.10B.8C.D.14.如图,梯子AC的长为2.8米,则梯子顶端离地面的高度AD是()A.米B.米C.sinα米D.cosα米15.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.116.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.17.在△ABC中,∠ACB=90°,AC=1,BC=2,则cos B的值为()A.B.C.D.18.若锐角A满足cos A=,则∠A的度数是()A.30°B.45°C.60°D.75°19.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为60°,已知斜坡AB的坡角为30°,AB=AE=10米.则标识牌CD的高度是()米.A.15﹣5B.20﹣10C.10﹣5D.5﹣520.在直角三角形中sin A的值为,则cos A的值等于()A.B.C.D.21.在Rt△ABC中,∠C=90°,AB=4,BC=3,则sin∠B的值为()A.B.C.D.22.已知在Rt△ABC中,∠C=90°,sin A=,则∠A的正切值为()A.B.C.D.23.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AB长是()A.4B.6C.8D.1024.已知∠A与∠B互余,若tan∠A=,则cos∠B的值为()A.B.C.D.25.如图,A,B,C是3×1的正方形网格中的三个格点,则tan B的值为()A.B.C.D.26.Rt△ABC中,∠C=90°,AC=,AB=4,则cos B的值是()A.B.C.D.27.如图,在Rt△ABC中,∠C=90°,AB=13,BC=12,AC=5,则下列三角函数表示正确的是()A.sin A=B.cos A=C.tan A=D.tan B=28.如图,△ABC中,∠B=90°,BC=2AB,则sin C=()A.B.C.D.29.已知在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值为()A.B.C.D.30.锐角α满足,且,则α的取值范围为()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°31.如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是()A.B.C.2D.32.已知cosα=,且α是锐角,则α=()A.75°B.60°C.45°D.30°33.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=34.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是i=()A.B.1:3C.D.1:235.如图,有一斜坡AB的长AB=10米,坡角∠B=36°,则斜坡AB的铅垂高度AC为()A.10sin36°B.10cos36°C.10tan36°D.36.某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,则这个斜坡坡角为()A.30°B.45°C.60°D.90°37.如图,在Rt△ABC中,∠C=90°,AC=2,BC=3,则tan A=()A.B.C.D.38.在Rt△ABC中,AB=4,AC=2,∠C=90°,则∠A的度数为()A.30°B.40°C.45°D.60°39.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠BAC的值为()A.B.C.D.40.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠B的正切值为()A.3B.C.D.三角函数基础练习参考答案与试题解析一.选择题(共40小题)1.解:∵△ABC中,∠C=90o,∴tan A==2,∴设CB=2k,AC=k,∴AB==k,∴cos A===,故选:B.2.解:∵Rt△ABC中,∠C=90°,sin A=,∴cos A===,∠A+∠B=90°,∴sin B=cos A=.故选:A.3.解:点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将增大,故选:A.4.解:如图,∵在Rt△ABC中,∠C=90°,tan A=,∴设AC=2k,BC=k,则AB==k,∴sin B===.故选:D.5.解:过S作SC⊥AB于C,在AB上截取CD=AC,∴AS=DS,∴∠CDS=∠CAS=30°,∵∠ABS=15°,∴∠DSB=15°,∴SD=BD,设CS=x,在Rt△ASC中,∵∠CAS=30°,∴AC=x,AS=DS=BD=2x,∵AB=30海里,∴x+x+2x=30,解得:x=,∴AS=(15﹣15)(海里);∴BS==15(海里),∴灯塔S离观测点A、B的距离分别是(15﹣15)海里、15海里,故选:D.6.