江苏省中考数学压轴题精选
江苏省扬州市,2020~2021年中考数学压轴题精选解析

江苏省扬州市,2020~2021年中考数学压轴题精选解析江苏省扬州市中考数学压轴题精选~~第1题~~(2020江阴.八下期中) 已知:如图①,在矩形ABCD 中,AB=5,AD=,AE ⊥BD ,垂足是E .点F 是点E 关于AB的对称点,连接AF ,BF .(1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值;(3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD 交于点P .与直线BD 交于点Q .是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.~~第2题~~(2020宝应.中考模拟) 如图(1),矩形ABCD 的一边BC 在直角坐标系中x 轴上,折叠边AD,使点D 落在x 轴上点F 处,折痕为AE ,已知AB=8,AD=10,并设点B 坐标为(m,0),其中m >0.(1) 求点E 、F 的坐标(用含m 的式子表示);(2) 连接OA ,若△OAF 是等腰三角形,求m 的值;(3) 如图(2),设抛物线y=a(x -m -6)+h 经过A 、E 两点,其顶点为M ,连接AM ,若∠OAM=90°,求a 、h 、m 的值.~~第3题~~(2020扬州.中考真卷) 如图,已知点、 ,点P 为线段AB 上的一个动点,反比例函数 的图像经过点P.小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”2当时AB(2020广陵.中考模拟) 如图1,对角线互相垂直的四边形叫做垂美四边形我们定义:把叫做函数的伴随函数比如:就是的伴随函数合是学习函数的一种重要方法,对于二次函数(的常数),若点在函数的图像上,则点(,)也在其图像上,即从数的角度可以知道它的图像关于轴对称.解答下列问题:(1)的图像关于轴对称;)①直接写出函数的伴随函数的表达式②在如图①所示的平面直角坐标系中画出的伴随函数的大致图像;若直线与的伴随函数图像交于、两点(点的上方),连接、,12,求的值;若直线(不平行于轴)与(的常数)的伴随函数图像交于、两点(点、分别在第一、四象限),且,试问、两点的纵坐标的积是否为常数?如果是,请给予证明;如果不是,请如图,已知二次函数的图象与的半径为,(1)点B,C的坐标分别为B(),C();(2)当P点运动到(-1,-2)时,判断PB与⊙C的位置关系,并说出理由;(3)是否存在点P,使得△PBC是以BC为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(4)连接PB,若E为PB的中点,连接OE,则OE的最大值=.~~第7题~~(2020高邮.中考模拟) 如图1,△ABC是直角三角形,∠ACB=90°,点D在AC上,DE⊥AB于E,连接BD,点F是BD 的中点,连接EF,CF.(1) EF和CF的数量关系为________;(2)如图2,若△ADE绕着点A旋转,当点D落在AB上时,小明通过作△ABC和△ADE斜边上的中线CM和EN,再利用全等三角形的判定,得到了EF和CF的数量关系,请写出此时EF和CF的数量关系________;(3)若△AED继续绕着点A旋转到图3的位置时,EF和CF的数量关系是什么?写出你的猜想,并给予证明.~~第8题~~(2020扬州.中考模拟) 如图,在中,∠ACB=90°,点P到∠ACB两边的距离相等,且PA=PB.(1)先用尺规作出符合要求的点P(保留作图痕迹,不需要写作法),然后判断△ABP的形状,并说明理由;(2)设PA=m,PC=n,试用m、n的代数式表示的周长和面积;(3)设CP与AB交于点D,试探索当边AC、BC的长度变化时,的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.~~第9题~~(2020高邮.中考模拟) 在中, .(1)如图1,若将线段AB绕点B逆时针旋转得到线段BD连接AD则的面积;(2) 如图2,点P 为CA 延长线上一个动点,连接BP,以P 为直角项点,BP为直角边作等腰直角连接AQ ,求证:;(3) 如图3,点E,F 为线段BC 上两点,且点M 是线段AF 上一个动点,点N 是线段AC上一个动点,是否存在点M,N 使 的值最小,若存在,求出最小值;若不存在,说明理由.~~第10题~~(2020扬州.中考模拟) 如图,抛物线y =﹣x +bx+c 与两轴分别交于A 、B 、C 三点,已知点A (﹣3,0),B (1,0).点P 在第二象限内的抛物线上运动,作PD ⊥x 轴于点D ,交直线AC 于点E .(1) b =;c =;(2) 求线段PE 取最大值时点P 的坐标,这个最大值是多少;(3) 连接AP ,并以AP 为边作等腰直角△APQ ,当顶点Q 恰好落在抛物线的对称轴上时,直接写出对应的P 点坐标.江苏省扬州市中考数学压轴题答案解析~~第1题~~答案:2解析:答案:解析:答案:解析:答案:解析:~~第5题~~答案:解析:~~第6题~~答案:解析:答案:解析:答案:解析:~~第9题~~答案:解析:答案:解析:。
苏科版数学中考专题复习:图形的相似综合压轴题 专项练习题汇编(Word版,含答案)

苏科版数学中考专题复习:图形的相似综合压轴题专项练习题汇编1.已知四边形ABCD中,M,N两点分别在AB,BD上,且满足∠MCN=∠BDC.(1)如图1,当四边形ABCD为正方形时,①求证:△ACM∽△DCN;②求证:DN+BM=CD;(2)如图2,当四边形ABCD为菱形时,若∠BAD=120°,试探究DN,BM,CD的数量关系.2.在△ABC中,CA=CB=m,在△AED中,DA=DE=m,请探索解答下列问题.【问题发现】(1)如图1,若∠ACB=∠ADE=90°,点D,E分别在CA,AB上,则CD与BE的数量关系是,直线CD与BE的夹角为;【类比探究】(2)如图2,若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图2所示的位置,则CD与BE之间是否满足(1)中的数量关系?说明理由.【拓展延伸】(3)在(1)的条件下,若m=2,将△AED绕点A旋转过程中,当B,E,D三点共线.请直接写出CD的长.3.已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.问题发现:(1)①如图1,若四边形ABCD是正方形,且DE⊥CF于G,则=;②如图2,当四边形ABCD是矩形时,且DE⊥CF于G,AB=m,AD=n,则=;拓展研究:(2)如图3,若四边形ABCD是平行四边形,且∠B+∠EGC=180°时,求证:;解决问题:(3)如图4,若BA=BC=5,DA=DC=10,∠BAD=90°,DE⊥CF于G,请直接写出的值.4.在等边△ABC中,D,E分别是AC,BC上的点,且AD=CE,连接BD、AE相交于点F.(1)如图1,当时,=;(2)如图2,求证:△AFD∽△BAD;(3)如图3,当时,猜想AF与BF的数量关系,并说明理由.5.如图1,点D是△ABC中AB边上一点,∠ACD=∠B,BC2=AB•BD.(1)求证:∠ADC=∠ACB;(2)求∠ACB的度数;(3)将图1中的△BCD绕点C顺时针旋转得到△ECF,BD的对应边EF经过点A(如图2所示),若AC=2,求线段CD的长.6.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN ⊥DM,且MN=DM,连接DN.(1)如图①,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM;(2)如图②,当AM=4BM时,求证:A,C,N三点在同一条直线上.7.在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上,AB=8,AD=6.(1)如图1,当点G在CD上时,求AE+DG的值;(2)如图2,FG与CD相交于点N,连接EN,当EF平分∠AEN时,求证:EN=AE+DN;(3)如图3,EG,FG分别交CD于点M,N,当MG2=MN•MD时,求AE的值.8.【问题背景】如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,由已知可以得到:①△≌△;②△∽△.【尝试应用】如图2,在△ABC和△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE =30°,求证:△ACE∽△ABD.【问题解决】如图3,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE =30°,AC与DE相交于点F,点D在BC上,,求的值.9.已知正方形ABCD中,点E是边CD上一点(不与C、D重合),将△ADE绕点A顺时针旋转90°得到△ABF,如图1,连接EF分别交AC、AB于点P、G.(1)请判断△AEF的形状;(2)求证:P A2=PG•PF;(3)如图2,当点E是边CD的中点时,PE=1,求AG的长.10.如图,等边△ABC的边长为12,点D,E分别在边AB,AC上,且AD=AE=4,点F 为BA延长线上一点,过点F作直线l∥BC,G为射线BC上动点,连接GD并延长交直线l于点H,连接FE并延长交BC于点M,连接HE并延长交射线BC于点N.(1)若AF=4,当BG=4时,求线段HF和EH的长;(2)若AF=a(a>0),点G在运动过程中,请判断△HGN的面积是否改变.若不变,求出其值(用含a的代数式表示);若改变,请说明理由.11.在△ABC中,∠ACB=90°,AC=8,BC=6.(1)如图1,点D为AC上一点,DE∥BC交AB边于点E,若=,求AD及DE的长;(2)如图2,折叠△ABC,使点A落在BC边上的点H处,折痕分别交AC、AB于点G、F,且FH∥AC.①求证:四边形AGHF是菱形;②求菱形的边长;(3)在(1)(2)的条件下,线段CD上是否存在点P,使得△CPH∽△DPE?若存在,求出PD的长;若不存在,请说明理由.12.如图①,AB∥MH∥CD,AD与BC相交于点M,点H在BD上.求证:.小明的部分证明如下:证明:∵AB∥MH,∴△DMH∽△DAB,∴.同理可得:=,….(1)请完成以上的证明(可用其他方法替换小明的方法);(2)求证:;(3)如图②,正方形DEFG的顶点D、E分别在△ABC的边AB、AC上,E、F在边BC 上,AN⊥BC,交DG于M,垂足为N,求证:.13.【问题情境】如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,我们可以得到如下正确结论:①CD2=AD•BD;②AC2=AB•AD;③BC2=AB•BD,这些结论是由古希腊著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③BC2=AB•BD.【结论运用】(2)如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF.①求证:△BOF∽△BED.②若CE=2,求OF的长.14.如图①,在正方形ABCD中,点P为线段BC上的一个动点,连接AP,将△ABP沿直线AP翻折得到△AEP,点Q是CD的中点,连接BQ交AE于点F,若BQ∥PE.(1)求证:△ABF∽△BQC;(2)求证:BF=FQ;(3)如图②,连接DE交BQ于点G,连接EC,GC,若FQ=6,求△GBC的面积.15.如图1,已知等边△ABC的边长为8,点D在AC边上,AD=2,点P是AB边上的一个动点.(1)连接PC、PD.①当AP=时,△APD∽△ACP;②若△APD与△BPC相似,求AP的长度;(2)已知点Q在线段PB上,且PQ=2.①如图2,若△APD与△BQC相似,则∠ACQ与∠PDC之间的数量关系是;②如图3,若E、F分别是PD、CQ的中点,连接EF,线段EF的长是否是一个定值,若是,求出EF的长,若不是,说明理由.16.(1)如图①,点E,F分别在正方形边AB,BC上,且AF⊥DE,请直接写出AF与DE的关系.(2)如图②,点E,F,G分别在矩形ABCD的边AB,BC,CD上,且AF⊥EG,求证:.(3)如图③,在(2)的条件下,连接AG,过点G作AG的垂线与CF交于点H,已知BH=3,HG=5,GA=7.5,求的值.17.【问题背景】正方形ABCD和等腰直角三角形CEF按如图①所示的位置摆放,点B,C,E在同一条直线上,其中∠ECF=90°.【初步探究】(1)如图②,将等腰直角三角形CEF绕点C按顺时针方向旋转,连接BF,DE,请直接写出BF与DE的数量关系与位置关系:;【类比探究】(2)如图③,将(1)中的正方形ABCD和等腰直角三角形CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°,且,其他条件不变.①判断线段BF与DE的数量关系,并说明理由;②连接DF,BE,若CE=6,AB=12,求DF2+BE2的值.18.在相似的复习课中,同学们遇到了一道题:已知∠C=90°,请设计三种不同方法,将Rt△ABC分割成四个小三角形,使每个小三角形与原三角形相似.(1)甲同学设计了如图1分割方法:D是斜边AB的中点,过D分别作DE⊥AC,DF ⊥BC,请判断甲同学的做法是否正确,并说明理由.(2)乙同学设计了如图2分割方法,过点D作FD⊥AB,DE⊥BC,连结EF,易证△ADF∽△ACB,△DEB∽△ACB,但是只有D在AB特殊位置时,才能证明另两个三角形与原三角形相似,李老师通过几何画板,发现∠A=30°时,,∠A=45°时,,∠A=60°时,.猜测对于任意∠A,当=(用AC,BC或AB相关代数式表示),结论成立.请补充条件并证明.(3)在普通三角形中,显然连结三角形中位线分割成四个小三角形与原三角形相似.你能参考乙同学的分割方法找到其他分割方法吗?请做出示意图并作适当分割说明(不要求证明过程).19.△ABC中,∠BAC=90°,AB=AC,点D在AB边上,点E在AC边上,连接DE,取BC边的中点O,连接DO并延长到点F,使OF=OD,连接CF,EF,令==k.(1)①如图1,若k=1,填空:=;△ECF是三角形.②如图2,将①中△ADE绕点A旋转,①中的结论是否仍然成立?若成立,请仅就图2所示情况给出证明;若不成立,请说明理由.(2)如图3,若k=,AB=AD,将△ADE由图1位置绕点A旋转,当点C,E,D三点共线时,请直接写出sin∠1的值.20.【基础探究】如图1,四边形ABCD中,∠ADC=∠ACB,AC为对角线,AD•CB=DC•AC.(1)求证:AC平分∠DAB.(2)若AC=8,AB=12,则AD=.【应用拓展】如图2,四边形ABCD中,∠ADC=∠ACB=90°,AC为对角线,AD•CB =DC•AC,E为AB的中点,连结CE、DE,DE与AC交于点F.若CB=6,CE=5,请直接写出的值.参考答案1.(1)①证明:∵四边形ABCD为正方形∴∠ACD=∠BDC=∠BAC=45°,又∵∠MCN=∠BDC,∴∠MCN=∠ACD=45°,∴∠MCA+∠ACN=∠ACN+∠DCN,∴∠MCA=∠DCN,∴△ACM∽△DCN.②证明:由①可知:△ACM∽△DCN,∴,∴DN=AM,∴AM+BM=AB=CD,∴DN+BM=CD.(2)解:如图所示:连接AC,在DN上取一点P使∠PCD=∠PDC=30°,过P作PQ ⊥CD于Q,∴∠PCD=∠PDC=30°,∴∠NPC=60°,又∵四边形ABCD为菱形且∠BAD=120°,∴∠BAC=60°,∴∠NPC=∠BAC,又∵∠ACP=∠ACD﹣∠PCD=30°,∠MCN=∠BDC=30°,∵∠MCN=∠ACP,∴∠MCA+∠ACN=∠ACN+∠NCP,∴∠MCA=∠NCP,∴△AMC∽△PNC,∴,∵,∴CD=CP,∴,∴AM,∴AM=PN,∴AM+MB=AB=CD,∴PN+MB=CD,∴(DN﹣DP)+MB=CD,∴(DN﹣CD)+MB=CD,即DN﹣CD+MB=CD,∴DN+MB=2CD.2.解:(1)∵∠ACB=∠ADE=90°,CA=CB,DA=DE,∴∠A=∠B=∠DEA=45°,∴AB=AC=m,AE=AD=m,∴CD=AC﹣AD=m,BE=AB﹣AE=m,∴BE=CD,∵∠A=45°,∴直线CD与BE的夹角为45°,故答案为:BE=CD,45°;(2)不满足,BE=CD,直线CD与BE的夹角为30°,理由如下:如图2,过点C作CH⊥AB于H,延长CD、BE交于点F,∵CA=CB,∴AH=HB,∵∠ACB=∠ADE=120°,CA=CB,DA=DE,∴∠CAB=∠CBA=30°,∠DAE=∠DEA=30°,∴AC=2CH,∠CAD=∠BAE,由勾股定理得:AH=AC,∴AB=AC,同理可得:AE=AD,∵∠CAD=∠BAE,∴△CAD∽△BAE,∴==,∠ACD=ABE,∴BE=CD,∠F=∠CAB=30°,∴BE=CD,直线CD与BE的夹角为30°;(3)如图3,点E在线段BD上,∵m=2,∴AD=DE=1,AB=2,由勾股定理得:BD==,∴BE=BD﹣DE=﹣1,∴CD=BE=,如图4,点D在线段BE上,BE=BD+DE=+1,∴CD=BE=,综上所述:当B,E,D三点共线.CD的长为或.3.(1)解:①∵四边形ABCD是正方形,∴AD=CD,∠BAD=∠ADC=90°,∵DE⊥CF,∴∠DGF=90°=∠ADC,∴∠ADE+∠EDC=90°=∠EDC+∠DCF,∴∠ADE=∠DCF,∴△ADE≌△DCF(ASA),∴DE=CF,故答案为:1;②解:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,AB=CD=m,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴=,故答案为:;(2)证明:如图所示,∠B+∠EGC=180°,∠EGC+∠EGF=180°,∴∠B=∠EGF,在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM,∵AB∥CD,∴∠A=∠CDM,∵AD∥BC,∴∠B+∠A=180°,∵∠B=∠EGF,∴∠EGF+∠A=180°,∴∠AED=∠CFM=∠CMF,∴△ADE∽△DCM,∴,即;(3)解:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,在△BAD和△BCD中,,∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠MBC=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴,∴,∴CM=x,在Rt△CMB中,CM=x,BM=AM﹣AB=x﹣5,由勾股定理得:BM2+CM2=BC2,∴(x﹣5)2+(x)2=52,解得:x1=0(舍去),x2=8,∴CN=8,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴==.4.解:(1)如图,∵∠ABC=∠C=60°,∴△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,∵AD=CE,∴△ABD≌△CAE(SAS),∴∠EAC=∠DBA,∵,∴点D是AC中点,且△ABC是等边三角形,∴∠DBA=30°,∴∠EAC=30°,∴∠BAE=∠DBA=30°,∴AF=BF,∴,故答案为:1;(2)由(1)可得△ABD≌△CAE,∴∠EAC=∠DBA,∵∠ADF=∠BDA,∴△AFD∽△BAD;(3)由(1)可得△ABD≌△CAE,∴BD=AE,∠EAC=∠DBA,∴∠BFE=∠DBA+∠BAF=∠EAC+∠BAF=∠BAD=60°,设AF=x,BF=y,AB=AC=BC=n,AD=CE=1,BD=AE=m,∵∠EAC=∠DBA,∠ADB=∠ADB,∴△ADF∽△BDA,∴,∴①,∵∠BFE=∠C=60°,∠DBC=∠DBC,∴△BFE∽△BCD,∴,∴②,①÷②得:,∴,∵,即n=4,∴.5.(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB.∴∠ADC=∠ACB.(2)解:∵BC2=AB•BD,∴.又∵∠B=∠B,∴△ABC∽△CBD.∴∠ACB=∠CDB.∵∠ADC+∠CDB=180°,∠ADC=∠ACB,∴∠ACB=∠CDB=∠ADC=90°.(3)解:∵△BCD绕点C顺时针旋转得到△ECF,∴CE=BC,∠E=∠B.∵∠ACD=∠B,∴∠ACD=∠E.∴AC=AE.∵∠ADC=90°,∴CE⊥AB.∴CD=DE=CE.∴∵△ADC∽△ACB,∴.∴AD=•AC=1,在Rt△ADC中,.6.证明:(1)①∵四边形ABCD为矩形,DM⊥MN,∴∠A=∠DMN=90°,∵AB=6,AD=4,MN=DM,∴,∴△ABD∽△MND;②∵四边形ABCD为矩形,DM⊥MN,∴∠ABC=∠DMN=90°,∴∠ABD+∠CBD=90°,由①得△ABD∽△MND,∴∠ABD=∠DNM,又∵∠MEB=∠DEN,∴△MBE∽△DNE,∴,又∵∠MED=∠BEN,∴△DME∽△NBE,∴∠NBE=∠DME=90°,∴∠CBN+∠CBD=90°,∴∠CBN=∠DNM;(2)如图②,过点N作NF⊥AB,交AB延长线于点F,连接AC,AN,则∠NF A=90°,∵四边形ABCD为矩形,AD=4,AB=6,∴∠A=∠ABC=90°,BC=AD=4,,则∠ADM+∠AMD=90°,∵AM=4BM,AB=6,∴AM=AB=,又∵DM⊥MN,∴∠DMN=90°,∴∠AMD+∠FMN=90°,∴∠ADM=∠FMN,∴△ADM∽△FMN,∴,,∴MF=6,FN=,∴,∴,∵∠ABC=∠AFN=90°,∴△ABC∽△AFN,∴∠BAC=∠F AN,∴A,C,N三点在同一条直线上.7.(1)解:∵四边形ABCD是矩形,∴∠A=∠D=90°,EF=FG,∵∠EFG=90°,∴∠AFE+∠DFN=90°,∠AFE+∠AEF=90°,∴∠DFN=∠AEF.