解:由图可知:BC=4,AB=3,∠ABC=90°,在Rt△ABC中,tan A==.故选:A.7.解:在Rt△ABC中,∠C=90°,tan B=,∴AC=BC•tan B=m•tanα,故选:D.8.解:在Rt△ABC中,∠C=90°,∴tan A=═2,故选:B.9.解:∵sinθ=,∴h=l•sinθ,故选:A.10.解:∵sin A=,∴AB=,故选:C.11.解:由勾股定理得,BC==4,∴tan∠B==,故选:D.12.解:∵∠C=90°,AB=5,BC=3,∴AC==4,∴cos A==,故选:A.13.解:∵∠CAB=90°,AD⊥BC于点D,∴∠B+∠C=90°,∠B+∠BAD=90°,∴∠BAD=∠C.在Rt△ABD中,∠ADB=90°,BD=2,∵tan∠BAD==,∴AD=2BD=4,∴AB==2.在Rt△ABC中,∠CAB=90°,AB=2,∵tan∠C==,∴AC=2AB=4.故选:D.14.解:在Rt△ACD中,∠ADC=90°,AB=2.8m,∠ACD=α,∴AD=AC•sin∠ACD=2.8sinα=sinα米,故选:C.15.解:2sin30°﹣2cos60°+tan45°=2×﹣2×+1=1﹣1+1=1.故选:D.16.解:由勾股定理得,AC===则sin B==,故选:C.17.解:由勾股定理得,AB===,则cos B===,故选:B.18.解:∵cos A=,∴∠A=30°.故选:A.19.解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.在Rt△ABM中,AB=10米,∠BAM=30°,∴AM=AB•cos∠BAM=5米,BM=AB•sin∠BAM=5米.在Rt△ADE中,AE=10米,∠DAE=60°,∴DE=AE•tan∠DAE=10米.在Rt△BCN中,BN=AE+AM=(10+5)米,∠CBN=45°,∴CN=BN•tan∠CBN=(10+5)米,∴CD=CN+EN﹣DE=10+5+5﹣10=(15﹣5)米.故选:A.20.解:∵在直角三角形中sin A的值为,∴∠A=30°.∴cos A=cos30°=.故选:C.21.解:如图:∵∠C=90°,AB=4,BC=3,∴AC==,∴sin∠B=,故选:A.22.解:∵在Rt△ABC中,∠C=90°,sin A==,∴设BC=3x,AB=5x,由勾股定理得:AC==4x,∴tan A===,即∠A的正切值为,故选:D.23.解:∵∠C=90°,sin A==,BC=6,∴AB=BC=×6=10;故选:D.24.解:∵∠A与∠B互余,∴∠A、∠B可看作Rt△ABC的两锐角,∵tan∠A==,∴设BC=4x,AC=3x,∴AB=5x,∴cos∠B===.故选:B.25.解:如图所示,在Rt△ABD中,tan B==.故选:A.26.解:∵∠C=90°,AC=,AB=4,∴BC===1,∴cos B==,故选:D.27.解:A、sin A==,故原题说法正确;B、cos A==,故原题说法错误;C、tan A==,故原题说法错误;D、tan B==,故原题说法错误;故选:A.28.解:∵BC=2AB,∴设AB=a,BC=2a,∴AC==a,∴sin C===,故选:D.29.解:∵∠C=90°,AB=5,AC=4,∴BC==3,∴cos B==.故选:B.30.解:∵,且,∴45°<α<60°.故选:B.31.解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,AB=,∴sin B=.故选:B.32.解:∵cosα=,且α是锐角,∴α=30°.故选:D.33.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.34.解:由题意得:某人在斜坡上走了50米,上升的高度为25米,则某人走的水平距离s==25,∴坡度i=25:25=1:.故选:A.35.解:由题意可得:sin B=,即sin36°=,故AC=10sin36°.故选:A.36.解:∵某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,∴设这个斜坡的坡角为α,故tanα==,故α=30°.故选:A.37.解:在Rt△ABC中,∠C=90°,tan A==,故选:B.38.解:在Rt△ABC中,AB=4,AC=2,∴cos A===,则∠A=45°.故选:C.39.解:过点C作CD⊥AB于点D,∵AD=3,CD=4,∴由勾股定理可知:AC=5,∴cos∠BAC==,故选:C.40.解:在Rt△ABC中,tan B==,故选:B.。

初中三角函数练习题及答案资料

初中三角函数练习题及答案资料

三角函数练习1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(2,12)B .(-2,12)C .(-2,-12)D .(-12,-32) 9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)填空1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.图145︒30︒BAD C春天里教育6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根号).7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,那么tan B =___________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•保留两个有效数字,2≈第6题图xO Ay B北甲北乙第5题图αA C B第10题图A 40°52mCD第9题图 B43第4题图1.41,3≈1.73) 三、认真答一答1,计算:s i n c o s c o t t a n t a n 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(c o s s i n )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

初中三角函数练习试题和答案解析

初中三角函数练习试题和答案解析
处,以每小时107千米的速度向北偏东60o的BF方向移动,距台风中心200千米的范
围内是受这次台风影响的区域。
问A城是否会受到这次台风的影响?为什么?
若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?
学习指导参考
WORD格式整理版
0.7346如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平
以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果
受影响,会受影响几分钟?
N
PAQ
M
.
15、如图,在某建筑物AC上,挂着“多彩云南”的宣传条幅BC,小明站在点F处,
看条幅顶端B,测的仰角为30,再往条幅方向前行20米到达点E处,看到
条幅顶端B,测的仰角为60,求宣传条幅BC的长,(小明的身高不计,结
0
6、在Rt△ABC中,∠C=90
,则下列式子成立的是()
A、sinA=sinBB、sinA=cosBC、tanA=tanBD、cosA=tanB
7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()
2223
A.sinB=
3B.cosB=3C.tanB=3D.tanB=2
(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.
B
20某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台
图①图②
C
高为l.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和
BC(杆子的底端分别为D,C),且∠DAB=66. 5°.
7060943270603322
分析:(1)由图可知ABO是直角三角形,于是由勾股定理可求。

三角函数测试题及答案

三角函数测试题及答案

三角函数测试题及答案一、选择题1. 已知角A的正弦值为\( \sin A = \frac{1}{2} \),则角A的余弦值\( \cos A \)是:A. \( \frac{1}{2} \)B. \( \frac{\sqrt{3}}{2} \)C. \( -\frac{1}{2} \)D. \( -\frac{\sqrt{3}}{2} \)2. 函数\( y = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \pi/2 \)D. \( 4\pi \)3. 已知\( \cos x = \frac{1}{3} \),且\( x \)在第一象限,求\( \sin x \)的值:A. \( \frac{2\sqrt{2}}{3} \)B. \( \frac{2\sqrt{5}}{3} \)C. \( \frac{4\sqrt{2}}{9} \)D. \( \frac{4\sqrt{5}}{9} \)二、填空题4. 根据正弦定理,如果三角形ABC的边a和角A相对,且\( a = 5 \),\( \sin A = \frac{3}{5} \),则边b的长度为______(假设\( \sin B = \frac{4}{5} \))。

5. 已知\( \tan x = -1 \),求\( \sin 2x \)的值。

三、解答题6. 求以下列三角方程的解:\( \sin^2 x + \cos^2 x = 1 \)7. 证明:\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \)。

四、应用题8. 在直角三角形ABC中,角C为直角,已知AB = 10,AC = 6,求BC 的长度。

答案:一、选择题1. C2. B3. B二、填空题4. 45. 1 或 -1三、解答题6. 该方程对所有\( x \)都成立,因为它是三角恒等式。

三角函数练习题(含答案)

三角函数练习题(含答案)

三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=45,则AC=( ) A 、3 B 、4 C 、5 D 、6 3、若∠A 是锐角,且sinA=13,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=13,则A A AA tan 2sin 4tan sin 3+-=( ) A 、47B 、 13C 、 12D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:√2C 、1:1:√3D 、1:1:√226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB= 23B .cosB= 23C .tanB= 23D .tanB=32 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D点测得楼顶的仰角为300,向高楼前进60米到C点,又测得仰角为450,则该高楼的高度大约为()A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)填空题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是______.4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B 点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