∴△DFG≌△AEF(AAS),∴AF=DG,AE=DF,∴AE+DG=AF+DF=AD=6;(2)证明:如图,延长NF,EA相交于H,∴∠HFE=90°,∠HAF=90°,∵∠HFE=∠NFE,EF=EF,∠HEF=∠NEF,∴△HFE≌△NFE(ASA),∴FH=FN,HE=NE,∵∠AFH=∠DFN,∠HAF=∠D,∴△HF A≌△NFD(AAS),∴AH=DN,∵EH=AE+AH=AE+DN,∴EN=AE+DN;(3)解:如图,过点G作GP⊥AD交AD的延长线于P,∴∠P=90°,∵MG2=MN•MD,∴=,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴∠GDM=45°,∠PDG=45°,∴△PDG是等腰直角三角形,PG=PD,∵∠AFE+∠PFG=90°,∠AFE+∠AEF=90°,∴∠PFG=∠AEF,∵∠A=∠P=90°,EF=FG,∴△PFG≌△AEF(AAS),∴AF=PG,AE=PF,∴AE=PD+DF=AF+DF=AD=6.8.【问题背景】∵△ABC和△ADE是等腰直角三角形,∴△ABC∽△ADE.∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,故答案为:①△ABD≌△ACE;②△ABC∽△ADE.【尝试应用】∵△ABC∽△ADE,∴,∠CAB=∠EAD,∴∠CAE=∠BAD,∴△ACE∽△ABD;【问题解决】连接CE,由【尝试应用】知,△ABD∽△ACE,∴∠ACE=∠ABD=∠ADE=30°,∵∠AFD=∠EFC,∴△ADF∽△ECF,∴,∵,∴,∵,∴.9.(1)解:△AEF是等腰直角三角形,理由如下:由旋转的性质可知:AF=AE,∠F AE=90°,∴△AEF是等腰直角三角形;(2)证明:∵四边形ABCD是正方形,∠CAB=45°,由(1)知∠AFE=45°,∴∠P AG=∠AFP=45°,又∵∠APG=∠FP A,∴△APG∽△FP A,∴,∴P A2=PG•PF;(3)解:设正方形的边长为2a,∵将△ADE绕点A顺时针旋转90°得到△ABF,∴∠ABF=∠D=90°,DE=BF,∵∠ABC=90°,∴∠FBC=180°,∴F,B,C三点共线,∵DE=EC=BF=a,BC=2a,∴CF=3a,EF===a,∵BG∥EC,∴BG:EC=FB:CF=FG:FE=1:3,∴BG=,AG=,GE=a,∵∠GAP=∠EG=45°,∠AGP=∠EGA,∴△AGP∽△EGA,∴,∴AG2=GP•GE,∴()2=()×,∴a=或a=0(舍去),∴AG=.10.解:(1)如图1,由题意可得:BD=DF=8,∵HF∥BC,∴∠HFD=∠B,在△HFD和△GBD中,,∴△HFD≌△GBD(ASA),∴HF=BG=4,连接DE,∵△ABC是等边三角形,∴∠B=∠BAC=60°,∵AD=AE=4,∴△ADE是等边三角形,∴DE=AD=4,∠ADE=60°,∴∠ADE=∠B,∴DE∥BC,∴DE∥FH,∵FH=DE=4,∴四边形DEFH是平行四边形,∴HE和DF互相平分,∵DA=AF,∴HE经过点A,∴HE=2AE=8;(2)如图2,面积不变,理由如下:连接DE,作FK⊥BC于K,在Rt△BFK中,∠B=60°,BF=12+a,∴FK=BF•sin60°=,由(1)得,DE∥FH=BC,∴△HDE∽△HGN,△HFD∽△GBD,∴,,∴,∴,∴,∴GN=,∴S△HGN===,11.解:(1)∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴AD=2,;(2)①由翻折不变性可知:AF=FH,AG=GH,∠AFG=∠GFH,∵FH∥AC,∴∠AGF=∠GFH,∴∠AGF=∠AFG,∴AG=AF,∴AG=AF=FH=HG,∴四边形AGHF是菱形;②∵FH∥AC,∴△FBH∽△ABC,∴,又∵BC=6,AC=8,AB=10,∴BH:FH:BF=3:4:5,∴设BH=3a,则FH=AF=4a,BF=5a,∴4 a+5a=10,∴,∴FH=,即菱形的边长为;(3)在点P使得△CPH∽△DPE,理由如下:∵△CPH∽△DPE,∴,∵BH=,∴CH=,∴,∴.12.证明:(1)∴=,两边都除以MH,得,;(2)如图1,作AE⊥BD于E,MF⊥BD于F,CG⊥BD于G,∴AE∥MF∥CG,∴,∵HH∥AB,∴,∴,同理可得:,由(1)得,,两边乘以,得,(3)如图2,∵DG∥BC,∴△ADG∽△ABC,∴,∵,∴,∵四边形DEFG是正方形,∴MN=DE=DG,∴,两边都除以DG,得,.13.(1)证明:∵CD⊥AB,∴∠BDC=90°=∠ACB,∵∠CBD=∠ABC,∴△CBD∽△ABC,∴,∴BC2=AB•BD;(2)①证明:∵四边形ABCD是正方形,∴OC⊥BO,∠BCD=90°,∴BC2=BO•BD,∵CF⊥BE,∴BC2=BF•BE,∴BO•BD=BF•BE,即,∵∠OBF=∠EBD,∴△BOF∽△BED;②解:在Rt△BCE中,∵BC=6,CE=2,∴BE==2,∴DE=4,BO=3,由①知△BOF∽△BED,∴,∴,∴OF=.14.(1)证明:如图①中,∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB∥CD,∴∠ABF=∠CQB,由翻折的性质可知,∠E=∠ABC=90°∵PE∥BQ,∴∠AFB=∠E=90°,∴△AFB∽△BCQ;(2)证明:如图①中,设AB=BC=CD=AD=2a,∵Q是CD的中点,∴CQ=QD=a,∵∠C=90°,∴BQ===a,∵△AFB∽△BCQ,∴=,∴=,∴BF=a,∴QF=a,∴==,∴BF=QF;(3)解:如图②,建立如图平面直角坐标系,过点E作EH⊥AB于点T.∵BF=FQ,FQ=6,∴BF=4,∴BQ=BF+FQ=4+6=10,∴CQ=2,AB=BC=CD=AD=4,∴Q(4,2),∴直线BQ的解析式为y=x,∵∠EAT=∠CBQ,∠ATE=∠BCQ=90°,∴△ATE∽△BCQ,∴==,∴==,∴AT=8,ET=4,∴BT﹣AB﹣AT=4﹣8,∴E(4,4﹣8),∵D(4,4),∴直线DE的解析式为:y=x+2﹣10,由,解得,∴G(4﹣4,2﹣2),∴S△BCG=××(2﹣2)=20﹣4.15.解:(1)①∵等边△ABC的边长为8,∴AC=8,∵△APD∽△ACP,∴,∵AD=2,∴,∴AP=4,故答案为4;②∵△ABC为等边三角形,∴AB=BC=8,∠A=∠B=60°,∵△APD与△BPC相似,∴△APD∽△BPC或△APD∽△BCP,Ⅰ、当△APD∽△BPC时,,∴,∴AP=,Ⅱ、当△APD∽△BCP时,,∴,∴AP=4,即△APD与△BPC相似时,AP的长度为或4;(2)①∵△ABC为等边三角形,∴AB=BC=8,∠A=∠B=∠ACB=60°,∵△APD与△BQC相似,∴△APD∽△BQC或△APD∽△BCQ,Ⅰ、当△APD∽△BQC时,∠APD=∠BQC,∴∠PDC=∠A+∠APD=60°+∠APD=60°+∠BQC,∴∠BQC=∠PDC﹣60°,∴∠ACQ=∠ACB﹣∠BCQ=60°﹣(180°﹣∠B﹣∠BAC)=∠B+∠BQC﹣120°=60°+∠PDC﹣60°﹣120°=∠PDC﹣120°,∴∠PDC+∠ACQ=120°;Ⅱ、当△APD∽△BCQ时,∠APD=∠BCQ,∴∠PDC=∠A+∠APD=60°+∠APD=60°+∠BCQ,∴∠BCQ=∠PDC﹣60°,∴∠ACQ=∠ACB﹣∠BCQ=60°﹣(∠PDC﹣60°)=120°﹣∠PDC,∴∠ACQ+∠PDC=120°,即满足条件的∠ACQ与∠PDC之间的数量关系是∠ACQ+∠PDC=120°或∠PDC﹣∠ACQ=120°;②线段EF的长是一个定值,为.如图,连接AE并延长至G,使AE=GE,连接PG,QG,∵点E是DP的中点,∴DE=PE,∵∠AED=∠GEP,∴△AED≌△GEP(SAS),∴AE=GE,PG=AD=2,∠ADE=∠GPE,∴PG∥AD,∴∠QPG=∠BAC=60°,∵PQ=2=PG,∴△PQG为等边三角形,∴QG=2,∠PQG=60°=∠B,∴QG∥BC,连接GF并延长交BC于H,∴∠FQG=∠FCH,∵点F是CQ的中点,∴FQ=FC,∵∠QFG=∠CFH,∴△QFG≌△CFH(ASA),∴FG=FH,CH=QG=2,连接AH,过点A作AM⊥BC于M,∴∠AMC=90°,CM=BC=4,在Rt△AMC中,AC=8,根据勾股定理得,AM2=AC2﹣CM2=82﹣42=48,在Rt△AMH中,MH=CM﹣CH=2,根据勾股定理得,AH===2,∵AE=GE,FG=FH,∴EF是△AHG的中位线,∴EF=AH=,即线段EF的长是一个定值.16.解:(1)∵AF⊥DE,∴∠ADE+∠DAF=90°,∵∠ADE+∠AED=90°,∴∠DAF=∠AED,∵∠ADE=∠ABF=90°,AD=AB,∴△ADE≌△DAF(AAS),∴AF=DE;(2)过点G作GM⊥BA交于点M,∵AF⊥EG,∴∠F AB+∠AEG=90°,∵∠F AB+∠AFB=90°,∴∠AEG=∠AFB,∵∠GME=∠ABF=90°,∴△GME∽△ABF,∴=,∵AD=GM,∴;(3)连接AH,∵AG⊥GH,∴△AGH是直角三角形,∵HG=5,GA=7.5,∴AH=,在Rt△ABH中,BH=3,AH=,∴AB=,∵∠AGH=90°,∴∠DGA+∠CGH=90°,∵∠DGA+∠GAD=90°,∴∠GAD=∠CGH,∴△DAG∽△CGH,∴==,∴==,∴AD=6,由(2)知,∴==.17.解:(1)如图②,BF与CD交于点M,与DE交于点N,∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,∵△ECF是等腰直角三角形,∴CF=CE,∠ECF=90°,∴∠BCD=∠ECF,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∴△BCF≌△DCE(SAS),∴BF=DE,∠CBF=∠CDE,∵∠BMC=∠DMF,∠CBF+∠BMC=90°,∴∠CDE+∠DMF=90°,∴∠BND=90°,∴BF⊥DE,故答案为:BF=DE,BF⊥DE;(2)①如图③,,理由:∵四边形ABCD是矩形,∴∠BCD=90°,∵∠ECF=90°,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∵,∴△BCF∽△DCE,∴=;②如图③,连接BD,∵△BCF∽△DCE,∴∠CBF=∠CDE,∵四边形ABCD是矩形,∴CD=AB=12,∵CE=6,,∴=,∴CF=8,BC=16,∵∠DBO+∠CBF+∠BDC=∠BDO+∠CDE+∠BDC=∠DBO+∠BDO=90°,∴∠BOD=90°,∴∠DOF=∠BOE=∠EOF=90°,在Rt△DOF中,DF2=OD2+OF2,在Rt△BOE中,BE2=OB2+OE2,在Rt△DOB中,DB2=OD2+OB2,在Rt△EOF中,EF2=OE2+OF2,∴DF2+BE2=OD2+OF2+OB2+OE2=DB2+EF2,在Rt△BCD中,BD2=BC2+CD2=162+122=400,在Rt△CEF中,EF2=EC2+CF2=62+82=100,∴BD2+EF2=400+100=500,∴DF2+BE2=500.18.解:(1)甲的做法正确,理由如下:∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∵∠C=90°,∴四边形DECF是矩形,∴∠EDF=90°,DE∥BC,DF∥AC,∴,△AED∽△ACB,△BFD∽△BCA,即:AE=CE,同理可得:BF=CF,∴DF∥AC,EF∥AB,∴四边形AEFD是平行四边形,△CEF∽△CAB,同理可得:四边形DEFB是平行四边形,∴∠EFD=∠A,∵∠AED=∠EDF,∴△AED∽△FDE,∴四个小三角形与△ABC相似;(2)当时,△EDF∽△AFD∽△FEC,理由如下:∵△ADF∽△ACB,△DEB∽△ACB,∴①,②,得,,∴DE=EF,∵DE∥AF,∴四边形ADFE是平行四边形,由(1)可得,△DEF和△CEF与△ABC相似,故答案是:;(3)如图,根据和AC和AB及AB的长度找出点D的位置,然后作DE∥AC交BC于E,作EF∥AB交AC于F,连接DF即可.19.解:(1)①∵O是BC的中点,∴OB=OC,在△BOD和△COF中,,∴△BOD≌△COF(SAS),∴CF=BD,∠OCF=∠B,∵AD=AE,AB=AC,∴BD=CE,∴CE=CF,即:,∵∠B+∠ACB=90°,∴∠OCF+∠ACB=90°,∴∠ECF=90°,∴△ECF是等腰直角三角形,故答案是:1,等腰直角三角形,解:(2)如图1,仍然成立,理由如下:连接BD,由(1)得:CF=BD,CF∥BD,∴∠CFO=∠DBO,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠CAE=∠BAD,在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD,∠ACE=∠ABD,∴CE=CF,∵∠ACB+∠ABC=90°,∴∠ACE+∠EAO+∠ABC=90°,∴∠ABD+∠EAO+∠ABC=90°,∴∠EAO+∠DBO=90°,∴∠EAO+∠CFO=90°,∴∠FCE=90°,∴=1,△ECF是等腰直角三角形;(3)如图2,连接BD,作AG⊥CD于G,设AD=a,则AB=,AC=a,AE=,由(2)得:∠CAE=∠BAD,CF=BD,∵,∴△CAE∽△BAD,∴,∠ACD=∠ABD,∴,同理(2)得:∠CEF=90°,∴∠ECF=∠EAD=90°,∴点C、A、B、D共圆,∴∠1=∠ACG,∵AD=a,AE=,∠DAE=90°,∴DE=,由S△ADE=得,AG=a,∴sin∠ACD===,∴sin∠1=.20.(1)证明:∵∠ADC=∠ACB,,∴△ADC∽△ACB,∴∠DAC=∠CAB,∴AC平分∠DAB;(2)解:∵△ADC∽△ACB,∴,∴AC2=AB×AD,∵AC=8,AB=12,∴64=12AD,∴AD=,故答案为:;(3)解:∵∠ACB=90°,点E为AB的中点,∴AB=2CE=10,∴AC=8,∵△ADC∽△ACB,∴AD==6.4,由(1)知∠DAC=∠EAC,∵CE=AE,∴∠ECA=∠EAC,∴∠DAC=∠ECA,∴△AFD∽△CFE,∴.。
【最新】江苏省中考数学压轴试题(含答案)

最新江苏省中考数学压轴试题(含答案)一.(10分)(中考压轴题)已知BC是⊙O的直径,BF是弦,AD过圆心O,AD⊥BF,AE⊥BC于E,连接FC.(1)如图1,若OE=2,求CF;(2)如图2,连接DE,并延长交FC的延长线于G,连接AG,请你判断直线AG与⊙O的位置关系,并说明理由.二.(中考压轴题)(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70 销售量y(千克)100 80 60 (1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.三.(中考压轴题)(10分)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(结果保留整数)(参考数据:sin67°≈0.92;cos67°≈0.38;≈1.73)四.(中考压轴题)(12分)我们定义:如图1、图2、图3,在△ABC 中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD= BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.五.(中考压轴题)(14分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.六.(中考压轴题)(8分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.七.(中考压轴题)(13分)如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.八.(中考压轴题)(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H 关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.九.(中考压轴题)如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.答案一.解:(1)∵BC是⊙O的直径,AD过圆心O,AD⊥BF,AE⊥BC于E,∴∠AEO=∠BDO=90°,OA=OB,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OE=OD=2,∵BC是⊙O的直径,∴∠CFB=90°,即CF⊥BF,∴OD∥CF,∵O为BC的中点,∴OD为△BFC的中位线,∴CF=2OD=4;(2)直线AG与⊙O相切,理由如下:连接AB,如图所示:∵OA=OB,OE=OD,∴△OAB与△ODE为等腰三角形,∵∠AOB=∠DOE,∴∠ADG=∠OED=∠BAD=∠ABO,∵∠GDF+∠ADG=90°=∠BAD+∠ABD,∴∠GDF=∠ABD,∵OD为△BFC的中位线,[来源:Z。
2022年春苏科版九年级数学中考复习几何压轴题专题训练(附答案)

2022年春苏科版九年级数学中考复习几何压轴题专题训练(附答案)1.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB,垂足为E,点F在DE的延长线上,点G在线段AD上,且∠BGF=60°.(1)若DE=2,求AC的长;(2)证明:DF=AD+DG.2.在△ABC中,点D、E分别在AB、AC边上,设BE与CD相交于点F.(1)如图①,设∠A=60°,BE、CD分别平分∠ABC、∠ACB,证明:DF=EF.(2)如图②,设BE⊥AC,CD⊥AB,点G在CD的延长线上,连接AG、AF;若∠G=∠6,BD=CD,证明:GD=DF.3.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.4.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC 的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG =45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.5.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC =BF.6.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.7.已知△ABC为等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF 交直线BC于F.(1)如图(1),求证:DE=DF;(2)如图(2),若BE=3AE,求证:CF=BC.(3)如图(3),若BE=AE,则CF=BC;在图(1)中,若BE=4AE,则CF =BC.8.如图,在四边形ABCD中,AD=BC=4,AB=CD,BD=6,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C →B→C作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)证明:AD∥BC.(2)在移动过程中,小明发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,会出现△DEG与△BFG全等的情况.9.如图,已知凸五边形ABCDE中,EC,EB为其对角线,EA=ED.(1)如图1,若∠A=60°,∠CDE=120°,且CD+AB=BC.求证:CE平分∠BCD;(2)如图2,∠A与∠D互补,∠DEA=2∠CEB,若凸五边形ABCDE面积为30,且CD=AB=4.求点E到BC的距离.10.已知△ABC≌△ADE,且它们都是等腰直角三角形,∠ABC=∠ADE=90°.(1)如图1,当点D在边AC上时,连接BD并延长交CE于点F,①求证:∠CBD=∠EDF;②求证:点F为线段CE的中点;(2)△ADE绕着点A顺时针旋转,如图2所示,连接BD并延长交CE于点F,点F还是线段CE的中点吗?请说明理由.11.已知在△ABC与△CDE中,AB=CD,∠B=∠D,∠ACE=∠B,点B、C、D在同一直线上,射线AH、EI分别平分∠BAC、∠CED.(1)如图1,试说明AC=CE的理由;(2)如图2,当AH、EI交于点G时,设∠B=α,∠AGE=β,求β与α的数量关系,并说明理由;(3)当AH∥EI时,求∠B的度数.12.如图1,△ABC≌△DAE,∠BAC=∠ADE=90°.(1)连接CE,若AB=1,点B、C、E在同一条直线上,求AC的长;(2)将△ADE绕点A逆时针旋转α(0°<α<90°),如图2,BC与AD交于点F,BC 的延长线与AE交于点N,过点D,作DM∥AE交BC于点M.求证:①BM=DM;②MN2=NF•NB.13.如图1,2,3,将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB1C1D1,连接BD.(1)探究:①如图1,当α=90°时,点C1恰好在DB的延长线上,若AB=1,求BC的长;②如图2,连接AC1,过点D1作D1M∥AC1交BD于点M,线段D1M与DM相等吗?请说明理由.(2)在探究(1)②的条件下,射线DB分别交AD1、AC1于点P、N(如图3).求证:①MN=AN;②MN2=PN•DN.14.如图1,在矩形ABCD中,点E是CD上一动点,连接AE,将△ADE沿AE折叠,点D落在点F处,AE与DF交于点O.(1)射线EF经过点B,射线DF与BC交于点G.ⅰ)求证:△ADE∽△DCG;ⅱ)若AB=10,AD=6,求CG的长;(2)如图2,射线EF与AB交于点H,射线DF与BC交于点G,连接HG,若HG∥AE,AD=10,DE=5,求CE的长.15.如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.D、E分别是AB、AC边的中点,连接DE.现将△ADE绕A点逆时针旋转,连接BD,CE并延长交于点F.(1)如图2,点E正好落在AB边上,CF与AD交于点P.①求证:AE•AB=AD•AC;②求BF的长;(2)如图3,若AF恰好平分∠DAE,直接写出CE的长.16.如图,过⊙O外一点P作⊙Q的两条切线P A和PB,PD交⊙O于D和C,E在弦DC 上.且∠DAE=∠PBC.(1)求证:∠ADC=∠P AC;(2)求证:△ADE∽△BAC;(3)若AD=5,BC=3,AC=4,试求BD的长.17.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE 的长为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是AO的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,求出BP的长.18.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,将△ABC沿BC翻折得到△DBC,过点D作⊙O的切线DF,与BC的延长线交于点E,F为切点,⊙O的半径为,∠ABD=30°.(1)求的长.(2)若DE∥AB,连接AE.①求证:四边形ABDE为菱形.②求DF的长.19.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点M,OM交⊙O于点N,连接AM.(1)求证:AM是⊙O的切线;(2)若DN=4,AC=8,求线段MN的长;(3)在(2)的条件下,求阴影部分的面积.20.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,连接BD,△ADE是以AD为斜边的直角三角形,且满足∠EAD=∠DAB,DE=DC.(1)求证:DE为⊙O的切线;(2)求证:DE2=EF•BD;(3)若AB=1,求BD的长.参考答案1.(1)解:在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,DE⊥AB,∴CD=DE=2.∠CBD=∠ABD=30°,∴BD=2CD=4,∵DE⊥AB,∠CBD=∠ABD=30°,∴AD=BD=4,∴AC=AD+CD=4+2=6,∴AC的长为6;(2)证明:如图,在DE上截取DH=DG,连接GH,∵AD=BD,∠A=∠ABD=30°,∴∠BDE=∠ADE=60°,∴△DGH是等边三角形,∴∠DGH=∠DHG=60°,∵∠BGF=60°,∴∠1+∠HGB=∠2+∠HGB=60°,∴∠1=∠2,∵∠BDC=∠DHG=60°,∴∠BDG=∠FHG=120°,在△BDG和△FHG中,,∴△BDG≌△FHG(ASA),∵DF=FH+DH=BD+DG=AD+DG,∴DF=AD+DG.2.证明:(1)如图,在BC上截取BM=BD,连接FM,∵∠A=60,∴∠BFC=90°+60°÷2=120°,∴∠BFD=60°,∵BE平分∠ABC,∴∠1=∠2,在△BFD和△BFM中,,∴△BFD≌△BFM(SAS),∴∠BFM=∠BFD=60°,DF=MF,∴∠CFM=120°﹣60°=60°,∵∠CFE=∠BFD=60°,∴∠CFM=∠CFE,∵CD平分∠ACB,∴∠3=∠4,又CF=CF,在△ECF和△MCF中,,∴△ECF≌△MCF(ASA),∴EF=MF,(2)∵BE⊥AC,CD⊥AB,∴∠BDF=∠CDA=90°,∴∠1+∠BFD=90°,∠3+∠CFE=90°,∠BFD=∠CFE,∴∠1=∠3,∵BD=CD,在△BDF和△CDA中,,∴△BDF≌△CDA(ASA),∴DF=DA,∵∠ADF=90°,∴∠6=45°,∵∠G=∠6,∴∠5=45°∴∠G=∠5,∴GD=DA,∴GD=DF.3.解:(1)在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4(cm);(2)由题意知BP=tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;②当∠BAP为直角时,BP=tcm,CP=(t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=8cm,t=8;③当BP=AP时,AP=BP=tcm,CP=(4﹣t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(4﹣t)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.4.解:(1)根据题意得:a﹣2=0且b﹣2=0,解得:a=2,b=2,则A的坐标是(2,2);(2)AC=CD,且AC⊥CD.如图1,连接OC,CD,∵A的坐标是(2,2),∴AB=OB=2,∵△ABC是等边三角形,∴∠OBC=30°,OB=BC,∴∠BOC=∠BCO=75°,∵在直角△ABO中,∠BOA=45°,∴∠AOC=∠BOC﹣∠BOA=75°﹣45°=30°,∵△OAD是等边三角形,∴∠DOC=∠AOC=30°,即OC是∠AOD的角平分线,∴OC⊥AD,且OC平分AD,∴AC=DC,∴∠ACO=∠DCO=60°+75°=135°,∴∠ACD=360°﹣135°﹣135°=90°,∴AC⊥CD,故AC=CD,且AC⊥CD.(3)不变.延长GA至点M,使AM=OF,连接BM,∵在△BAM与△BOF中,,∴△BAM≌△BOF(SAS),∴∠ABM=∠OBF,BF=BM,∵∠OBF+∠ABG=90°﹣∠FBG=45°,∴∠MBG=45°,∵在△FBG与△MBG中,,∴△FBG≌△MBG(SAS),∴FG=GM=AG+OF,∴=1.5.(1)解:∵在△ADC和△EDB中,∴△ADC≌△EDB(SAS),故选B;(2)解:∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三边关系定理得:8﹣6<2AD<8+6,∴1<AD<7,故选C.(3)证明:延长AD到M,使AD=DM,连接BM,∵AD是△ABC中线,∴CD=BD,∵在△ADC和△MDB中∴△ADC≌△MDB,∴BM=AC,∠CAD=∠M,∵AE=EF,∴∠CAD=∠AFE,∵∠AFE=∠BFD,∴∠BFD=∠CAD=∠M,∴BF=BM=AC,即AC=BF.6.解:(1)如图1,BM、NC、MN之间的数量关系BM+NC=MN,此时,理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴=;(2)猜想:结论仍然成立,证明:在NC的延长线上截取CM1=BM,连接DM1,∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴=;(3)证明:在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,∴DM=DM1,可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC﹣BM=MN.7.证明:(1)如图1中,连接BD,作DM⊥AB于M,DN⊥BC于N,∵∠DMB=∠DNB=90°,∠ABC=60°,∴∠MDN=∠EDF=120°,∴∠MDE=∠NDF,∵△ABC是等边三角形,AD=DC,∴∠DBA=∠DBC,∴DM=DN,∴△DME≌△DNF,∴DE=DF.(2)如图2中,作DK∥BC交AB于K.设AE=a,则BE=3a,AB=AC=BC=4a,∵AD=DC,DK∥CB,∴AK=BK=2a,DK=BC=2a=AD=AK,∴AE=EK=a,∴DE⊥AK,∴∠BED=90°,∵∠BED+∠BFD=180°,∴∠DFB=90°,在Rt△CDF中,∵∠C=60°,∴CF=CD=a,∴CF=BC.(3)①如图3中,作DK∥BC交AB于K.设BE=a,则AE=3a,AK=BK=2a,△ADK是等边三角形,∴∠ADK=60°,∠EDF=∠KDC,∴∠KDE=∠CDF,∵DK=DC,DE=DF,∴△EDK≌△FDC,∴EK=CF=a,∵BC=4a,∴CF=BC.②如图4中,由(1)可知EM=FN,设AE=a,则BE=4a,AB=BC=AC=5a,AM=CN=a,EM=FN=a,∴CF=FN+CN=a,∴CF:BC=a:5a=3:10,∴CF=BC.故答案为,.8.(1)证明:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠CBD,∴AD∥BC;(2)解:设运动时间为t,点G的运动速度为v,当时,若△DEG≌△BGF,则,∴,∴,∴v=3;若△DEG≌△BGF,则,∴,∴(舍去);当时,若△DEG≌△BFG,则,∴,∴,∴;若△DEG≌△BGF,则,∴,∴,∴v=1.综上,当点G的速度为3或1.5或1时.会出现△DEG与△BFG全等的情况.9.(1)证明:延长CD到T,使得DT=BA,连接ET.∵∠CDE=120°,∴∠EDT=180°﹣120°=60°,∵∠A=60°,∴∠A=∠EDT,在△EAB和△EDT中,,∴△EAB≌△EDT(SAS),∴EB=ET,∴CB=CD+BA=CD+DT=CT,在△ECB和△ECT中,,∴△ECB≌△ECT(SSS),∴∠ECB=∠ECD,∴CE平分∠BCD.(2)解:延长CD到Q,使得∠QED=∠AEB,过点E作EH⊥BC于H.∵∠A+∠CDE=180°,∠CDE+∠EDQ=180°,∴∠A=∠EDQ,在△AEB和△DEQ中,,∴△AEB≌△DEQ(ASA),∴EB=EQ,∵∠AED=2∠BEC,∴∠AEB+∠CED=∠BEC,∴∠CED+∠DEQ=∠BEC,∴∠CEB=∠CEQ,在△CEB和△CEQ中,,∴△ECB≌△ECQ(SAS),∵S五边形ABCDE=S四边形EBCQ=2S△EBC=30,∴S△EBC=15,∵CD=AB=4,∴AB=6,CD=4,∴BC=CD+QD=CD+AB=10,∴×10×EH=15,∴EH=3,∴点E到BC的距离为3.10.(1)证明:①∵△ABC≌△ADE,∴AB=AD,BC=DE,AE=AC,∵△ABC,△ADE为等腰直角三角形,∴AD=DE,AB=BC,∠DAE=∠AED=∠BAC=∠BCA=45°,在△ABD中,AB=AD,∴∠ABD=∠ADB=67.5°,∴∠CBF=90°﹣∠ABD=22.5°,∠EDF=90°﹣∠CDF=90°﹣∠ADB=22.5°,∴∠CBF=∠EDF,∴∠CBD=∠EDF;②∵AE=AC,∠EAC=45°,∴∠ACE=∠AEC=67.5°,∵∠ADE=90°,∴∠DEC=22.5°,∵∠FDC=∠FCD=67.5°,∴EF=DF,DF=FC,∴EF=FC,∴点F为线段CE的中点;(2)解:点F还是线段CE的中点,理由如下:过点E作EG∥BC交BF延长线于G,∴∠EGF=∠CBF,∠FEG=∠FCB,∵AB=AD,∴∠ABD=∠ADB,∵∠ADE=∠ABC=90°,∴∠EDG=90°﹣∠ADB=90°﹣∠ABD=∠FBC,∴∠EDG=∠EGD,∴DE=EG,∵DE=BC,∴EG=BC,∵∠FEG=∠FCB,∠FGE=∠FBC,∴△EFG≌△CFB(ASA),∴EF=CF,∴F为EC的中点.11.(1)证明:∵∠ACD=∠ACE+∠ECD=∠A+∠B,又∠B=∠ACE,∴∠A=∠ECD.在△ABC和△CDE中,,∴△ABC≌△CDE(ASA).∴AC=CE.(2)解:3α﹣2β=180°.理由如下:如图1所示,连接GC并延长至点K.∵AH、EI分别平分∠BAC、∠DEC,则设∠CAH=∠BAH=a,∠CEI=∠DEI=b,∵∠ACK为△ACG的外角,∴∠ACK=a+∠AGC,同理可得∠ECK=b+∠EGC,∴∠ACE=∠ACK+∠ECK=∠B=α=(a+∠AGC)+(b+∠EGC)=a+b+∠AGE=a+b+β,即α=a+b+β,∴a+b=α﹣β.又由(1)中证明可知∠ECD=∠BAC=2a,由三角形内角和公式可得∠ECD+∠DEC+∠D=180°,即2a+2b+α=180°,∴2(a+b)+α=180°,∴3α﹣2β=180°.(3)当AH∥EI时,如图2所示,过点C作MN∥AH,则MN∥AH∥EI.∴∠CAH=∠ACM=a,∠CEI=∠ECM=b,∴∠ACE=∠ACM+∠ECM=a+b=α,即α=a+b.由(1)中证明可得∠ECD=∠BAC=2a,∠D=∠B=α.在△CED中,根据三角形内角和定理有∠ECD+∠CED+∠D=180°,即2a+2b+α=180°,即2(a+b)=180°﹣α,即3α=180°,解得:α=60°.故∠B=60°.12.(1)解:∵△ABC≌△DAE,∴AD=AB=1,AC=DE,∵∠BAC=∠ADE=90°,∴AB∥DE,∴△ABC∽△DEC,=,∴=,解得AC=;(2)证明:①连接BD,∵△ABC≌△DAE,∴∠ABC=∠DAE,AB=DA,∵DM∥AE,∴∠MDA=∠DAE,∴∠ABC=∠MDA,∵AB=DA,∴∠ABD=∠ADB,∴∠ABD﹣∠ABC=∠ADB﹣∠MDA,∴∠MBD=∠MDB,∴BM=DM;②连接MA,由①知,BM=DM,AB=DA,∵AM=AM,∴△AMB≌△AMD(SSS),∴∠BAM=∠DAM,由①知,∠ABC=∠DAE,∴∠ABC+∠BAM=∠DAE+∠DAM,∴∠AMN=∠NAM,∴MN=AN,∵∠BNA=∠ANF,∠ABC=∠DAE,∴△ANF∽△BNA,∴,∴AN2=BN•NF,∴MN2=NF•NB.13.(1)解:①如图1,∵四边形ABCD是矩形,∴CD=AB,BC=DA,∠BAD=90°,∵将矩形ABCD绕点A顺时针旋转90°得到矩形AB1C1D1,∴∠D1AD=∠BAD=90°,C1D1=CD=AB=1,∴AB与AD1重合,即点A、B、D1在同一条直线上,设BC=DA=D1A=x,则D1B=x﹣1,∵∠D1=∠BAD=90°,∠D1BC1=∠ABD,∴△D1BC1∽△∠ABD,∴=,∴=,解得x1=,x2=(不符合题意,舍去),∴BC=.②D1M=DM,理由如下:如图2,连结DD1,∵AD1=AD,∴∠AD1D=∠ADD1,∵D1C1=AB,∠C1D1A=∠BAD=90°,AD1=DA,∴△C1D1A≌△BAD(SAS),∴∠D1AC1=∠ADB,∵D1M∥AC1,∴∠AD1M=∠D1AC1,∴∠AD1M=∠ADB,∴∠AD1D﹣∠AD1M=∠ADD1﹣∠ADB,∴∠MD1D=∠MDD1,∴D1M=DM.(2)证明:如图3,连结AM,①∵AD1=AD,D1M=DM,AM=AM,∴△AD1M≌△ADM(SSS),∴∠AD1M=∠ADM,∠MAD1=∠MAD,∵∠AD1M=∠NAD1,∴∠NAD1=∠ADM,∴∠NAD1+∠MAD1=∠ADM+∠MAD,∵∠NAM=∠NAD1+∠MAD1,∠NMA=∠ADM+∠MAD,∴∠NAM=∠NMA,∴MN=AN.②∵∠NAD1=∠ADM,∴∠NAP=∠NDA,∵∠ANP=∠DNA,∴△ANP∽△DNA,∴=,∴AN2=PN•DN,∴MN2=PN•DN.14.解:(1)i)由翻折可得,△ADE≌△AFE,DF⊥AE于O,∴∠CDG+∠ADO=90°,∠ADO+∠EAD=90°,∴∠CDG=∠EAD,∵∠ADE=∠DCG=90°,∴△ADE∽△DCG;ii)∵AB=10△ADE≌△AFE,∴AF=AD=6,在Rt△ABF中,BF=,设DE=EF=x,CE=10﹣x,BC=AD=6,在Rt△BCE中,BE2=BC2+CE2,即(8+x)2=62+(10﹣x)2,解得:x=2,由i)可知△ADE∽△DCG,∴,∴,解得:CG=;(2)由i)可知,△ADE∽△DCG,∴,同理可得,△ADE∽△DOE,即,∵∠OAD=∠ODE,∠ADE=∠DOE=90°,∵HG∥AE,∴△HGF∽△EDF,∵△DOE≌△FOE,∴,∵∠BGH+∠CGD=90°,∠BHG+∠BGH=90°,∴∠CGD=∠BHG,∵∠B=∠C=90°,∴△BHG∽△CGD,∴,综上所述,△BHG∽△CGD∽△DEA∽△OED∽△GHF,设CE=x,DC=5+x,CG=,BG=10﹣CG=10﹣,BH=BG=,HG=BH=,∵HG:GF=1:2,∴GF=,在△ADE中,AD=10,DE=5,AE=5,DO=,∵,∵,∴OE=,DO=OF=2,在△DCG中,DC=5+x,CG=,DG=DF+FG=4,∵,∴DG=CG,即,解得:x=9,即CE=9.15.(1)①证明:∵D、E分别是AB、AC边的中点,∴DE∥BC,∴△ADE∽△ABC,∴=,∴AE•AB=AD•AC;②解:如图1,作CG⊥AB于G,作FH⊥AB于H,在Rt△ABC中,AB=10,BC=6,∴AC=8,∴AE=4,∴BE=AB﹣AE=6,∵BG=BC•cos∠ABC=6•=6×=,CG=BC•sin∠ABC=6×=,∴EG=BE﹣BG=6﹣=,∴tan∠FEH=tan∠CEG=,∴tan∠FEH=,设EH=a,FH=2a,∵tan∠FBE=,∴BH=4a,∵BH﹣EH=BE,∴4a﹣a=6,∴a=2,∴FH=4,BH=8,∴BF===4;(2)如图2,当AF平分∠DAE时,AF⊥BD,∴∠AFD=∠AED=90°,∴点A、E、F、D共圆,∴∠DEF=∠DAF,设AF与DE的交点为O,作OG⊥AD于G,作AH⊥CF于H,∵AF平分∠DAE,∴OG=OE,AG=AF=4,∴DG=AD﹣AG=1,设OG=OE=x,∴OD=3﹣x,在Rt△DOG中,(3﹣x)2﹣x2=12,∴x=,∴OG=OE=,∴tan∠DAF=,sin∠DAF=,cos∠DAF=,∵∠AED=90°,∴∠AEH+∠DEF=90°,∵∠AEH+∠EAH=90°,∴∠EAH=∠DEF=∠DAF,∴EH=AE•sin∠EAH=4×=,AH=AE•cos∠EAH=4×=,∴CH===,∴CE=EH+CH=.16.(1)证明:如图,过点A作直径AF,连接FC,则∠ACF=90°,∵P A是⊙O的切线,∴∠F AC+∠P AC=90°,∵∠AFC+∠F AC=90°,∴∠AFC=∠P AC,∵∠ADC=∠AFC,∴∠ADC=∠P AC,(2)如图,过点B作直径BG,连接GC,则∠GCB=90°,∴∠G+∠GBC=90°,∵PB是⊙O的切线,∠GBC+∠CBP=90°,∴∠G=∠CBP,又∠G=∠BAC,∴∠BAC=∠CBP,∵∠DAE=∠PBC,∴∠DAE=∠BAC,∵∠ADE=∠ABC,∴△ADE∽△BAC,(3)如图,过A作AN⊥PD于点N,过B作BM⊥PD于M,则AN=AD•sin∠ADC,BM =BD•sin∠BDC,∴==,又∵S△P AC=,S△PBC=,∴=,∵P A,PB是⊙O的切线,∴P A=PB,∴=,∴=,由(1)知:∠ADC=∠P AC,∠BDC=∠PBC,∴,∴,∴BD=.17.(1)证明:过O作OM⊥AC于M,如图:∵AB=AC,AO⊥BC,∴AO平分∠BAC,∵OE⊥AB,OM⊥AC,∴OE=OM,∵OE为⊙O半径,∴OM为⊙O半径,∴AC是⊙O的切线;(2)解:∵OM=OE=OF=3,且F是OA中点,∴OA=6,在Rt△AEO中,AE==3,∴S△AOE=AE•OE=,∵OE⊥AB,OA=6,OE=3,∴∠EAO=30°,∠AOE=60°,∴S扇形OEF==,∴S阴影=S△AOE﹣S扇形OEF=﹣;(3)解:作F关于BC的对称点G,连接EG交BC于P,连接EF,如图:此时PE+PF最小,最小值为EG的长度,∵F、G关于BC对称,∴∠FOP=∠GOP=90°,∴∠FOP+∠GOP=180°,即F、O、G共线,由(2)知∠EOF=60°,OG=OF=OE,∴∠G=30°,∠EOB=30°,∴∠GPO=∠B=60°,∴∠EPB=∠B=60°,∴△EBP是等边三角形,∴BP=BE,而Rt△BOE中,BE==,∴BP=.18.(1)解:如图,连接OC,∵△ABC沿BC翻折得到△DBC,∴AC=DC,∴OC为△ABD的中位线,∴OC∥BD,∴∠AOC=∠ABD=30°,∴的长;(2)①证明:∵△ABC沿BC翻折得到△DBC,∴∠ACB=∠DCB=90°,AC=DC.∵DE∥AB,∴∠ABC=∠DEC,∴∠BAC=∠EDC.在△ABC和△DEC中,,∴△ABC≌△DEC(AAS),∴AB=DE,∴四边形ABDE为平行四边形.∵AB为⊙O的直径,∴∠ACB=90°,即AC⊥BC,∴四边形ABDE是菱形.②解:如图,连接OF交BD于点G.∵DF为⊙O的切线,∴FO⊥EF.又∵DE∥AB,∴OF⊥OB.在Rt△BOG中,∠ABD=30°,∴,∴.∵DE∥AB,∴∠GDF=∠ABD=30°,在Rt△DFG中,.19.(1)证明:如图,连接OC,∵OD⊥AC,ON过圆心O,∴AD=CD.∴OM垂直平分AC.∴MA=MC.∴∠MAC=∠MCA.∵OA=OC,∴∠OAC=∠OCA.∴∠OAC+∠MAC=∠OCA+∠MCA,即∠MAO=∠MCO.∵CM为⊙O的切线,∴∠MCO=90°,∴∠MAO=90°.∴OA⊥AM.又∵点A在⊙O上,∴AM是⊙O的切线;(2)解:设⊙O的半径为r,则OD=r﹣4,AD=AC=4.∴(r﹣4)2+(4)2=r2,解得r=8.∴OD=4,OA=8,∴∠OAD=30°∴∠AOD=60°,∴∠AMO=30°.∴OM=2OA=16.∴MN=16﹣8=8;(3)解:∵∠COD=∠AOD=60°,∴∠AOC=120°,∴S阴影=S四边形AOCM﹣S扇形OAC=﹣=64﹣.20.解:(1)证明,连接OD,∵△ADE为直角三角形,AD为斜边,∴∠AED=90°,∴∠EAD+∠EDA=90°,∵∠EAD=∠DAB,∠OAD=∠ODA,∴∠ODA+∠EDA=90°,∵OD为⊙O半径,∴DE为⊙O的切线;(2)证明,如图,连接DF,∵∠DFE+∠DF A=180°,∠DF A+∠DBA=180°,∴∠DFE=∠DBA∵∠ABC=90°,∠DEA=90°,∴∠DBA+∠DBC=90°,∠DFE+∠EDF=90°,∴∠EDF=∠DBC,∴Rt△EDF∽Rt△DBC,∴=,∵DE=DC,∴DE2=EF•BD;(3)∵∠DBC+∠DBA=90°,∠DAB+∠DBA=90°,∴∠DBC=∠DAB,∵∠EAD=∠DAB,∴∠EAD=∠DBC,∵AB是⊙O的直径,∴∠ADB=∠BDC=90°,∴∠E=∠BDC,在Rt△ADE和Rt△BCD中,,∴△ADE≌△BCD(AAS),∴BC=AD,∵∠ADB=∠ABC=90°,∠C=∠C,∴△CDB∽△CBA,∴==,设CD=x,BC=y,则=,整理得x2+xy﹣y2=0,解得x1=y,x2=y(舍去),∵AB=1,∴=,即=,解得BD=,∴BD的长为.。