三角函数试题及答案初中

三角函数试题及答案初中

三角函数试题及答案初中一、选择题(每题3分,共30分)1. 若sinα=1/2,则α的度数是()A. 30°B. 60°C. 90°D. 120°2. cos30°的值是()A. 1/2B. √3/2C. √2/2D. 13. 已知tan45°=1,则sin45°的值是()A. 1/√2B. √2/2C. √2D. 14. 如果sinβ=3/5,且β为锐角,则cosβ的值是()A. 4/5B. -4/5C. 3/5D. -3/55. 根据三角函数的定义,下列哪个选项是错误的()A. sin0°=0B. cos90°=0C. tan60°=√3D. sin180°=-16. 已知sinA=1/2,那么cos2A的值是()A. 1/4B. 1/2C. 3/4D. 07. 在直角三角形中,如果一个锐角的正弦值是1/3,那么它的余弦值是()A. 2√2/3B. √2/3C. √6/3D. 3√2/38. 根据三角函数的周期性,sin(360°+α)等于()A. sinαB. -sinαC. co sαD. -cosα9. 一个角的正切值是-√3,那么这个角的度数是()A. 60°B. 120°C. 240°D. 300°10. 根据三角函数的和角公式,sin(α+β)=sinαcosβ+cosαsinβ,那么cos(α+β)的值是()A. cosαcosβ-sinαsinβB. cosαcosβ+sinαsinβC. sinαcosβ-cosαsinβD. -cosαcosβ-sinαsinβ二、填空题(每题4分,共20分)1. sin60°的值是______。

2. 一个角的余弦值是-1/2,那么这个角的正弦值是______。

3. 已知tanA=2,则sinA的值是______。

初中三角函数练习题及答案

初中三角函数练习题及答案

初中三角函数练习题及答案初中三角函数练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( ) A 、1:1:2 B 、1:1:2 C 、1:1:3 D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( ) A 、sinA=sinB B 、sinA=cosB C 、tanA=tanB D 、cosA=tanB7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()A.sinB=23 B.cosB=23 C.tanB=23D .tanB=3 28.点(-sin60°,cos60°)关于y轴对称的点的坐标是()A.(32,12) B.(-32,12) C.(-32,-12)D.(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为()A.6.9米 B.8.5米 C.10.3米 D.12.0米10.王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()(A)350m (B)100 m(C)150m (D)3100m11、如图1,在高楼前D点测得楼顶的仰角为30︒,向高楼前进60米到C点,又测得仰角为45︒,则该高楼的高度大约为()A.82米B.163米C.52米D.70米图145︒30︒BA D C12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______. 4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=62-,cos15°=62+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.第6题x O AyB 北甲北乙第5题第46.如图,机器人从A点,沿着西南方向,行了个42单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB段的长度为20米,倾斜角A为α,高度BC为___________米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•2≈1.413 1.73)三、认真答一答αA CB第10A4052CD第9B431,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒ 分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