2020年江苏中考数学填空压轴题专题(含解析)

2020年江苏中考数学填空压轴题专题一.填空题1.如图,在直角坐标系中,点A(4,0),点B(0,2),过点A的直线l⊥线段AB,P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处,且以点A,D,P为顶点的三角形与△ABP 相似,则所有满足此条件的点P的坐标是.2.若抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),则不等式ax2+bx+c>0的解集是.3.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜边AC上的一点,且AE=AB,沿△DEC的一个内角平分线折叠,使点C落在DE所在直线上,则折痕的长度为.4.如图,已知Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=DF=3,BC=EF=4,△DEF绕着斜边AB的中点D旋转,DE、DF分别交AC、BC所在的直线于点P,Q.当△BDQ为等腰三角形时,AP的长为.5.如图所示,AB=4,AD=3,点E在CD上(不含端点C,D)的任一点,把△EBC沿BE折叠,当点C落在矩形ABCD的对角线上时,CE=.6.如图,在矩形ABCD中,AB=3,BC=6,AE=4,点F是边BC上一点,将△ABF沿AF折叠,使点B落在BE上的点B′处,射线DC与射线AF相交于点M,若点N是射线AF上一动点,则当△DMN是等腰三角形时,AN的长为.7.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且AB∥MN,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD边上距D点最近的n等分点(n≥2,且n为整数),则A′N=.8.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.9.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,AP=.10.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C 逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是度,阴影部分的面积为.11.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.12.已知如图所示,矩形ABCD,P为BC上的一点,连接AP,过D点做DH ⊥AP交AP与H,AB=2,BC=4,当△CDH为等腰三角形时,则BP=.13.如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为cm2.14.如图,P为正方形ABCD内一点,且PC=3,∠APB=135°,将△APB绕点B 顺时针旋转90°得到△CP′B,连接PP′.若BP的长为整数,则AP=.15.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是.16.矩形纸片ABCD中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为.17.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为.18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是.19.如图所示,⊙I是Rt△ABC的内切圆,点D、E、F分别是切点,若∠ACB=90°,AB=5cm,BC=4cm,则⊙I的周长为cm.20.如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=2,点F是边BC上不与点B,C重合的一个动点,直线l垂直平分BF,垂足为D,当△AFC是等腰三角形时,BD的长为.21.如图,在△ABC中,BC=6,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是优弧上的一点,且∠EPF=50°,则图中阴影部分的面积是.22.如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE 沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为.23.如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为.24.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.25.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为.26.如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE 折叠,点D落在矩形ABCD内一点D′处,若△BCD′为等腰三角形,则DE 的长为.27.如图,在平面直角坐标系中,点A(0,2),B(﹣2,0),C(2,0),点D是x轴上一个动点,以AD为一直角边在右侧作等腰直角三角形ADE,∠DAE=90°,若△ABD为等腰三角形时点E的坐标为.28.如图,等边△ABC的边长为10,点M是边AB上一动点,将等边△ABC 沿过点M的直线折叠,该直线与直线AC交于点N,使点A落在直线BC上的点D处,且BD:DC=1:4,折痕为MN,则AN的长为.29.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE 沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC 的距离为.30.如图,在平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线上,将正方形ABCD沿x轴正方向平移a个单位长度后,点C恰好也落在此双曲线上,则a的值是.31.如图,在矩形ABCD中,AB=6,BC=8,点E是对角线BD上一动点(不与点B、D重合),将矩形沿过点E的直线MN折叠,使得点A、B的对应点G、F分别在直线AD与BC上,当△DEF为直角三角形时,CN的长为.32.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.33.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.34.如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF 的取值范围为.35.如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGC,点A的对应点为点C,点D的对应点为点G,则△CEF的面积.36.如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.37.在矩形ABCD中,AB=3,BC=6,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C、D的对应点分别为C′、D′,折痕与边AD交于点F,当点B、C′、D′恰好在同一直线上时,AF的长为.38.如图,矩形纸片ABCD中,AB=6,AD=10,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是.三.解答题39.如图所示,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y 轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求直线AB和OB的解析式.(2)求抛物线的解析式.(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.问△BOD的面积是否存在最大值?若存在,求出这个最大值并写出此时点D的坐标;若不存在说明理由.参考答案与试题解析一.填空题(共38小题)1.如图,在直角坐标系中,点A(4,0),点B(0,2),过点A的直线l⊥线段AB,P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处,且以点A,D,P为顶点的三角形与△ABP 相似,则所有满足此条件的点P的坐标是P(5,2),P(8,8),P(0,﹣8),P(3,﹣2).【解答】解:∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣8,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==2,∴AP=4,∴m2+(2m)2=(4)2,∴m=±4,当m=4时,PC=8,OC=8,P点的坐标为(8,8),当m=﹣4时,如图2,PC=8,OC=0,P点的坐标为(0,﹣8),如图3,若△PAD∽△BPA,则==,PA=AB=×2=,则m2+(2m)2=()2,∴m=±1,当m=1时,PC=2,OC=5,P点的坐标为(5,2),当m=﹣1时,如图4,PC=2,OC=3,P点的坐标为(3,﹣2);则所有满足此条件的点P的坐标是:P(5,2 ),p(8,8),P(0,﹣8),P (3,﹣2).故答案为:P(5,2 ),p(8,8),P(0,﹣8),P(3,﹣2).2.若抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),则不等式ax2+bx+c>0的解集是3<x<7.【解答】解:如图所示:∵抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),∴抛物线与x轴的另一个交点为:(7,0),∴不等式ax2+bx+c>0的解集是:3<x<7.故答案为:3<x<7.3.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜边AC上的一点,且AE=AB,沿△DEC的一个内角平分线折叠,使点C落在DE所在直线上,则折痕的长度为和.【解答】解:∵∠ABC=90°,AC=10,BC=8,∴AB==6,∵AD是∠BAC的平分线,∴∠BAD=∠EAD,在△ABD与△AED中,,∴△ABD≌△AED,∴∠AED=∠B=90°,BD=DE,如图1,过M作MP⊥DE于P,∵EM平分∠PEC,∴∠PEM=45°,∴PE=PM,∵△EC′M是△ECM沿EM折叠得到的,∴EC′=EC=AC﹣AE=4,设PE=PM=x,则PC′=4﹣x,∵tanC=tanC′=,∴,解得:x=,∴EM=PM=;如图2,∵tanC=,∴DE=BD=3,∴CD=C′D=5,∴C′E=2,∵tanC′=tanC=,∴EM=,∴DM===.综上所述:折痕的长度为:和.故答案为:和.4.如图,已知Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=DF=3,BC=EF=4,△DEF绕着斜边AB的中点D旋转,DE、DF分别交AC、BC所在的直线于点P,Q.当△BDQ为等腰三角形时,AP的长为或或.【解答】解:(1)当BD=BQ,∠C=∠F=90°,AC=DF=3,BC=EF=4,则AB=5,过D作DM⊥BC与M,DN⊥AC于N,如图,∵D为AB的中点,∴DM=AN=AC=,BD=AB=,DN=BM=BC=2,∴BQ=BD=,QM=﹣2=,∴∠3=90°﹣∠B,而∠2+∠3=90°,∴∠2=∠B,又∵Rt△ABC≌Rt△DEF,∴∠EDF=∠A=90°﹣∠B,而∠1+∠EDF+∠2=90°,∴∠1=∠B,即∠1=∠2,∴△DQM∽△DPN,∴PN:QM=DN:DM,即PN:=2:,∴PN=,∴AP=+=;(2)当DB=DQ,则Q点在C点,如图,DA=DC=,而Rt△ABC≌Rt△DEF,∴∠EDF=∠A,∴△CPD∽△CDA,∴CP:CD=CD:CA,即CP:=:3,∴CP=,∴AP=3﹣=;(3)当QB=QD,则∠B=∠BDQ,而∠EDF=∠A,∴∠EDF+∠BDQ=90°,即ED⊥AB,如图,∴Rt△APD∽Rt△ABC,∴AP:AB=AD:AC,即AP:5=:3,∴AP=.故答案为或或.5.如图所示,AB=4,AD=3,点E在CD上(不含端点C,D)的任一点,把△EBC沿BE折叠,当点C落在矩形ABCD的对角线上时,CE=.【解答】解:∵AB=4,AD=3,∴BD=5,∵把△EBC沿BC折叠得到△BC′E,∴C′E=CE,BC′=BC=AD=3,∵当点C落在矩形ABCD的对角线上,∴D,C′,B三点共线,∴C′D=2,∠DC′E=90°,∵DE=4﹣CE,∵DE2=DC′2+C′E2,即(4﹣CE)2=22+CE2,∴CE=.故答案为:.6.如图,在矩形ABCD中,AB=3,BC=6,AE=4,点F是边BC上一点,将△ABF沿AF折叠,使点B落在BE上的点B′处,射线DC与射线AF相交于点M,若点N是射线AF上一动点,则当△DMN是等腰三角形时,AN的长为2或5或18.【解答】解:由题意可知,AF⊥BE,∴∠BAF+∠ABE=90°,∵四边形ABCD是矩形,∴∠BAD=∠D=90°,∴∠BAF+∠DAM=90°,∴∠DAM=∠ABE,∴△ABE∽△DAM,∴=,∴=,∴DM=8,AM===10,①当MN=MD时,AN=AM﹣DM=10﹣8=2或AN=AM+DM=10+8=18,②当ND=NM时,易知点N是AM中点,所以AN=AM=5,综上所述,当AN=2或5或18时,△DMN是等腰三角形.7.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且AB∥MN,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD边上距D点最近的n等分点(n≥2,且n为整数),则A′N=.【解答】解:∵将纸片的一角沿过点B的直线折叠,A落在MN上,落点记为A′,∴A′B=AB=1,∵AB∥MN,M是AD边上距D点最近的n等分点,∴MD=NC=,∴BN=BC﹣NC=1﹣=,在Rt△A′BN中,根据勾股定理得,A′N2=A′B2﹣BN2=12﹣()2=,所以,A′N==.故答案为:.8.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.9.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,AP=﹣1或.【解答】解:连接AE,∵四边形ABCD、APEF是正方形,∴A、E、C共线,①当CD=CE=时,AE=AC﹣EC=2﹣,∴AP=AE=﹣1②当ED=EC时,∠DEC=90°,∠EDC=∠ECD=45°,EC=CD=1,∴AE=AC﹣EC=1,∴AP=AE=.∴当△CDE为等腰三角形时,AP=﹣1或.故答案为﹣1或.10.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C 逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是60度,阴影部分的面积为.【解答】解:∵AC=A′C,且∠A=60°,∴△ACA′是等边三角形.∴∠ACA′=60°,∴∠A′CB=90°﹣60°=30°,∵∠CA′D=∠A=60°,∴∠CDA′=90°,∵∠B′CB=∠A′CB′﹣∠A′CB=90°﹣30°=60°,∴∠CB′D=30°,∴CD=CB′=CB=×2=1,∴B′D==,=×CD×DB′=×1×=,∴S△CDB′S扇形B′CB==,则阴影部分的面积为:﹣,故答案为:﹣.11.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.12.已知如图所示,矩形ABCD,P为BC上的一点,连接AP,过D点做DH ⊥AP交AP与H,AB=2,BC=4,当△CDH为等腰三角形时,则BP=4﹣2、2或2.【解答】解:①当HD=HC时,过点H作HE⊥CD于点E,延长EH交AB于点F,连接DP,如图1所示.∵HD=HC,∴点E为CD的中点,∵EF∥AD,∴FH为△ABP的中位线,∴AH=HP.∵DH⊥AP,∴△DAP为等腰三角形,∴AD=DP.设BP=a,则CP=4﹣a,由勾股定理得:DP2=CD2+CP2,即16=8+(4﹣a)2,解得:a=4﹣2,或a=﹣4﹣2(舍去);②当DH=DC时,如图2所示.∵DC=AB=2,∴DH=2.在Rt△AHD中,AD=4,DH=2,∴AH==2,∴AH=DH,∴∠DAH=∠ADH=45°.∵AD∥BC,∴∠APB=∠DAH=45°,∵∠B=90°,∴△ABP为等腰直角三角形,∴BP=AB=2;③当CH=CD时,过点C作CE⊥DH于点E,延长CE交AD于点F,如图3所示.∵CH=CD,CE⊥DH,∴DE=HE=DH.∵DH⊥CF,DH⊥AP,∴CF∥AP,∵AF∥CP,∴四边形AFCP为平行四边形,∴AF=CP.∵EF∥AH,DE=HE,∴DF=AF=AD=2,∴BP=BC﹣CP=BC﹣AF=4﹣2=2.综上所述:BP的长度为4﹣2、2或2.故答案为:4﹣2、2或2.13.如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为2或cm2.【解答】解:如图1,等腰三角形面积为:×2×2=2,如图2,等腰三角形的高为:=,则其面积为:×2×=.故答案为:2或.14.如图,P为正方形ABCD内一点,且PC=3,∠APB=135°,将△APB绕点B 顺时针旋转90°得到△CP′B,连接PP′.若BP的长为整数,则AP=或1.【解答】解:∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,设BP=BP'=a,AP=CP'=b,则PP'=a,在RT△PP'C中,∵PP'2+P'C2=PC2,且PC=3,∴CP'==,∵BP的长a为整数,∴满足上式的a为1或2,当a=1时,AP=CP'=,当a=2时,AP=CP'=1,故答案为:或1.15.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是或4.【解答】解:根据△B′FC与△ABC相似时的对应情况,有两种情况:①△B′FC∽△ABC时,=,又因为AB=AC=6,BC=8,B′F=BF,所以=,解得BF=;②△B′CF∽△BCA时,=,又因为AB=AC=6,BC=8,B′F=CF,BF=B′F,又BF+FC=8,即2BF=8,解得BF=4.故BF的长度是或4.故答案为:或4.16.矩形纸片ABCD中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为.【解答】解:如图所示,设PF⊥CD,∵BP=FP,由翻折变换的性质可得BP=B′P,∴FP=B′P,∴FP⊥CD,∴B′,F,P三点构不成三角形,∴F,B′重合分别延长AE,CD相交于点G,∵AB∥CD,∴∠BAG=∠AGD,∵∠BAG=∠B′AG,∴∠AGD=∠B′AG,∴GB′=AB′=AB=5,∵PB′(PF)⊥CD,∴PB′∥AC,∴△ACG∽△PB′G,∵Rt△ACB′中,AB′=AB=5,AC=3,∴B′C==4,∴CB′=5﹣4=1,CG=CB′+B′G=4+5=9,∴△ACG与△PB′G的相似比为9:5,∴AC:PB′=9:5,∵AC=3,∴PB′=.故答案为:.17.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为2或2﹣2.【解答】解:Rt△ABC中,BC=AC=2,∴AB=2,∠B=∠A′CB=45°,①如图1,当A′D∥BC,设AD=x,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴∠A′=∠A=∠A′CB=45°,A′D=AD=x,∵∠B=45°,∴A′C⊥AB,∴BH=BC=,DH=A′D=x,∴x+=2,∴x=2﹣2,∴AD=2﹣2;②如图2,当A′D∥AC,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴AD=A′D,AC=A′C,∠ACD=∠A′CD,∵∠A′DC=∠ACD,∴∠A′DC=∠A′CD,∴A′D=A′C,∴AD=AC=2,综上所述:AD的长为:2或2﹣2.18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是(2014,2016).【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A2014(2014,2016).故答案为:(2014,2016).19.如图所示,⊙I是Rt△ABC的内切圆,点D、E、F分别是切点,若∠ACB=90°,AB=5cm,BC=4cm,则⊙I的周长为2πcm.【解答】解:∵∠ACB=90°,AB=5cm,BC=4cm,∴AC=3cm,设⊙I的半径为x,∵⊙I是Rt△ABC的内切圆,∴AE=3﹣x,BF=4﹣x,故3﹣x+4﹣x=5,解得:x=1,故⊙I的周长为2πcm.