初中三角函数专项练习题及答案

初中三角函数专项练习题及答案

初中三角函数基础检测题山岳 得分(一)精心选一选(共36分)1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定2、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒, 向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填(共33分)1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC 中,AB= ,AC=2,∠B=30°,则∠BAC 的度数是______.图145︒30︒BAD C4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根 号). 7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,则tan B =_________. 9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)第6题图xOAy B北甲北乙第5题图αACB第10题图A40°52mCD第9题图B43第4题图10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中三角函数练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大 2 倍,则锐角 A 的正弦值与余弦值都(C )A、缩小 2 倍B、扩大 2 倍C、不变D、不能确定4 0 12、在Rt△ABC 中,∠C90 ,BC4,sinA 5 ,则AC ( A )A、3 B、4 C、5 D、6 1 3、若∠A 是锐角,且sinA 3 ,则( A )A、00lt∠Alt300 B、300lt∠Alt450 C、450lt ∠Alt600D、600lt∠Alt900 1 3 sin A tan A 4、若cosA 3 ,则4 sin A 2 tan A ()4 1 1 A、7 B、3 C、2 D、0 5、在△ABC 中,∠A:∠B:∠C1:1:2,则a:b:c()A、1:1:2 B、1:1:2 C、1:1:3 D、1:21:2 6、在Rt △ABC 中,∠C900,则下列式子成立的是()A、sinAsinB B、sinAcosB C、tanAtanBD、cosAtanB 7.已知Rt△ABC 中,∠C90°,AC2,BC3,那么下列各式中,正确的是()2 2 2 A.sinB 3 B.cosB 3 C.tanB 3 3D.tanB 2 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是()3 1 3 1 3 1 A.(2 ,2 )B.(- 2 ,2 )C.(- 2 ,- 2 )1 3D.(- 2 ,- 2 )9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12 米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高 1.6 米,则旗杆的高度约为()A.6.9 米B.8.5 米C.10.3 米D.12.0 米10.王英同学从 A 地沿北偏西60 方向走100m 到B 地,再从B 地向正南方向走200m到C 地,此时王英同学离 A 地()A (A)50 3 m (B)100 m (C)150m (D)100 3 m 30 45 11、如图1,在高楼前 D 点测得楼顶的仰角 D C B为30 ,向高楼前进60 米到 C 点,又测得仰角为图145 ,则该高楼的高度大约为()A.82 米 B.163 米 C.52 米 D.70 米12、一艘轮船由海平面上 A 地出发向南偏西40 的方向行驶40 海里到达B 再由 B 地向北偏西10 的方向行驶40 海里到达 C 地,A、两地相距地,则 C ().(A)30 海里(B)40 海里(C)50 海里(D)60 海里(二)细心填一填1.在Rt△ABC 中,∠C90°,AB5,AC3,则sinB_____.2.在△ABC 中,若BC 2 ,AB 7 ,AC3,则cosA________.3.在△ABC 中,AB2,AC 2 ,∠B30°,则∠BAC 的度数是______.4.如图,P’ 且如果△APB 绕点B 按逆时针方向旋转30°后得到△A’ B,BP2,那么PP’的长为____________.不取近似值. 以下数据供解题使用:6 2 6 2sin15° 4 ,cos15° 4 5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.北y A 乙北 B 甲第4 题图O x 第5 题图第6 题图6.如图,机器人从 A 点,沿着西南方向,行了个 4 2单位,到达 B 点后观察到原点O 在它的南偏东60°的方向上,则原来 A 的坐标为___________结果保留根号).7.求值:sin260°cos260°___________.0 8.在直角三角形ABC 中,∠A 90 ,BC13,AB12,那么tan B ___________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m(结果精确的.到0.01m)(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40 D°≈0.8391)C 43 40° B A B 52m 第9 题图10.如图,自动扶梯AB 段的长度为20 米,倾斜角 A 为α,高度BC 为___________米(结果用含α的三角比表示).A C 第10 题图1 2 11.如图2 所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30 这时测得大树在地面上的影子约为10 米,°角,(则大树的高约为________米.保留两个有效数字,2 ≈1.41,3 ≈1.73)三、认真答一答1,计算:sin 30 cos 60 cot 45 tan 60 tan 30 分析:可利用特殊角的三角函数值代入直接计算;2 计算:2 2 cos 45 sin 90 4 4 2 1 1 分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