故答案为:2π.20.如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=2,点F是边BC上不与点B,C重合的一个动点,直线l垂直平分BF,垂足为D,当△AFC是等腰三角形时,BD的长为或﹣1.【解答】解:∵等腰Rt△ABC中,AB=AC=2,∴BC=2,分两种情况:①当AF=CF时,∠FAC=∠C=45°,∴∠AFC=90°,∴AF⊥BC,∴BF=CF=BC=,∵直线l垂直平分BF,∴BD=BF=;②当CF=CA=2时,BF=BC﹣CF=2﹣2,∵直线l垂直平分BF,∴BD=BF=﹣1;故答案为:或﹣121.如图,在△ABC中,BC=6,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是优弧上的一点,且∠EPF=50°,则图中阴影部分的面积是6﹣π.【解答】解:连接AD ,∵BC 是切线,点D 是切点,∴AD ⊥BC ,∴∠EAF=2∠EPF=100°,∴S 扇形AEF ==π,S △ABC =AD•BC=×2×6=6,∴S 阴影部分=S △ABC ﹣S 扇形AEF =6﹣π.故答案为:6﹣π.22.如图,在矩形ABCD 中,AB=6,BC=4,点E 是边BC 上一动点,把△DCE 沿DE 折叠得△DFE ,射线DF 交直线CB 于点P ,当△AFD 为等腰三角形时,DP 的长为 或 .【解答】解:∵AD=BC=4,DF=CD=AB=6,∴AD <DF ,故分两种情况:①如图所示,当FA=FD 时,过F 作GH ⊥AD 与G ,交BC 于H ,则HG ⊥BC ,DG=AD=2,∴Rt△DFG中,GF==4,∴FH=6﹣4,∵DG∥PH,∴△DGF∽△PHF,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=;②如图所示,当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,则Rt△AFG中,AG2+FG2=AF2,即AG2+FG2=16;Rt△DFG中,DG2+FG2=DF2,即(AG+4)2+FG2=36;联立两式,解得FG=,∴FH=6﹣,∵∠G=∠FHP=90°,∠DFG=∠PFH,∴△DFG∽△PFH,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=,故答案为:或.23.如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为.【解答】解:设⊙A与x轴的另一个交点为D,连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵C(0,5),∴OC=5,∴OD==5,∵∠OBC=∠ODC,∴cos∠OBC=cos∠ODC===.故答案为:.24.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【解答】解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE)+(180°﹣∠ABC)+(180°﹣∠BCD)+(180°﹣∠CDE)+(180°﹣∠DEA)=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.25.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为或.【解答】解:①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=,∴AP=;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴,∴AP===.故答案为:或.26.如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE 折叠,点D落在矩形ABCD内一点D′处,若△BCD′为等腰三角形,则DE 的长为或.【解答】解:①:CD'=BD'时,如图,由折叠性质,得AD=AD′,∠DAE=∠D′AE,∵四边形ABCD是矩形,∴AB=CD,∠ABC=∠DCB=90°,∵△BCD′为等腰三角形,∴D′B=D′C,∠D′BC=∠D′CB,∴∠DCD′=∠ABD′,在△DD′C和△AD′B中,,∴△DD′C≌△AD′B,∴DD′=AD′,∴DD′=AD′=AD,∴△ADD′是等边三角形,∴∠DAD′=60°,∴∠DAE=30°,∴DE=AE,设DE=x,则AE=2x,(2x)2﹣x2=42,解得:x=,即DE=.②:当CD'=CB时,如图,连接AC,由于AD'=4,CD'=4,而AC==>4+4;故这种情况不存在.③当BD'=BC时,如图过D'作AB的垂线,垂足为F,延长D'F交CD于G,由于AD'=BD',D'F=D'F;易知AF=BF,从而由勾股定理求得D'F===,又易证△AD'F∽△D'EG,设DE=x,D'E=x,∴,即;解得x=综上,故答案为:或.27.如图,在平面直角坐标系中,点A(0,2),B(﹣2,0),C(2,0),点D是x轴上一个动点,以AD为一直角边在右侧作等腰直角三角形ADE,∠DAE=90°,若△ABD为等腰三角形时点E的坐标为(2,2)或(2,4)或(2,2)或(2,﹣2).【解答】解:连接EC.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD和△ACE中,,∴△ABD≌△ACE,∴BD=EC.∠ABD=∠ACE=45°,∵∠ACB=45°,∴∠ECD=90°,∴点E在过点C垂直x轴的直线上,且EC=DB,①当DB=DA时,点D与O重合,BD=OB=2,此时E(2,2).②当AB=AD时,BD=CE=4,此时E(2,4).③当BD=AB=2时,E(2,2)或(2,﹣2),故答案为(2,2)或(2,4)或(2,2)或(2,﹣2).28.如图,等边△ABC的边长为10,点M是边AB上一动点,将等边△ABC 沿过点M的直线折叠,该直线与直线AC交于点N,使点A落在直线BC上的点D处,且BD:DC=1:4,折痕为MN,则AN的长为7或.【解答】解:①当点A落在如图1所示的位置时,∵△ACB是等边三角形,∴∠A=∠B=∠C=∠MDN=60°,∵∠MDC=∠B+∠BMD,∠B=∠MDN,∴∠BMD=∠NDC,∴△BMD∽△CDN.∴得==,∵DN=AN,∴得==,∵BD:DC=1:4,BC=10,∴DB=2,CD=8,设AN=x,则CN=10﹣x,∴==,∴DM=,BM=,∵BM+DM=10,∴+=10,解得x=7,∴AN=7;②当A在CB的延长线上时,如图2,与①同理可得△BMD∽△CDN.∴得==,∵BD:DC=1:4,BC=10,∴DB=,CD=,设AN=x,则CN=x﹣10,∴==,∴DM=,BM=,∵BM+DM=10,∴+=10,解得:x=,∴AN=.故答案为:7或.29.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE 沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC 的距离为2或1.【解答】解:连接B′D,过点B′作B′M⊥AD于M.∵点B的对应点B′落在∠ADC的角平分线上,∴设DM=B′M=x,则AM=7﹣x,又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:AM2=AB′2﹣B′M2即(7﹣x)2=25﹣x2,解得x=3或x=4,则点B′到BC的距离为2或1.故答案为:2或1.30.如图,在平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线上,将正方形ABCD沿x轴正方向平移a个单位长度后,点C恰好也落在此双曲线上,则a的值是2.【解答】解:过点CE⊥y轴于点E,交双曲线于点G,过点D作DF⊥x轴于点F,在y=2x+4中,令x=0,解得:y=4,即B的坐标是(0,4).令y=0,解得:x=﹣2,即A的坐标是(﹣2,0).则OB=4,OA=2.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=4,DF=OA=BE=2,∴D的坐标是(﹣6,2),C的坐标是(﹣4,6).将点D代入y=得:k=﹣12,则函数的解析式是:y=﹣.∴OE=6,则C的纵坐标是6,把y=6代入y=﹣得:x=﹣2.即G的坐标是(﹣2,6),∴CG=4﹣2=2.∴a=2.故答案为:2.31.如图,在矩形ABCD中,AB=6,BC=8,点E是对角线BD上一动点(不与点B、D重合),将矩形沿过点E的直线MN折叠,使得点A、B的对应点G、F分别在直线AD与BC上,当△DEF为直角三角形时,CN的长为或.【解答】解:分两种情况:①如图所示,当∠DFE=90°时,△DEF为直角三角形,∵∠CDF+∠CFD=∠EFN+∠CFD=90°,∴∠CDF=∠EFN,由折叠可得,EF=EB,∴∠EFN=∠EBN,∴∠CDF=∠CBD,又∵∠DCF=∠BCD=90°,∴△DCF∽△BCD,∴=,即=,∴CF=,∴FN==,∴CN=CF+NF=+=;②如图所示,当∠EDF=90°时,△DEF为直角三角形,∵∠CDF+∠CDB=∠CDF+∠CBD=90°,∴∠CDF=∠CBD,又∵∠DCF=∠BCD=90°,∴△DCF∽△BCD,∴=,即=,∴CF=,∴NF==,∴CN=NF﹣CF=﹣=,综上所述,CN的长为或.故答案为:或.32.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为2或2或2.【解答】解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴AP=AB•sin60°=4×=2;当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,情况二:如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为:2或2或2.33.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.【解答】解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE 交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴(x+1)2+(x)2=(2﹣2x)2,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF•sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴()2+y2=(2﹣y)2,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.34.如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF 的取值范围为≤CF≤3.【解答】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=5,CD=AB=3,当点D与F重合时,CF最大=3,如图1所示:当B与E重合时,CF最小,如图2所示:在Rt△ABG中,∵BG=BC=5,AB=3,∴AG==4,∴DG=AD﹣AG=1,设CF=FG=x,在Rt△DFG中,∵DF2+DG2=FG2,∴(3﹣x)2+12=x2,∴x=,∴≤CF≤3.故答案为≤CF≤3.35.如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGC,点A的对应点为点C,点D的对应点为点G,则△CEF的面积.【解答】解:如图1,作CK⊥AB于K,过E点作EP⊥BC于P.∵∠B=60°,∴CK=BC•sin60°=4×=2 ,∵C到AB的距离和E到CD的距离都是平行线AB、CD间的距离,∴点E到CD的距离是2 ,∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,∠A=∠BCD,由折叠可知,AD=CG,∠D=∠G,∠A=∠ECG,∴BC=GC,∠B=∠G,∠BCD=∠ECG,∴∠BCE=∠GCF,在△BCE和△GCF中,,∴△BCE≌△GCF(ASA);∴CE=CF,∵∠B=60°,∠EPB=90°,∴∠BEP=30°,∴BE=2BP,设BP=m,则BE=2m,∴EP=BE•sin60°=2m×=m,由折叠可知,AE=CE,∵AB=6,∴AE=CE=6﹣2m,∵BC=4,∴PC=4﹣m,在Rt△ECP中,由勾股定理得(4﹣m)2+(﹣m)2=(6﹣2m)2,解得m=,∴EC=6﹣2m=6﹣2×=,∴CF=EC=,=××2 =,∴S△CEF故答案为.36.如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.【解答】解:如图2中,作NF⊥CD于F.设DM=x,则AM=EM=10﹣x,∵DE=EC,AB=CD=8,∴DE=CD=4,在RT△DEM中,∵DM2+DE2=EM2,∴(4)2+x2=(10﹣x)2,解得x=2.6,∴DM=2.6,AM=EM=7.4,∵∠DEM+∠NEF=90°,∠NEF+∠ENF=90°,∴∠DEM=∠ENF,∵∠D=∠EFN=90°,∴△DME∽△FEN,∴=,∴=,∴EN=,。
2024苏州初中数学压轴题

的办法也是不难的。
我们设P点坐标为(, 2 − 2 − 3),对应我们可以写出AP的直线方程为 =
−3 +1 −0
− −1
+1
0−(−3)
由第2题我们知道BC直线方程: = 3−0 − 3 = − 3
+1
得到 =
4−
=
3−2
4
3−2
3
3
9
到这里问题就转化为求 4 的最大值,当m=2时,P横坐线交点:
=
−3 +1 −0
+1 = −3
− −1
化简,
−3 +1
+1
+1 =−3
化简, − 3 + 1 = − 3
化简, − 4 = −
,那么我们就知道了点的横坐标
4−
−4−
4− −
根据第2题的思路,PQ/AQ=P’Q’/AQ’= = +4−
角形可以很容易得到这个结论),因为E、A两点的坐标已知,所以我
们只需要求解得到F点坐标,其实也就是G的横坐标,就可以求得这个
比值。那么,这个问题就转变为了求解BC直线与AD直线交点坐标的问
题。
F
ABCD四点的坐标都是已知的,分别为
A(-1,0),B(3,0),C(0,-3a),D(1,-4a)
那么就可以很容易得到BC直线与AD直线的表达式为
今天来看一道2024年苏州九年级初中联考压轴题,
是关于二次函数的问题。
(1) 第一小题比较容易,需要学生掌握因式分解的
知识点,很快就可以求解出二次函数与x轴的交
2020年江苏省九年级中考数学压轴题选择、填空、解答题精选精练(含解析)
2020年中考数学压轴题考前冲刺练习6一、选择题1.如图,是半径为1的圆弧,△AOC为等边三角形,D是上的一动点,则四边形AODC 的面积s的取值范围是()A.≤s≤B.<s≤C.≤s≤D.<s<2.如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和等边△ACE,F 为AB的中点,DE,AB相交于点G,若∠BAC=30,下列结论:①EF⊥AC;②AD=AE;③AD=4AG;④记△ABC的面积为S1,四边形FBCE的面积为S2,则S1:S2=2:3.其中正确的结论的序号是()A.①③B.②④C.①③④D.①②③④3.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第9个图案中共有()和黑子.A.37 B.42 C.73 D.1214.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A.B.C.D.5.若整数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣3有正整数解,则满足条件的a的值之积为()A.28 B.﹣4 C.4 D.﹣26.如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.4二、填空题1.如图,⊙O是△ABC的外接圆,其中AB是⊙O的直径,将△ABC沿AB翻折后得到△ABD,点E在AD延长线上,BE与⊙O相切于点B,分别延长线段AE、CB相交于点F,若BD=3,AE=10,则线段EF的长为.2.已知关于x的方程x2﹣4x+t﹣2=0(t为实数)两非负实数根a,b,则(a2﹣1)(b2﹣1)的最小值是.3.如图,长方形纸片ABCD中,AB=4,将纸片折叠,折痕的一个端点F在边AD上,另一个端点G在边BC上,若顶点B的对应点E落在长方形内部,E到AD的距离为1,BG=5,则AF的长为.第3题第4题4.如图,射线OP过Rt△ABC的边AC、AB的中点M、N,AC=4cm,BC=4cm,OM =3cm.射线OP上有一动点Q从点O出发,沿射线OP以每秒1cm的速度向右移动,以Q为圆心,QM为半径的圆,经过t秒与BC、AB中的一边所在的直线相切,请写出t 的所有可能值(单位:秒)5.如图,点P是⊙O的直径AB的延长线上一点,过点P作直线交⊙O于C、D两点.若AB=6,BP=2,则tan∠P AC•tan∠P AD=.第5题第6题6.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E,F分别在AC,BC边上运动(点E不与点A,C重合),且保持ED⊥FD,连接DE,DF,EF,在此运动变化的过程中,有下列结论:①AE=CF;②EF最大值为2;③四边形CEDF的面积不随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中结论正确的有(把所有正确答案的序号都填写在横线上)三、解答题1.如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.2.如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c与x轴交于A,B两点(点A 在点B的左侧),交y轴于点C,经过B,C两点的直线为y=.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.3.△ABC内接⊙O,AD⊥BC与D,连接OA.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,作BE⊥AC交CA延长线于E交⊙O于F,延长AD交⊙O于G,连接AF,求证:AD+AF=DG;(3)在第(2)问的条件下,如图3,OA交BC于点T,CA=CT,AD=2AF,AB=4,求DT长.4.如图1,在平面直角坐标系xOy中,三角形ABC如图放置,点C(0,4),点A,B 在x轴上,且OB=4OA,tan∠CBO=.(1)求过点A、C直线解析式;(2)如图2,点M为线段BC上任意一点,点D在OC上,且CD=DM,设M的横坐标为t,△CDM的面积为S,求S与t之间的函数关系式,直接写出t的取值范围;(3)在(2)的条件下,如图3,在OB上取点N,过N作NF⊥DM,垂足为点F,连接CF,AF,∠DCF+∠AFN=60°,NF=BO时,求点D的坐标.5.阅读下列材料,解答下列问题材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”,如:65362,362﹣65=297=11×27,称65362是“网红数”.材料二:对任的自然数p均可分解为P=100x+10y+z(x≥0,0≤y≤9,0≤z≤9且x、y,z均为整数)如:5278=52×100+10×7+8,规定:G(P)=.(1)求证:任两个“网红数”之和一定能被11整除;(2)已知:S=300+10b+a,t=1000b+100a+1142(1≤a≤7,0≤b≤5,其a、b均为整数),当s+t为“网红数”时,求G(t)的最大值.6.如图已知:直线y=﹣x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(﹣1,0),在直线y=﹣x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.【答案与解析】一、选择题1.【分析】根据题意,得四边形AODC的最小面积即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.要求三角形AOC的面积,作CD⊥AO于D.根据等边三角形的性质以及直角三角形的性质,求得CD=,得其面积是;要求最大面积,只需再进一步求得三角形DOC的面积,即是,则最大面积是.【解答】解:根据题意,得四边形AODC的面积最小即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.作CH⊥AO于H,∵△AOC为等边三角形∴CH=∴S△AOC=;当OD⊥OC时面积最大,∴S△OCD=,则最大面积是+=∴四边形AODC的面积s的取值范围是<s≤.故选:B.2.【分析】根据直角三角形的性质和线段垂直平分线的性质,可得①正确;根据等边三角形的性质和直角三角形的斜边与直角边不相等,可得②不正确;根据等边三角形的性质、全等三角形的判定和性质、平行四边形的判定和性质,可得③正确;根据直角三角形的性质、三角形面积、梯形面积公式,可得④正确.【解答】证明:如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD 和等边△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30,下列结论:①EF⊥AC;②AD=AE;③AD=4AG;④记△ABC的面积为S1,四边形FBCE的面积为S2,则S1:S2=2:3.其中正确的结论的序号是(①③④)①连接CF,∵F是Rt△ABC的斜边AB的中点,∴AF=CF=AB,又∵△ACE是等边三角形,∴AE=CE∴EF是线段AC的垂直平分线,∴EF⊥AC故①正确;②∵△ABD和△ACE是等边三角形,∴AD=AB,AC=AE,在Rt△ABC中,AB≠AC,∴AD≠AE,故②不正确;③∵△ABD是等边三角形,F是AB中点,∴DF⊥AB,又∵∠BAC=30,△ACE是等边三角形,∴∠EAC=60,∴∠BAE=90,∴BA⊥AE,∴DF∥AE,又∠DBA=∠ABC=60,∠BFD=∠BCA=90,BD=AB,∴△FBD≌△CBA,∴DF=AE,∴四边形DFEA是平行四边形,∴AG=GF=AF,又AF=AB,AG=AB,又AB=AD,∴AD=4AG.故③正确;④在Rt△ABC中,AC=BC,CH=AC,∴EH=CH=•CB=CB,FH=BC,∴FE=FH+HE=2BC,∵BC⊥AC,EF⊥AC,∴EF∥BC,又FB与CE不平行,∴四边形FBCE是梯形,∴S2=(BC+FE)•CH=BC•CH,S1=BC•AC=BC•CH,∴S1:S2=2:3.∴故④正确,故选:C.3.【分析】观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,…,据此规律可得.【解答】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个,第9、10图案中黑子有1+2×6+4×6+6×6+8×6=121个,故选:D.4.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.5.【分析】表示出不等式组的解集,由不等式组无解确定出a的范围,分式方程去分母转化为整式方程,表示出分式方程的解,由分式方程有正整数解确定出a的值,即可求出所求.【解答】解:不等式组整理得:,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即(a+3)x=10,由分式方程有正整数解,得到x=,即a+3=1,2,10,解得:a=﹣2,2,7,综上,满足条件a的为﹣2,2,之积为﹣4,故选:B.6.【分析】连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用S△BOD=S△COE得到四边形ODBE的面积=S△ABC=,则可对③进行判断;作OH⊥DE,如图,则DH=EH,计算出S△ODE=OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【解答】解:连接OB、OC,如图,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O是△ABC的中心,∴OB=OC,OB、OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE,在△BOD和△COE中,∴△BOD≌△COE,∴BD=CE,OD=OE,所以①正确;∴S△BOD=S△COE,∴四边形ODBE的面积=S△OBC=S△ABC=××42=,所以③正确;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=OE,HE=OH=OE,∴DE=OE,∴S△ODE=•OE•OE=OE2,即S△ODE随OE的变化而变化,而四边形ODBE的面积为定值,∴S△ODE≠S△BDE;所以②错误;∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,∴△BDE周长的最小值=4+2=6,所以④正确.故选:C.二、填空题1.【分析】证明△ABD∽△BED,得出=,求出AD=9,DE=1,由勾股定理得出BE==,AB==3,再证△FBE∽△F AB得出比例式,得出BF=3EF,在Rt△ACF中根据AF2=AC2+CF2可得关于EF的一元二次方程,解之可得.【解答】解:∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,AC=AD,BC=BD=3,∵BE与⊙O相切于点B,∴∠ABE=90°,∠DBE=∠BAD,∴△ABD∽△BED,∴=,∴AD×DE=BD2=9,∴AD(AE﹣AD)=9,∴AD(10﹣AD)=9,解得:AD=9或AD=1(舍去),∴AD=9,DE=1,∴BE==,AB==3,∵四边形ACBD内接于⊙O,∴∠FBD=∠F AC,即∠FBE+∠DBE=∠BAE+∠BAC,又∵∠DBE+∠ABD=∠BAE+∠ABD=90°,∴∠DBE=∠BAE,∴∠FBE=∠BAC,又∠BAC=∠BAD,∴∠FBE=∠BAD,∴△FBE∽△F AB,∴===,∴BF=3EF,在Rt△ACF中,∵AF2=AC2+CF2,∴(10+EF)2=92+(3+3EF)2,整理得:4EF2﹣EF﹣5=0,解得:EF=,或EF=﹣1(舍),∴EF=;故答案为:.2.【分析】a,b是关于x的一元二次方程x2﹣4x+t﹣2=0的两个非负实根,根据根与系数的关系,化简(a2﹣1)(b2﹣1)即可求解.【解答】解:∵a,b是关于x的一元二次方程x2﹣4x+t﹣2=0的两个非负实根,∴可得a+b=4,ab=t﹣2≥0,△=16﹣4(t﹣2)≥0.解得:2≤t≤6(a2﹣1)(b2﹣1)=(ab)2﹣(a2+b2)+1=(ab)2﹣(a+b)2+2ab+1,∴(a2﹣1)(b2﹣1),=(t﹣2)2﹣16+2(t﹣2)+1,=(t﹣1)2﹣16,∵2≤t≤6,∴当t=2时,(t﹣1)2取最小值,最小值为1,∴代数式(a2﹣1)(b2﹣1)的最小值是1﹣16=﹣15,故答案为:﹣15.3.【分析】设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,然后求出EM、EN,在Rt△ENG中,利用勾股定理列式求出GN,再根据△GEN和△EKM相似,利用相似三角形对应边成比例列式求出EK、KM,再求出KH,然后根据△FKH和△EKM 相似,利用相似三角形对应边成比例列式求解即可.【解答】解:设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,∵E到AD的距离为1,∴EM=1,EN=4﹣1=3,在Rt△ENG中,GN===4,∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,∠GEN+∠NGE=180°﹣90°=90°,∴∠KEM=∠NGE,又∵∠ENG=∠KME=90°,∴△GEN∽△EKM,∴==,即==,解得EK=,KM=,∴KH=EH﹣EK=4﹣=,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴=,即=,解得FH=,∴AF=FH=.故答案为.4.【分析】如图,作OG⊥AB于G,由题意OG=ON=>3,所以⊙Q在AC的左边不可能与AB相切.接下来分三种情形讨论求解即可.【解答】解:如图,作OG⊥AB于G,由题意OG=ON=>3,所以⊙Q在AC 的左边不可能与AB相切.相切有三种可能:当⊙Q与BC相切时,MQ=2,∴|t﹣3|=2,∴t=1或5.当⊙Q与AB相切时,设切点为H,连接QH.易知QN=2QH,∴2﹣(t﹣3)=2(t﹣3),解得t=,综上所述,t=1s或5s或()s时,⊙Q与BC/AB相切.故答案为1s或5s或()s5.【分析】连接BC、BD.因为AB是直径,推出∠ACB=∠ADB=90°,可得tan∠P AC•tan ∠P AD=•=•,利用相似三角形的性质转化即可解决问题;【解答】解:连接BC、BD.∵AB是直径,∴∠ACB=∠ADB=90°,∴tan∠P AC•tan∠P AD=•=•,∵△PCB∽△P AD,∴=,∵△PBD∽△PCA,∴=,∴tan∠P AC•tan∠P AD=•==,故答案为.6.【分析】①作常规辅助线连接CD,由SAS定理可证△CDF和△ADE全等,即可证得AE =CF;②根据AE=CF,设CE=x,用含x的式子表示出CF的长,根据勾股定理,即可表示出EF的长,根据二次函数的增减性,表示出EF的最小值;③由割补法可知四边形CEDF的面积保持不变;④由①可知,DE=EF,可得△DEF是等腰直角三角形,当DF与BC垂直,即DF最小时,FE取最小值2,此时点C到线段EF的最大距离.【解答】解:如图,连接CD.∵在△ABC中,AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵D是AB的中点,∴CD=AD=BD,∠ADC=90°,∠ACD=∠BCD=45°,∴∠1+∠2=90°,∵ED⊥FD,∴∠2+∠3=90°,∴∠1=∠3,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF;故①正确;(2)设CE=x,则CF=AE=4﹣x,在Rt△CEF中,,∵2(x﹣2)2+8有最小值,最小值为8,∴EF有最小值,最小值为.故②错误;③由①知,△ADE≌△CDF,∴S四边形EDFC=S△EDC+S△FDC=S△EDC+S△ADE=S△ADC,∴四边形CEDF的面积不随点E位置的改变而发生变化.故③正确;④由①可知,△ADE≌△CDF,∴DE=DF,∴△DEF是等腰直角三角形,∴,当EF∥AB时,∵AE=CF,∴E,F分别是AC,BC的中点,故EF是△ABC的中位线,∴EF取最小值=,∵CE=CF=2,∴此时点C到线段EF的最大距离为.故④正确.故答案为:①③④.三、解答题1.【分析】(1)先求出∠APE=∠ABC=90°,∠P AE=∠PEA=∠ABC=45°,即可得出结论;(2)由(1)知,△APE∽△ABC,得出,再判断出∠P AB=∠EAC,进而判断出△P AB∽△EAC,即可得出结论;(3)先画出图形,利用勾股定理求出CP',再分两种情况,求出CE和CE',借助(2)的结论,即可得出结论.【解答】解:(1)∵AC是正方形ABCD的对角线,∴∠ABC=90°,∠BAC=∠BCA=45°,由旋转知,P A=PE,∠APE=90°=∠ABC,∴∠P AE=∠PEA=45°=∠BAC,∴△APE∽△ABC;(2)在Rt△ABC中,AB=CB,∴AC=AB,由(1)知,△APE∽△ABC,∴,∵∠BAC=∠P AE=45°,∴∠P AB=∠EAC,∴△P AB∽△EAC,∴==,∵△P AB∽△EAC,∴∠ABP=∠ACE,∴∠BCE+∠CBM=∠BCE+∠ABP+∠ABC=∠BCE+∠ACE+∠ABC=∠ACB+∠ABC=45°+90°=135°,∴∠BMC=180°﹣(∠BCE+∠CBM)=45°;(3)如图,在Rt△ABC中,AB=BC=3,∴AC=3,∵点P,C,E在同一条线上,且∠APE=90°,∴CP==,∴CE=CP﹣PE=﹣1或CE'=CP'+P'E=+1,由(2)知,=,∴BP=CE=(﹣1)=或BP'=CE'=;即:BP的长为或.2.【分析】(1)y=,过点B,C,则点B、C的坐标分别为:(3,0)、(0,),则c=,将点B的坐标代入抛物线表达式,即可求解;(2)分∠PCM=90°、∠CPM=90°两种情况,分别求解即可;(3)作点E关于P′B′的对称点E′,将点E′沿P′B′方向平移2个单位得到点E″,连接E、E″交P′B′所在的直线于点B′,点B′沿P′B′方向平移2个单位得到点P′,则点P′、B′为所求,即可求解.【解答】解:(1)y=,过点B,C,则点B、C的坐标分别为:(3,0)、(0,),则c=,将点B的坐标代入抛物线表达式并解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+;(2)①当∠PCM=90°时,由点A、B、C的坐标知,△ABC为直角三角形,故AC⊥BC,当△PCM为直角三角形时,点P与点A重合,∴点P(﹣1,0);②当∠CPM=90°时,则点C、P关于函数对称轴对称,此时点P(2,),故点P的坐标为(﹣1,0)或(2,);(3)存在,理由:点P(2,),设图象沿BC方向向左平移3m个单位,则向上平移m个单位,则平移后点B′、P′的坐标分别为:(3﹣3m,m)、(2﹣3m,m+),点E(1,0),分别过点A、E作直线BC的平行线n、m,过点B′作直线m的对称点B″,则EB′=EB″,当B″、E、P′三点共线时,EB'+EP'=EB″+EP′=B″P′最小;点E是AB的中点,则直线m与直线n、直线m与直线AC等距离,则点B″在直线n 上,直线BC的倾斜角为30°,则直线B′B″的倾斜角为60°,则设直线B′B″的表达式为:y=x+b,将点B′的坐标代入上式并解得:直线B′B″表达式为:y=x+(4m﹣3)…①,设过点A的直线n的表达式为:y=﹣x+b′,将点A的坐标代入上式并解得:直线n的表达式为:y=﹣(x+1)…②,联立①②并解得:x=2﹣3m,故点B″(2﹣3m,m﹣),而P′(2﹣3m,m+),故EB'+EP'的最小值B″P′=2.3.△ABC内接⊙O,AD⊥BC与D,连接OA.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,作BE⊥AC交CA延长线于E交⊙O于F,延长AD交⊙O于G,连接AF,求证:AD+AF=DG;(3)在第(2)问的条件下,如图3,OA交BC于点T,CA=CT,AD=2AF,AB=4,求DT长.【分析】(1)延长AO交圆于点M,连结BM,由∠M+∠BAM=90°,∠C+∠CAD=90°,结论可得证;(2)分别延长DA、BE交于点H,连结BG,可证得△AFM和△BGM是等腰三角形,由等腰三角形的性质可证出结论;(3)连GO并延长GO交AB于点N,连BG,由CA=CT可得∠TAC=∠ATC,证得AG =BG,得出AN长,证出△BAD∽△GAN,由比例线段可求出AD长,BD长,再证明△ADT∽△BDA,得AD2=DT•BD,则DT长可求.【解答】(1)证明:如图1,延长AO交圆于点M,连结BM,∵AM是圆的直径,∴∠ABM=90°,∴∠M+∠BAM=90°,∵AD⊥BC,∴∠C+∠CAD=90°,∵∠M=∠C,∴∠BAO=∠CAD;(2)证明:如图2,分别延长DA、BE交于点H,连结BG,∵AE⊥BE,AD⊥DC,∴∠EAH+∠H=90°,∠DAC+∠C=90°,∵∠DAC=∠EAH,∴∠H=∠C,∵四边形AFBC是圆内接四边形,∴∠EF A=∠C,∴∠EF A=∠H,∴AF=AH,又∵∠C=∠BGH,∴∠H=∠BGH,∵BD⊥GH,∴DG=DM=AD+AH=AD+AF;(3)解:如图3,连GO并延长GO交AB于点N,连BG,∵CT=AC,∴∠TAC=∠ATC,∵∠TAC=∠TAD+∠DAC,∠ATC=∠TBA+∠BAT,∠DAC=∠BAT,∴∠TAD=∠TBA,又∵∠GBC=∠DAC=∠BAO,∴AG=BG,由轴对称性质可知NG⊥AB,∴∠GNA=∠BDA=90°,AN=BN=2,∵∠NAG=∠BAD∴△BAD∽△GAN,∴,∵AD+AF=DG,AD=2AF,∴,∴,设AD=x,则AG=,∴,解得:x=4,即AD=4,∴==8,在△ADT和△BDA中,∠TAD=∠DBA,∠TDA=∠BDA=90°,∴△ADT∽△BDA,∴,∴,∴DT=2.4.【分析】(1)由锐角三角函数可求点A坐标,由待定系数法可求解析式;(2)过点M作MH⊥OC于H,由锐角三角函数可求∴∠BCO=30°,由直角三角形的性质可求CD的长,由三角形面积公式可求解;(3)作FE⊥OB于E,CP⊥EF于P,FK⊥OC于K.则四边形CPEO是矩形,设PC=OE=m.只要证明△PCF∽△EF A,可得,由此构建方程求出m即可解决问题.【解答】解:(1)∵点C(0,4),∴OC=4,∵tan∠CBO==,∴OB=4,∵OB=4OA,∴OA=1,∴点A(﹣1,0)设过点A、C直线解析式为:y=kx+4,∴0=﹣k+4,∴k=4,∴过点A、C直线解析式为:y=4x+4;(2)如图2,过点M作MH⊥OC于H,∵M的横坐标为t,∴MH=t,∵tan∠BCO===,∴∠BCO=30°,∵CD=DM,∴∠DCM=∠CMD=30°,∴∠MDH=60°,且MH⊥OC,∴DH=t,DM=2DH=t=CD,∴△CDM的面积为S=×t×t=t2,(0<t≤4)(3)作FE⊥OB于E,CP⊥EF于P,FK⊥OC于K.则四边形CPEO是矩形,∴CP=OE,CO=PE=4,设PC=OE=m.∵∠DON+∠DFN+∠ODF+∠ONF=360°,∴∠FNO=120°,∴∠FNE=60°,且EF⊥BO,FN=OB=4,∴EF=2,∴PF=2∵∠DCF+∠AFN=60°,∠DCF+∠DFC=60°,∴∠DFC=∠AFN,∴∠CF A=∠DFN=90°,∴∠FCP+∠PFC=90°,∠PFC+∠AFE=90°,∴∠PCF=∠AFE,且∠P=∠AEF=90°,∴△PCF∽△EF A,∴,∴∴m=3或﹣4(舍弃),∴F(3,2),在Rt△DEK中,∵∠DFK=30°,FK=3,∴DK=,∴OD=3,∴D(0,3).5.【分析】(1)设两个“网红数”为,,(n、b表示末三位表示的数,m、a表示末三位之前的数字),则n﹣m=11k,b﹣a=11h,所以+=1001m+1001a+11(k+h)=11(91m+91n+h+k),即可证明;(2)s=3×100+10b+a,t=1000(b+1)+100(a+1)+4×10+2,所以s+t=1000(b+1)+100(a+4)+10(b+4)+a+2;①当1≤a≤5时,s+t=,则﹣(b+1)能被11整除,即101a+9b+441=11×9a+2a+11b﹣2b+40×11+1能被11整除,由已知可得﹣7≤2a﹣2b+1≤11,求出a=5,b=0;②当6≤a≤7时,s+t=,则﹣(b+2)能被11整除,所以101a+9b﹣560=11×9a+2a+11b﹣2b﹣51×11+1能被11整除,可得3≤2a﹣2b+1≤15,求出a=6,b=1或a=7,b=2,分别求出相应的G(t)值即可.【解答】解:(1)设两个“网红数”为,,(n、b表示末三位表示的数,m、a表示末三位之前的数字),∴n﹣m=11k,b﹣a=11h,∵+=1001m+1001a+11(k+h)=11(91m+91n+h+k),∴m、a、k、h都是整数,∴91m+91n+h+k为整数,∴任两个“网红数”之和一定能被11整除;(2)s=3×100+10b+a,t=1000(b+1)+100(a+1)+4×10+2,∴s+t=1000(b+1)+100(a+4)+10(b+4)+a+2,①当1≤a≤5时,s+t=,则﹣(b+1)能被11整除,∴101a+9b+441=11×9a+2a+11b﹣2b+40×11+1能被11整除,∴2a﹣2b+1能被11整除,∵1≤a≤5,0≤b≤5,∴﹣7≤2a﹣2b+1≤11,∴2a﹣2b+1=0或11,∴a=5,b=0,∴t=1642,G(1642)=17.25;②当6≤a≤7时,s+t=,则﹣(b+2)能被11整除,∴101a+9b﹣560=11×9a+2a+11b﹣2b﹣51×11+1能被11整除,∴2a﹣2b+1能被11整除,∵6≤a≤7,0≤b≤5,∴3≤2a﹣2b+1≤15,∴2a﹣2b+1=11,∴a=6,b=1或a=7,b=2,∴t=2742或3842,∴G(2742)=28或G(3842)=39,∴G(t)的最大值39.6.【分析】(1)首先确定A、B、C三点的坐标,然后利用待定系数法求抛物线的解析式;(2)△ABO为等腰直角三角形,若△ADP与之相似,则有两种情形,如答图1所示.利用相似三角形的性质分别求解,避免遗漏;(3)如答图2所示,分别计算△ADE的面积与四边形APCE的面积,得到面积的表达式.利用面积的相等关系得到一元二次方程,将点E是否存在的问题转化为一元二次方程是否有实数根的问题,从而解决问题.需要注意根据(2)中P点的不同位置分别进行计算,在这两种情况下,一元二次方程的判别式均小于0,即所求的E点均不存在.【解答】解:(1)由题意得,A(3,0),B(0,3)∵抛物线经过A、B、C三点,∴把A(3,0),B(0,3),C(1,0)三点分别代入y=ax2+bx+c,得方程组解得:∴抛物线的解析式为y=x2﹣4x+3(2)由题意可得:△ABO为等腰三角形,如答图1所示,若△ABO∽△AP1D,则∴DP1=AD=4,∴P1(﹣1,4)若△ABO∽△ADP2 ,过点P2作P2 M⊥x轴于M,AD=4,∵△ABO为等腰三角形,∴△ADP2是等腰三角形,由三线合一可得:DM=AM=2=P2M,即点M与点C重合,∴P2(1,2)综上所述,点P的坐标为P1(﹣1,4),P2(1,2);(3)不存在.理由:如答图2,设点E(x,y),则S△ADE=①当P1(﹣1,4)时,S四边形AP1CE=S△ACP1+S△ACE==4+|y|∴2|y|=4+|y|,∴|y|=4∵点E在x轴下方,∴y=﹣4,代入得:x2﹣4x+3=﹣4,即x2﹣4x+7=0,∵△=(﹣4)2﹣4×7=﹣12<0∴此方程无解②当P2(1,2)时,S四边形AP2CE=S△ACP2+S△ACE==2+|y|,∴2|y|=2+|y|,∴|y|=2∵点E在x轴下方,∴y=﹣2,代入得:x2﹣4x+3=﹣2,即x2﹣4x+5=0,∵△=(﹣4)2﹣4×5=﹣4<0∴此方程无解综上所述,在x轴下方的抛物线上不存在这样的点E.。
2021年江苏中考数学压轴题精选精练试卷(解析版)