注意分母有理化,3 如图1,在ABC 中,AD 是BC 边上的高,tan B cos DAC 。

(1)求证:AC=BD 12 sin C ,BC 12 (2)若13 ,求AD 的长。

图1 分析:由于AD 是BC 边上的高,则有RtADB 和RtADC ,这样可以充分利用锐角三角函数的概念使问题求解。

4 如图2,已知ABC 中 C Rt ,AC m,BAC ,求ABC 的面积(用的三角函数及m 表示)图2 分析:要求ABC 的面积,由图只需求出BC。

解应用题要先看条件将图形抽象出直角三角形来解. 5. 甲、乙两楼相距45 米从甲楼顶部观测乙楼顶部的俯角为30°观测乙楼的底部的俯角为45°试求两楼的高. A 30 450 E r D B C 6. 从 A 处观测铁塔顶部的仰角是30°向前走100 米到达 B 处观测铁塔的顶部的仰角是45°求铁塔高. D 30 45 A B C 分析:求CD可解RtΔBCD 或RtΔACD. 但由条件RtΔBCD 和RtΔACD 不可解但AB100 若设CD 为x我们将AC 和BC 都用含x 的代数式表示再解方程即可. 7、如图,一铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度为 2 : 3 ,路基高AE 为 3 m,底CD 宽12 m,求路基顶AB 的宽 B A C D E A8.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD 3m ,标杆与旗杆的水平C 距离BD 15 m ,人的眼睛与地面的高度EF 1.6 m ,E H 人与标杆CD 的水平距离DF 2 m ,求旗杆AB 的高 B F D度.9.如图3,沿AC 方向开山修路,为了加快施工速度,要在小山的另一边同时施工。

从AC 上的一点B,取ABD 145 ,BD 500 米,D 55 。

要使A、C、E 成一直S 线,那么开挖点 E 离点 D 的距离是多少?图3 分析:在RtBED 中可用三角函数求得DE 长。

10 如图8-5,一条渔船某时刻在位置 A 观测灯塔B、北C灯塔 B 距离 A处较近,两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l 小时45 分钟之后到达 D C点,观测到灯塔B 恰好在正北方向上,已知两个灯塔之间B的距离是12海里,渔船的速度是16 海里/时,又知在灯塔 C 周围18.6 海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险 A D E 东分析:本题考查解直角三角形在航海问题中的运用,图8‐4解决这类问题的关键在于构造相关的直角三角形帮助解题.11、如图,A 城气象台测得台风中心在 A 城的正西方300 千米处,以每小时10 7 千米的速度向北偏东60 的BF 方向移动,距台风中心200 千米的范围内是受这次台风影响的区域。

问 A 城是否会受到这次台风的影响?为什么?若 A 城受到这次台风的影响,那么 A 城遭受这次台风影响的时间有多长?12. 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带,该建筑物顶端宽度AD 和高度DC 都可直接测得,从A、D、C三点可看到塔顶端H,可供使用的测量工具有皮尺、测倾器。

(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案。

具体要求如下:测量数据尽可能少,在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D 间距离,用。

m 表示;如果测D、C 间距离,用n 表示;如果测角,用α、β、γ表示)(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,。

测倾器高度忽略不计)13. 人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O点的正北方向10 海里处的 A 点有一涉嫌走私船只正以24 海里/小时的速度向正东方向航行。

为迅速实验检查,巡逻艇调整好航向,以26 海里/小时的速度追赶,问在涉嫌船只不改变航向和航速的前提下,(1)需要几小时才能追上?(点B 为追上时的位置)(2)确定巡逻艇的追赶方向(精确到01 ) . (如图4)图4 参考数据:sin 66.8 0.9191,cos 66.8 0.3939 sin 67.4 0.9231,cos 67.4 0.3846 sin 68.4 0.9298,cos 68.4 0.3681 sin 70.6 0.9432 ,cos 70.6 0.3322 (1)由图可知ABO 是直角三角形,于是由勾股定理可求。