中考数学压轴题精选精练一、选择题1.如图,在▱ABCD中,CD=8,BC=10,按以下步骤作图:①以点C为圆心,适当长度为半径作弧,分别交BC,CD于M,N两点;②分别以点M,N为圆心,以大于MN 的长为半径画弧,两弧在▱ABCD的内部交于点P;③连接CP并延长交AD于点E,交BA的延长线于点F,则AF的长为()A.2 B.3 C.4 D.52.如图①,在Rt△ABC中,∠ACB=90°,∠A=30°,动点D从点A出发,沿A→C→B 以1cm/s的速度匀速运动到点B,过点D作DE⊥AB于点E,图②是点D运动时,△ADE 的面积y(cm2)随时间x(s)变化的关系图象,则AB的长为()A.4cm B.6cm C.8cm D.10cm3.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.第3题第4题4.如图,在平面直角坐标系xOy中,A(﹣3,0),B(3,0),若在直线y=﹣x+m上存在点P满足∠APB=60°,则m的取值范围是()A.≤m≤B.﹣﹣5≤m≤+5C.﹣2≤m≤+2D.﹣﹣2≤m≤+25.如图,A、C两点在反比例函数y=的图象上,B、D两点在反比例函数y=的图象上,AB⊥x轴于点E,CD⊥x轴于点F,AB=3,CD=2,EF=,则k1﹣k2的值为()A.﹣3 B.﹣2 C.D.﹣16.如图,以矩形ABCD对角线AC为底边作等腰直角△ACE,连接BE,分别交AD,AC于点F,N,CD=AF,AM平分∠BAN.下列结论:①EF⊥ED;②∠BCM=∠NCM;③AC=EM;④BN2+EF2=EN2;⑤AE•AM=NE•FM,其中正确结论的个数是()A.2 B.3 C.4 D.5二、填空题1.如图,在扇形AOB中,∠AOB=120°,连接AB,以OA为直径作半圆C交AB于点D,若OA=4,则阴影部分的面积为.2.在△ABC中,AB=4,∠C=60°,∠A≠∠B,则BC的长的取值范围是________.3.如图,点G是矩形ABCD的对角线BD上一点,过点G作EF∥AB交AD于E,交BC 于F,若EG=5,BF=2,则图中阴影部分的面积为.第3题第4题4.如图为二次函数y=ax2+bx+c图象,直线y=t(t>0)与抛物线交于A,B两点,A,B 两点横坐标分别为m,n.根据函数图象信息有下列结论:①abc>0;②若对于t>0的任意值都有m<﹣1,则a≥1;③m+n=1;④m<﹣1;⑤当t为定值时,若a变大,则线段AB变长.其中,正确的结论有(写出所有正确结论的序号)5.如图,在Rt△ABC中,∠C=90°,AC=BC.将△ABC绕点A逆时针旋转15°得到Rt △AB′C′,B′C′交AB于点E,若图中阴影部分面积为2,则B′E的长为.第5题第6题6.如图,在矩形ABCD中,已知AB=3,BC=4,点P是边BC上一动点(点P不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接MP,作∠MPC的角平分线交边CD于点N.则线段MN的最小值为.三、解答题1.如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD上运动,以P 为圆心,P A为半径的⊙P与对角线AC交于A,E两点.(1)线段AC的长度是________.(2)如图2,当⊙P与边CD相切于点F时,求AP的长;(3)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随着AP的变化,⊙P与平行四边形ABCD的边的公共点的个数也在变化,若共点的个数为4,直接写出相对应的AP的值的取值范围________________.2.阅读理【解析】解:在平面直角坐标系中,若两点P、Q的坐标分别是P(x1,y1)、Q (x2,y2),则P、Q这两点间的距离为|PQ|=.如P(1,2),Q(3,4),则|PQ|==2.对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx+交y轴于点A,点A关于x轴的对称点为点B,过点B作直线l平行于x轴.(1)到点A的距离等于线段AB长度的点的轨迹是____________.(2)若动点C(x,y)满足到直线l的距离等于线段CA的长度,求动点C轨迹的函数表达式;问题拓展:(3)若(2)中的动点C的轨迹与直线y=kx+交于E、F两点,分别过E、F 作直线l的垂线,垂足分别是M、N,求证:①EF是△AMN外接圆的切线;②+为定值.5.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)若F为CD上一动点,求出当△DEF与△COD相似时点F的坐标;(2)过E作x轴的垂线l,在直线l上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.5.定义:在平面内,我们把既有大小又有方向的量叫做平面向量.平面向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.如以正方形ABCD的四个顶点中某一点为起点,另一个顶点为终点作向量,可以作出8个不同的向量:、、、、、、、(由于和是相等向量,因此只算一个).(1)作两个相邻的正方形(如图一).以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(2),试求f(2)的值;(2)作n个相邻的正方形(如图二)“一字型”排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(n),试求f(n)的值;(3)作2×3个相邻的正方形(如图三)排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(2×3),试求f(2×3)的值;(4)作m×n个相邻的正方形(如图四)排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(m×n),试求f(m×n)的值.6.如图,已知直线y=x+1与抛物线y=ax2+2x+c相交于点A(﹣1,0)和点B(2,m)两点(1)求抛物线的函数表达式;(2)若点P是位于直线AB上方抛物线上的一动点,当△P AB的面积S最大时,求此时△P AB的面积S及点P的坐标;(3)在x轴上是否存在点Q,使△QAB是等腰三角形?若存在,直接写出点Q的坐标(不用说理);若不存在,请说明理由.【答案与解析】一、选择题1.【分析】根据角平分线的定义以及平行四边形的性质,即可得到BF,BA的长,进而得到AF的长.【解答】解:由题可得,CF是∠ACD的平分线,∴∠BCF=∠DCF,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=8,∴∠F=∠DCF,∴∠BCF=∠F,∴BF=BC=10,∴AF=BF﹣AB=10﹣8=2.故选:A.2.【分析】根据题意可得,△ADE的最大面积是6(cm2),此时点D与点C重合,根据三角形ADE的面积即可求出DE=2,再根据30度特殊角即可求出AB的长.【解答】解:根据题意可知:△ADE的最大面积是6(cm2),此时点D与点C重合,如图,在Rt△ADE中,∠A=30°,设DE=x,则AE=x,∴S△ADE=AE•DE=×x•x=x2,∴x2=6,解得x=2(负值舍去),∴DE=2,∴AD=AC=2DE=4,在Rt△ABC中,∠A=30°,∴cos30°==,∴=,∴AB=8cm.故选:C.3.【分析】根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.【解答】A.∵EF∥AB,∴=,故本选项正确,B.∵DE∥BC,∴=,∵EF∥AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵EF∥AB,∴=,∵CF≠DE,∴≠,故本选项错误,D.∵EF∥AB,∴=,∴=,故本选项正确,故选:C.4.【分析】作等边三角形ABE,然后作外接圆,求得直线y=﹣x+m与外接圆相切时的m的值,即可求得m的取值范围.【解答】解:如图,作等边三角形ABE,∵A(﹣3,0),B(3,0),∴OA=OB=3,∴E在y轴上,当E在AB上方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P1重合时m的值最大,当P与P1重合时,连接QP1,则QP1⊥直线y=﹣x+m,∵OA=3,∴OE=3,设⊙Q的半径为x,则x2=32+(3﹣x)2,解得x=2,∴EQ=AQ=PQ=2,∴OQ=,由直线y=﹣x+m可知OD=OC=m,∴DQ=m﹣,CD=m,∵∠ODC=∠P1DQ,∠COD=∠QP1D,∴△QP1D∽△COD,∴=,即=,解得m=+2,当E在AB下方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P2重合时m的值最小,当P与P2重合时,同理证得m=﹣﹣2,∴m的取值范围是﹣﹣2≤m≤+2,故选:D.1.【分析】直接利用反比例函数的性质和k的意义分析得出答案.【解答】解:过点A作AM⊥y轴,BN⊥y轴,DQ⊥y轴,CN⊥y轴垂足分别为M,N,Q,R,由题意可得:S矩形AMEQ=S矩形FCRO=﹣k1,S矩形EBNO=S矩形QDFO=k2,则S矩形AMEQ+S矩形EBNO=S矩形FCRO+S矩形QDFO=﹣k1+k2,∵AB=3,CD=2,∴设EO=2x,则FO=3x,∵EF=,∴EO=1,FO=1.5,∴S矩形ABNM=1×3=3,则﹣k1+k2=3,故k1﹣k2=﹣3.故选:A.2.【分析】①正确,只要证明A,B,C,D,E五点共圆即可解决问题;②正确,只要证明点M是△ABC的内心即可;③正确,想办法证明EM=AE,即可解决问题;④正确.如图2中,将△ABN逆时针旋转90°得到△AFG,连接EG.想办法证明△GEF是直角三角形,利用勾股定理即可解决问题;⑤错误.利用反证法证明即可;【解答】解:如图1中,连接BD交AC于O,连接OE.∵四边形ABCD是矩形,∴OA=OC=OD=OB,∵∠AEC=90°,∴OE=OA=OC,∴OA=OB=OC=OD=OE,∴A,B,C,D,E五点共圆,∵BD是直径,∴∠BED=90°,∴EF⊥ED,故①正确,∵CD=AB=AF,∠BAF=90°,∴∠ABF=∠AFB=∠FBC=45°,∴BM平分∠ABC,∵AM平分∠BAC,∴点M是△ABC的内心,∴CM平分∠ACB,∴∠MCB=∠MCA,故②正确,∵∠EAM=∠EAC+∠MAC,∠EMA=∠BAM+∠ABM,∠ABM=∠EAC=45°,∴∠EAM=∠EMA,∴EA=EM,∵△EAC是等腰直角三角形,∴AC=EA=EM,故③正确,如图2中,将△ABN绕点A逆时针旋转90°,得到△AFG,连接EG,∵∠NAB=∠GAF,∴∠GAN=∠BAD=90°,∵∠EAN=45°,∴∠EAG=∠EAN=45°,∵AG=AN,AE=AE,∴△AEG≌△AEN(SAS),∴EN=EG,GF=BN,∵∠AFG=∠ABN=∠AFB=45°,∴∠GFB=∠GFE=90°,∴EG2=GF2+EF2,∴BN2+EF2=EN2,故④正确,不妨设AE•AM=NE•FM,∵AE=EC,∴=,∴只有△ECN∽△MAF才能成立,∴∠AMF=∠CEN,∴CE∥AM,∵AE⊥CE,∴MA⊥AE(矛盾),∴假设不成立,故⑤错误,故选:C.二、填空题1.【分析】连接OD、CD,根据圆周角定理得到OD⊥AB,根据等腰三角形的性质得到AD =DB,∠OAD=30°,根据扇形面积公式、三角形的面积公式计算即可.【解答】解:连接OD、CD,∵OA为圆C的直径,∴OD⊥AB,∵OA=OB,∠AOB=120°,∴AD=DB,∠OAD=30°,∴OD=OA=2,由勾股定理得,AD==2,∴△AOB的面积=×AB×OD=4,∵OC=CA,BD=DA,∴CD∥OB,CD=OB,∴∠ACD=∠AOB=120°,△ACD的面积=×△AOB的面积=,∴阴影部分的面积=﹣△AOB的面积﹣(﹣△ACD的面积)=π﹣4﹣π+=4π﹣3,故答案为:4π﹣3.2.解:作△ABC的外接圆,如图所示:当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB3AC=4,∴AC 43,∴BC=2AC83,当∠A=∠B时,△ABC为等边三角形,∴BC=AB=4,则BC的长的取值范围是0<BC≤833且BC≠4,故答案为:0<BC≤833且BC≠4.3.【分析】由矩形的性质可证明S矩形AEGM=S矩形CFGN=2×5=10,即可求解.【解答】解:作GM⊥AB于M,延长MG交CD于N.则有四边形AEGM,四边形DEGN,四边形CFGN,四边形BMGF都是矩形,∴AE=BF=2,S△ADB=S△DBC,S△BGM=S△BGF,S△DEG=S△DNG,∴S矩形AEGM=S矩形CFGN=2×5=10,∴S阴=S矩形CFGN=5,故答案为:5.4.【分析】由图象分别求出a>0,c=﹣2,b=﹣a<0,则函数解析式为y=ax2﹣ax﹣2,则对称轴x=,由开口向上的函数的图象开口与a的关系可得:当a变大,函数y=ax2﹣ax﹣2的开口变小,依据这个性质判断m的取值情况.【解答】解:由图象可知,a>0,c=﹣2,∵对称轴x=﹣=,∴b=﹣a<0,∴abc>0;∴①正确;A、B两点关于x=对称,∴m+n=1,∴③正确;a>0时,当a变大,函数y=ax2﹣ax﹣2的开口变小,则AB的距离变小,∴⑤不正确;若m<﹣1,n>2,由图象可知n>1,∴④不正确;当a=1时,对于t>0的任意值都有m<﹣1,当a>1时,函数开口变小,则有m>﹣1的时候,∴②不正确;故答案①③.5.【分析】求出∠C′AE=30°,推出AE=2C′E,AC′=C′E,根据阴影部分面积为2得出×C′E×C′E=2,求出C′E=2,即可求出C′B′,即可求出答案.【解答】解:∵将Rt△ACB绕点A逆时针旋转15°得到Rt△AB′C′,∴△ACB≌△AC′B′,∴AC=AC′,CB=C′B′,∠CAB=∠C′AB′,∵在Rt△ABC中,∠C=90°,AC=BC,∴∠CAB=45°,∵∠CAC′=15°,∴∠C′AE=30°,∴AE=2C′E,AC′=C′E,∵阴影部分面积为2,∴×C′E×C′E=2,∴C′E=2,∴AC=BC=C′B′=C′E=2,∴B′E=2﹣2,故答案为:2﹣2.6.【分析】过N作NH⊥PM交直线PM于H,则MN2=NH2+MH2,得出当点M与点H重合时,MN长最小,易证NH=NC,∠HPN=∠CPN,由AAS证得△PNH≌△PNC,得出PC=PH,NC=NH,由点B关于直线AP的对称点M,得出BP=PM,∠BP A=∠MP A,当点M与点H重合时,BP=PH=PC=BC=2,由∠HPN+∠CPN+∠BP A+∠MP A=180°,推出∠APN=90°,证明△ABP∽△PCN,得出=,得出NC=,即可得出结果.【解答】解:过N作NH⊥PM交直线PM于H,如图所示:则MN2=NH2+MH2,∴当点M与点H重合时,MN长最小,∵四边形ABCD是矩形,∴∠B=∠C=90°,∵PN是∠MPC的角平分线,∴NH=NC,∠HPN=∠CPN,在△PNH和△PNC中,,△PNH≌△PNC(AAS),∴PC=PH,NC=NH,∵点B关于直线AP的对称点M,∴BP =PM ,∠BP A =∠MP A ,∴当点M 与点H 重合时,BP =PH =PC =BC =2, ∵∠HPN +∠CPN +∠BP A +∠MP A =180°, ∴∠APN =90°,∴∠APB +∠NPC =90°, ∵∠APB +∠P AB =90°, ∴∠P AB =∠NPC , ∵∠B =∠C =90°, ∴△ABP ∽△PCN , ∴=,∴NC ===,∴当点M 与点H 重合时,MN =NC =, 故答案为:.三、解答题1.解:(1)∵平行四边形ABCD 中,AB =6,AD =10,∴BC =AD =10, ∵AB ⊥AC ,∴在Rt △ABC 中,由勾股定理得:AC 22BC AB -=102-62=8, 故答案为:8;(2)如图2所示,连接PF ,设AP =x ,则DP =10-x ,PF =x , ∵⊙P 与边CD 相切于点F ,∴PF ⊥CD , ∵四边形ABCD 是平行四边形,∴AB ∥CD , ∵AB ⊥AC ,∴AC ⊥CD ,∴AC ∥PF , ∴△DPF ∽△DAC ,∴PF PD AC AD =,∴10810x x -=,∴x =409,即AP =409;(3)当⊙P与BC相切时,设切点为G,如图3,S□ABCD=12×6×8×2=10PG,∴PG=245,①当⊙P与边AD、CD分别有两个公共点时,409<AP<245,即此时⊙P与平行四边形ABCD的边的公共点的个数为4;②⊙P过点A、C、D三点,如图4,⊙P与平行四边形ABCD的边的公共点的个数为4,此时AP=5,综上所述,AP的值的取值范围是:409<AP<245或AP=5,故答案为:409<AP<245或AP=5.2. 解:(1)设到点A的距离等于线段AB长度的点D坐标为(x,y),∴AD2=x2+(y﹣)2,∵直线y=kx+交y轴于点A,∴A(0,),∵点A关于x轴的对称点为点B,∴B(0,﹣),∴AB=1,∵点D到点A的距离等于线段AB长度,∴x2+(y﹣)2=1,故答案为:x2+(y﹣)2=1;(2)∵过点B作直线l平行于x轴,∴直线l的解析式为y=﹣,∵C(x,y),A(0,),∴AC2=x2+(y﹣)2,点C到直线l的距离为:(y+),∵动点C(x,y)满足到直线l的距离等于线段CA的长度,∴x2+(y﹣)2=(y+)2,∴动点C轨迹的函数表达式y=x2,(3)连接AM,AN,取MN的中点Q,连接AQ.①设E(x1,y1),F(x2,y2),由(2)得,EA=EM,F A=FN,∴,∴x2﹣2kx﹣1=0,∴x1+x2=2k,x1x2=﹣1,∵BM·BN=|x1x2|=1,AB=1,∴AB2=BM·BN,又∠ABM=∠NBA,∴△ABM∽△NBA,∴∠MAB=∠ANB,而∠NAB+∠ANB=90°,∴∠NAB+∠MAB=90°,即∠MAN=90°.∴AQ=QN,∴∠QAN=∠QNA,∵F A=FN,∴∠F AN=∠FNA,∴∠F AG=∠FNG=90°,∴所以EF是△AMN外接圆的切线.②证明:∵点E(m,a)点F(n,b)在直线y=kx+上,∴a=mk+,b=nk+,∵ME,NF,EF是△AMN的外接圆的切线,∴AE=ME=a+=mk+1,AF=NF=b+=nk+1,∴+=+====2,即:+为定值,定值为2.5.【分析】(1)当△DEF∽△COD时,=,DF=DE cos∠CDO=,据此求出EF的长度和点F的坐标即可;(2)首先以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=;然后求出点P的坐标是多少;设Q(﹣1,a),则()2+(a﹣)2=,据此求出a的值是多少,进而求出Q点坐标是多少即可.【解答】解:(1)∵A(1,0),B(0,3),∴OA=1,OB=3,∵将△AOB绕点O逆时针旋转90°,得到△COD,∴OC=1,OD=3,∴C(0,1),D(﹣3,0),如图1,当△DEF∽△COD时,=∴EF=,∴F(﹣1,);当△DEF∽△COD时,DF=DE cos∠CDO=,作FK⊥OD于K,则FK=DF sin∠CDO=,DK=DF cos∠CDO=,∴F(﹣,);(2)如图2,以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=,又∵P为CD中点,P(﹣,),设Q(﹣1,a),则()2+(a﹣)2=,解得a=2或﹣1,∴Q(﹣1,2)或(﹣1,﹣1).6.【分析】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF∥BO交AB于点F,证△PFD∽△OBD,得比例线段,则PF取最大值时,求得的最大值;(3)(i)点F在y轴上时,P在第一象限或第二象限,如图2,3,过点P作PH⊥x轴于H,根据正方形的性质可证明△CPH≌△FCO,根据全等三角形对应边相等可得PH=CO=2,然后利用二次函数解析式求解即可;(ii)点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,可得PS=PK,则P点的横纵坐标互为相反数,可求出P点坐标;点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,可得PN=PM,则P点的横纵坐标相等,可求出P点坐标.由此即可解决问题.【解答】解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,若P在第二象限,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,x=﹣1+(舍去).∴,如图3,点F在y轴上时,若P在第一象限,同理可得点P的纵坐标为2,此时P2点坐标为(﹣1+,2)(ii)如图4,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图5,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.5.【分析】(1)根据图形,即可求得f(2)的值;(2)首先求f(1),f(2),f(3),f(4),所以得到规律为:f(n)=6n+2;(3)根据图形,即可求得f(2×3)的值;(4)先分析特殊情况,再求得规律:f(m×n)=2(m+n)+4mn.【解答】解:(1)作两个相邻的正方形,以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数f(2)=14;(2)分别求出作两个、三个、四个相邻的正方形(如图1).以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同的向量个数,找出规律,∵f(1)=6×1+2=8,f(2)=6×2+2=14,f(3)=6×3+2=20,f(4)=6×4+2=26,∴f(n)=6n+2;(3)f(2×3)=34;(4)∵f(2×2)=24,f(2×3)=34,f(2×4)=44,f(3×2)=34,f(3×3)=48,f(3×4)=62∴f(m×n)=2(m+n)+4mn.6.【分析】(1)先根据点B在直线y=x+1求出其坐标,再将A,B坐标代入抛物线解析式求解可得;(2)作PM⊥x轴于点M,交AB于点N,设点P的坐标为(m,﹣m2+2m+3),点N的坐标为(m,m+1),依据S△P AB=S△P AN+S△PBN列出函数解析式,利用二次函数的性质求解可得;(3)设点Q坐标为(n,0),结合各点坐标得出QA2=(﹣1﹣n)2,QB2=(2﹣n)2+9,AB2=18,再根据等腰三角形的定义分三种情况分别求解可得.【解答】解:(1)∵点B(2,m)在直线y=x+1上,∴m=2+1=3,∴点B坐标为(2,3),∵点A(﹣1,0)和点B(2,3)在抛物线y=ax2+2x+c上,∴,解得,∴所求抛物线解析式为y=﹣x2+2x+3;(2)过点P作PM⊥x轴于点M,交AB于点N,设点P的横坐标为m,则点P的坐标为(m,﹣m2+2m+3),点N的坐标为(m,m+1),∵点P是位于直线AB上方,∴PN=PM﹣MN=﹣m2+2m+3﹣(m+1)=﹣m2+m+2,∴S△P AB=S△P AN+S△PBN=×(﹣m2+m+2)(m+1)+×(﹣m2+m+2)(2﹣m)=(﹣m2+m+2)=﹣(m﹣)2+,∵﹣<0,∴抛物线开口向下,又﹣1<m<2,∴当m=时,△P AB的面积的最大值是,此时点P的坐标为(,).(3)设点Q坐标为(n,0),∵A(﹣1,0),B(2,3),∴QA2=(﹣1﹣n)2,QB2=(2﹣n)2+9,AB2=18,①当QA2=QB2时,(﹣1﹣n)2=(2﹣n)2+9,解得n=2,即Q(2,0);②当QA2=AB2时,(﹣1﹣n)2=18,解得:n=﹣1±3,即Q(﹣1+3,0)或(﹣1﹣3,0);③当QB2=AB2时,(2﹣n)2+9=18,解得:n=﹣1(舍)或n=5,即Q(5,0);综上,Q的坐标为(2,0)或(﹣1+3,0)或(﹣1﹣3,0)或(5,0).。