分析:(2)利用三角函数的概念即求。

14. 公路MN 和公路PQ 在点P 处交汇,QPN 30 , A 处有一所中学,且点AP160m,一辆拖拉机以 3.6km/h 的速度在公路MN 上沿PN 方向行驶,假设拖拉机行驶时,周围100m 以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果受影响,会受影响几分钟?N P A Q M . 15、如图,在某建筑物AC 上,挂着“多彩云南”的宣传条幅BC,小明站在点 F 处,看条幅顶端B,测的仰角为30 ,再往条幅方向前行20 米到达点 E 处,看到条幅顶端B,测的仰角为60 ,求宣传条幅BC 的(小明的身高不计,结果精确到0.1 米)长,16、一艘轮船自西向东航行,在 A 处测得东偏北21.3°方向有一座小岛C,继续向东航行60 海里到达B 处,测得小岛 C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛 C 最近?9 2 9 (参考数据:sin21.3°≈ 25 ,tan21.3°≈ 5 ,sin63.5°≈ 10 ,tan63.5°≈2)北C 东 A B 17、如图,一条小船从港口 A 出发,沿北偏东40 方向航行20 海里后到达B处,然后又沿北偏西30 方向航行10 海里后到达C 处.问此时小船距港口 A 多少海里?(结果精确到 1 海里)友情提示:以下数据可以选用:sin 40 ≈ 0.6428 ,cos 40 ≈ 0.7660 ,北tan 40 ≈ 0.8391 ,3 ≈ 1.732 .P Q C 30 B 40 A 18、如图10,一枚运载火箭从地面O 处发射,当火箭到达 A 点时,从地面C处的雷达站测得AC 的距离是6km ,仰角是43 .1s 后,火箭到达B 点,此时测得BC 的距离是 6.13km ,仰角为45.54 ,解答下列问题:B A (1)火箭到达 B 点时距离发射点有多远(精确到0.01km)?O C 图10 (2)火箭从 A 点到 B 点的平均速度是多少(精确到0.1km/s)?19、经过江汉平原的沪蓉上海—成都高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的 A 处测得对岸岸边的一根标杆 B 在它的正北方向,测量员从 A 点开始沿岸边向正东方向前进100 米到达点 C 处,测得ACB 68 . (1)求所测之处江的宽度(sin68 0.93 cos 68 0.37 tan 68 2.48. );(2)除1的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形. 图①图②20 某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6 米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC杆子的底端分别为D,C,且∠DAB66. 5°.1求点D 与点C 的高度差DH;2求所用不锈钢材料的总长度l 即ADABBC,结果精确到0.1 米.参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30 答案一、选择题1——5、CAADB 6——12、BCABDAB二、填空题3 7 1,5 2,3 3,30°(点拨:过点 C 作AB 的垂线CE,构造直角三角形,利用勾股定理CE)4.6 2 (点拨:连结PP’ ,过点 B 作BD⊥PP’,因为∠PBP’30°,所 6 2以∠PBD15°,利用sin15° 4 ,先求出PD,乘以 2 即得PP’)5.48(点拨:根据两直线平行,内错角相等判断)4 4 3 6.0,3 (点拨:过点B 作BC⊥AO,利用勾股定理或三角函数可分别求得AC 与OC 的长)7.1(点拨:根据公式sin2 cos2 1)5 AC tan B 8.12 (点拨:先根据勾股定理求得AC5,再根据AB 求出结果)9.4.86(点拨:利用正切函数分别求了BD,BC 的长)BC sin 10.20 sin (点拨:根据AB ,求得BC AB sin )11.35 三,解答题可求得1.1;2.4 AD 3.解:(1)在RtABD 中,有tan B ,RtADC 中,有BD ADcos DAC AC tan B cos DAC AD AD ,故AC BD BD AC AD 12 (2)由sin C ;可设AD 12 x,AC BD 13x AC 13 由勾股定理求得DC 5x ,BC 12 BD DC 18x 12 2 2 即x AD 12 8 3 3 BC 4.解:由tan BAC AC BC AC tan BAC AC m,BAC BC m tan 1 1 1 S ABC AC BC m m tan m 2 tan .。

相关文档
最新文档