2021年江苏中考数学压轴题精选精练(含解析)
中考数学压轴题精选精练一、选择题(6题)1.如图,点A是射线y═(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=交CD边于点E,则的值为()A.B.C.D.12.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A 在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是()A.6 B.C.D.3. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P 与点B之间的距离为()A.1 B.54C.1或3 D.54或54.已知直线y=﹣x+7a+1与直线y=2x﹣2a+4同时经过点P,点Q是以M(0,﹣1)为圆心,MO为半径的圆上的一个动点,则线段PQ的最小值为()A.103B.163C.85D.1855.如图,平行四边形ABCD的顶点A的坐标为(﹣,0),顶点D在双曲线y=(x>0)上,AD交y轴于点E(0,2),且四边形BCDE的面积是△ABE面积的3倍,则k的值为()A.4 B.6 C.7 D.86.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为()A.3+2B.4+3C.2+2D.10二、填空题(6题)1.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE =2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是.2.如图,在四边形ABCD中,AB∥CD,AB=BC=BD=2,AD=1,则AC=.3.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,△AOB与△COD 面积分别为8和18,若双曲线kyx恰好经过BC的中点E,则k的值为.第3题第4题4.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.5.如图,在平面直角坐标系中,已知点A(0,1),B(0,1+m),C(0,1﹣m)(m>0),点P在以D(﹣4,﹣2)为圆心,为半径的圆上运动,且始终满足∠BPC=90°,则m的取值范围是.第3题第4题6.如图,在矩形ABCD中,AB=15,AD=10,点P是AB边上任意一点(不与A点重合),连接PD,以线段PD为直角边作等腰直角△DPQ(点Q在直线PD右侧),∠DPQ=90°,连接BQ,则BQ的最小值为.三、解答题(6题)1.如图,正方形ABCD的边长为2,点E、F分别是边AB、AD上的动点,且∠ECF=45°,CF的延长线交BA的延长线于点G,GE的延长线交DA的延长线于点H,连接AE、CF.(1)求证:△AEF的周长为定值;(2)求AG•AH的值;(3)当△CGH是等腰三角形时,求AF的值.2.如图,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式及点D 的坐标.(2)在线段BC 下方的抛物线上,是否存在异于点D 的点E ,使S △BCE =S △BCD ?若存在,求出点E 的坐标;若不存在,请说明理由. (3)点M在抛物线上,点P 为y 轴上一动点,求MP +PC 的最小值.3.如图①,一次函数122y x =-的图象交x 轴于点A ,交y 轴于点B ,二次函数212y x bx c =-++的图象经过A 、B 两点,与x 轴交于另一点C .(1)求二次函数的关系式及点C 的坐标;(2)如图②,若点P 是直线AB 上方的抛物线上一点,过点P 作PD ∥x 轴交AB 于点D ,PE ∥y 轴交AB 于点E ,求PD +PE 的最大值;(3)如图③,若点M 在抛物线的对称轴上,且∠AMB =∠ACB ,求出所有满足条件的点M 的坐标.4.如图,矩形ABCD中,AB=6,AD=8.动点E,F同时分别从点A,B出发,分别沿着射线AD和射线BD的方向均以每秒1个单位的速度运动,连接EF,以EF为直径作⊙O 交射线BD于点M,设运动的时间为t.(1)当点E在线段AD上时,用关于t的代数式表示DE,DM.(2)在整个运动过程中,①连结CM,当t为何值时,△CDM为等腰三角形.②圆心O处在矩形ABCD内(包括边界)时,求t的取值范围,并直接写出在此范围内圆心运动的路径长.5.如图1,矩形ABCD中,AB=6,动点P从点A出发,沿A→B→C的方向在AB和BC 上移动,记P A=x,点D到直线P A的距离为y,y关于x的函数图象由C1、C2两段组成,如图2所示.(1)求AD的长;(2)求图2中C2段图象的函数解析式;(3)当△APD为等腰三角形时,求y的值.6.如图,顶点为A的抛物线y=a(x+2)2﹣4交x轴于点B(1,0),连接AB,过原点O 作射线OM∥AB,过点A作AD∥x轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.(1)求抛物线的解析式;(2)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,设点P运动的时间为t秒,问:当t为何值时,OB=AP;(3)若动点P从点O出发,以每秒1个单位长度的速度沿线段OD向点D运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t秒,连接PQ.问:当t为何值时,四边形CDPQ的面积最小?并求此时PQ的长.【答案与解析】一、选择题1.【分析】设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=x得到点A的坐标,结合正方形的性质,得到点C,点D和点E的横坐标,把点A的坐标代入反比例函数y=,得到关于m的k的值,把点E的横坐标代入反比例函数的解析式,得到点E的纵坐标,求出线段DE和线段EC的长度,即可得到答案.【解答】解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=x得:y=m,则点A的坐标为:(m,m),线段AB的长度为m,点D的纵坐标为m,∵点A在反比例函数y=上,∴k=m2,即反比例函数的解析式为:y=,∵四边形ABCD为正方形,∴四边形的边长为m,点C,点D和点E的横坐标为m+m=m,把x=m代入y=得:y=m,即点E的纵坐标为m,则EC=m,DE=m﹣m=m,=,故选:A.2.【分析】点A,C分别在x轴、y轴上,当点A在x轴运动时,点C随之在y轴上运动,在运动过程中,点O在到AC的中点的距离不变.本题可通过设出AC的中点坐标,根据B、D、O在一条直线上时,点B到原点O的最大可得出答案.【解答】解:作AC的中点D,连接OD、DB,∵OB≤OD+BD,∴当O、D、B三点共线时OB取得最大值,∵D是AC中点,∴OD=AC=2,∵BD==2,OD=AC=2,∴点B到原点O的最大距离为2+2,故选:D.3.【分析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得,可求BE,DE的长,由勾股定理可求PB的长.【解答】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴AB==5∵点D是AB的中点,∴BD=BA=∵B1D⊥BC,∠C=90°∴B1D∥AC∴∴BE=EC=BC=2,DE=AC=∵折叠∴B1D=BD=,B1P=BP∴B1E=B1D﹣DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2﹣BP)2,∴BP=如图,若点B1在BC右侧,∵B1E=DE+B1D=+,∴B1E=4在Rt△EB1P中,B1P2=B1E2+EP2,∴BP2=16+(BP﹣2)2,∴BP=5故答案为:或5 故选:D.4.【分析】先解方程组得P点坐标为(3a﹣1,4a+2),则可确定点P为直线y =x+上一动点,设直线y=x+与坐标的交点为A、B,如图,则A(﹣,0),B(0,),利用勾股定理计算出AB=,过M点作MP⊥直线AB于P,交⊙M于Q,此时线段PQ的值最小,证Rt△MBP∽Rt△ABO,利用相似比计算出MP=,则PQ =,即线段PQ的最小值为.【解答】解:解方程组得,∴P点坐标为(3a﹣1,4a+2),设x=3a﹣1,y=4a+2,∴y=x+,即点P为直线y=x+上一动点,设直线y=x+与坐标的交点为A、B,如图,则A(﹣,0),B(0,),∴AB==,过M点作MP⊥直线AB于P,交⊙M于Q,此时线段PQ的值最小,∵∠MBP=∠ABO,∴Rt△MBP∽Rt△ABO,∴MP:OA=BM:AB,即MP:=:,∴MP=,∴PQ=﹣1=,即线段PQ的最小值为.故选:C.5.【分析】连结BD,由四边形EBCD的面积是△ABE面积的3倍得平行四边形ABCD的面积是△ABE面积的4倍,根据平行四边形的性质得S△ABD=2S△ABE,则AD=2AE,即点E为AD的中点,E点坐标为(0,2),A点坐标为(﹣,0),利用线段中点坐标公式得D点坐标为,再利用反比例函数图象上点的坐标特征得k的值.【解答】解:如图,连结BD,∵四边形EBCD的面积是△ABE面积的3倍,∴平行四边形ABCD的面积是△ABE面积的4倍,∴S△ABD=2S△ABE,∴AD=2AE,即点E为AD的中点,∵E点坐标为(0,2),A点坐标为(﹣,0),∴D点坐标为(,4),∵顶点D在双曲线y=(x>0)上,∴k=×4=6,故选:B.6.【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE 的值;【解答】解:将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+3,∴MA+MD+ME的最小值为4+3.故选:B.二、填空题.【分析】如图作点D关于BC的对称点D′,连接PD′,ED′.由DP=PD′,推出PD+PF =PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.【解答】解:如图作点D关于BC的对称点D′,连接PD′,ED′.在Rt△EDD′中,∵DE=6,DD′=8,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=8,∴PF+PD的最小值为8,故答案为8.2.【分析】不能用全等、相似的判定和性质求得AC的情况下,考虑构造直角三角形用勾股定理来求,故过点C作AB垂线CF.由于△ABD三边确定,可用勾股定理列方程求得AB边上的高DE的长.根据平行线间距离处处相等,即有CF=DE,进而求得BF和AF,再在Rt△ACF中用勾股定理求AC.【解答】解:过点D作DE⊥AB于点E,过点C作CF⊥AB交AB延长线于点F∴∠AED=∠BED=∠F=90°设AE=x,∵AB=BC=BD=2,AD=1∴BE=AB﹣AE=2﹣x∵在Rt△ADE中,AE2+DE2=AD2,在Rt△BDE中,BE2+DE2=BD2∴DE2=AD2﹣AE2=BD2﹣BE2得:12﹣x2=22﹣(2﹣x)2解得:x=∴DE2=AD2﹣AE2=12﹣()2=∵AB∥CD∴CF=DE∴在Rt△BCF中,BF=∴AF=AB+BF=2+=∴在Rt△ACF中,AC=3.【分析】由平行线的性质得∠OAB=∠OCD,∠OBA=∠ODC,两个对应角相等证明△OAB∽△OCD,其性质得,再根据三角形的面积公式,等式的性质求出m=,线段的中点,反比例函数的性质求出k的值为6.【解答】解:如图所示:∵AB∥CD,∴∠OAB=∠OCD,∠OBA=∠ODC,∴△OAB∽△OCD,∴,若=m,由OB=m•OD,OA=m•OC,又∵,,∴=,又∵S△OAB=8,S△OCD=18,∴,解得:m=或m=(舍去),设点A、B的坐标分别为(0,a),(0,b),∵,∴点C的坐标为(0,﹣a),又∵点E是线段BC的中点,∴点E的坐标为(),又∵点E在反比例函数上,∴=﹣=,故答案为6.4.【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB =1,A′B′∥AB,推出四边形A′B′CD是平行四边形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根据平移的性质得到点A′在过点A且平行于BD的定直线上,作点D关于定直线的对称点E,连接CE交定直线于A′,则CE 的长度即为A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到结论.【解答】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.5.【分析】由题意P A=AB=AC=m,求出P A的最大值和最小值即可解决问题;【解答】解:∵A(0,1),B(0,1+m),C(0,1﹣m)(m>0),∴AB=AC=m,∵∠BPC=90°,∴P A=AB=AC,∵D(﹣4,﹣2),A(0,1),∴AD==5,∵点P在⊙D上运动,∴P A的最小值为5﹣,P A的最大值为5+,∴满足条件的m的取值范围为:5﹣≤m≤5+故答案为5﹣≤m≤5+.6.【分析】过Q作QE⊥AB于E,在EP上截取EF=EQ,连接QF,依据全等三角形的性质,即可得到AF=PE=10(定值),依据△EFQ是等腰直角三角形,可得FQ与FB的夹角始终为45°,进而得到当BQ⊥FQ时,BQ的长最小,根据△BQF是等腰直角三角形,即可得到BQ的长度.【解答】解:如图所示,过Q作QE⊥AB于E,在EP上截取EF=EQ,连接QF,∵△DPQ是等腰直角三角形,四边形ABCD是矩形,∴DP=PQ,∠A=∠PEQ,∠ADP=∠EPQ,∴△ADP≌△EPQ(AAS),∴AP=QE=FE,AD=PE=10,∴AF=PE=10(定值),又∵△EFQ是等腰直角三角形,∴∠QFE=45°,即FQ与FB的夹角始终为45°,如图,当BQ⊥FQ时,BQ的长最小,此时,△BQF是等腰直角三角形,又∵QE⊥BF,∴BE=EF=QE=AP,∴BE=AP==,∴BF=5,∴BQ=cos45°×BF=,即BQ的最小值为,故答案为:.三、解答题1.【分析】(1)先构造出△CDN≌△CBE(SAS),得出CN=CE,∠DCN=∠BCE,进而判断出△FCN≌△FCE,即可得出结论;(2)利用等式的性质得出∠AHC=∠ACG,进而判断出△ACH∽△AGC,即可得出结论;(3)分三种情况,①当HC=HG时,判断出△HCD≌△GHA(AAS),得出AH=CD=2,HD=AG=4,再判断出△AFG∽△BCG,即可得出结论;②当GC=GH时,判断出△GBC≌△HAG(AAS),得出AG=BC=2=AB,进而判断出AF是三角形BCG的中位线,即可得出结论;③当CG=CH时,先判断出△CAG≌△CAH(SAS),得出∠DCF=∠ACF=22.5°,在CD上取点M使DM=DF=m,得出MF=CM=m,再判断出CM=MF,得出m+m =2,即可得出结论.【解答】(1)证明:如图,延长AD至N,使DN=BE,∵四边形ABCD是正方形,∴∠CDN=∠B=90°,CD=CB,∴△CDN≌△CBE(SAS),∴CN=CE,∠DCN=∠BCE,∵∠ECF=45°,∴∠DCF+∠BCE=45°,∴∠DCF+DCN=45°=∠FCN,∴∠FCN=∠FCE,∵CF=CF,∴△FCN≌△FCE,∴FN=EF,∴△AEF的周长为AE+AF+EF=AB﹣BE+AF+FN=AB﹣BE+AF+DF+DN=AB﹣BE+AF+DF+BE=AB+AD=2AB=4是定值;(2)∵AC是正方形ABCD的对角线,∴∠CAD=∠CAB=45°,∴∠CAH=∠CAG=135°,又∵∠DAC=∠AHC+∠ACH=45°,∠ECF=∠ACF+∠ACH=45°,∴∠AHC=∠ACG,∴△ACH∽△AGC,∴,∴AC2=AG•AH,∵正方形ABCD的边长为2,∴AC=2,∴AG•AH=8;(3)①当HC=HG时,∴∠HGC=∠HCG=45°,∴∠CHG=90°,∴∠CHD+∠AHG=90°,∴∠CHD+∠DCH=90°,∴∠DCH=∠AHG,∵∠CDH=∠HAG=90°∴△HCD≌△GHA(AAS)∴AH=CD=2,HD=AG=4,∵AF∥BC,∴△AFG∽△BCG,∴,∴,∴AF=,②当GC=GH时,∴∠CHG=∠HCG=45°,∴∠CGH=90°,∴∠BGC+∠AGH=90°,∵∠BGC+∠BCG=90°,∴∠BCG=∠AGH,∵∠CBG=∠GAH=90°,∴△GBC≌△HAG(AAS),∴AG=BC=2=AB,∵AF∥BC,∴CF=GF,∴AF=BC=1;③当CG=CH时,∴∠CGH=∠CHG,∵AC是正方形ABCD的对角线,∴∠DAC=∠BAC=45°,∴∠CAG=∠CAH=135°,∵CA=CA,∴△CAG≌△CAH(SAS),∴∠DCF=∠ACF=22.5°如备用图,在CD上取点M使DM=DF=m,连接MF,∴MF=CM=m,∠DFM=45°=∠CFM+∠DCF=∠CFM+22.5°,∴∠CFM=22.5°=∠DCF,∴CM=MF,∴m+m=2 ∴m=2﹣2,∴AF=AD﹣DF=4﹣2综上所述:当△CGH是等腰三角形时,AF的值为或1或4﹣2.2.【分析】(1)根据点A,B的坐标,利用待定系数法可求出抛物线的解析式,再利用配方法可求出顶点D的坐标;(2)利用二次函数图象上点的坐标特征可求出点B的坐标,过点D作DE∥BC,交抛物线于点E,则S△BCE=S△BCD,由点B,C的坐标,利用待定系数法可求出直线BC的解析式,由BC∥DE结合点D的坐标可得出直线DE的解析式,再连接直线DE和抛物线的解析式成方程组,通过解方程组可求出点E的坐标;(3)利用二次函数图象上点的坐标特征可求出点M的坐标,过点M作MF⊥直线BC于点F,交y轴于点P,过点B作BN⊥直线BC,交y轴于点N,由OC=OB结合BN⊥直线BC可得出点N的坐标,由点B,N的坐标,利用待定系数法可求出直线BN的解析式,由MF∥BN结合点M的坐标可得出直线MF的解析式,联立直线MF和直线BC的解析式成方程组,通过解方程组可求出点F的坐标,进而可求出MF的长度,由∠PCF=45°,∠PFC=90°可得出△PCF为等腰直角三角形,进而可得出PF=PC,结合点到直线之间垂直线段最短可得出当MF⊥BC时,MP+PC取得最小值,最小值为MF的长度,此题得解.【解答】解:(1)将A(﹣1,0),B(3,0)代入y=ax2+bx﹣3,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4).(2)当x=0时,y=x2﹣2x﹣3=﹣3,∴点C的坐标为(0,﹣3).过点D作DE∥BC,交抛物线于点E,则S△BCE=S△BCD,如图1所示.设直线BC的解析式为y=kx+c(k≠0),将B(3,0),C(0,﹣3)代入y=kx+c,得:,解得:,∴直线BC的解析式为y=x﹣3.∵BC∥DE,∴设直线DE的解析式为y=x+d,将D(1,﹣4)代入y=x+d,得:﹣4=1+d,解得:d=﹣5,∴直线DE的解析式为y=x﹣5.连接直线DE和抛物线的解析式成方程组,得:,解得:,,∴在线段BC下方的抛物线上,存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3).(3)当x=﹣时,y=x2﹣2x﹣3=,∴点M的坐标为(﹣,).过点M作MF⊥直线BC于点F,交y轴于点P,过点B作BN⊥直线BC,交y轴于点N,如图2所示.∵OB=OC,∴∠BCO=45°,∴∠BNC=45°=∠BCO,∴ON=OC=3,∴点N的坐标为(0,3).设直线BN的解析式为y=nx+t(n≠0),将B(3,0),N(0,3)代入y=nx+t,得:,解得:,∴直线BN的解析式为y=﹣x+3.设直线MF的解析式为y=﹣x+q,将M(﹣,)代入y=﹣x+q,得:+q=,解得:q=,∴直线MF的解析式为y=﹣x+.联立直线MF和直线BC的解析式成方程组,得:,解得:,∴点F的坐标为(,﹣),∴MF==.∵∠PCF=45°,∠PFC=90°,∴△PCF为等腰直角三角形,∴PF=PC,∴当MF⊥BC时,MP+PC=MP+PF=MF最小,最小值为.3.【分析】(1)先根据一次函数解析式确定A(4,0),B(0,﹣2),再利用待定系数法求抛物线解析式;然后解方程﹣x2+x﹣2=0得C点坐标;(2)如图2,先证明△PDE∽△OAB.利用相似比得到PD=2PE.设P(m,﹣m2+m ﹣2),则E(m,m﹣2).再利用m表示出PD+PE得到PD+PE=3×[﹣m2+m﹣2﹣(m﹣2)],然后根据二次函数的性质解决问题;(3)讨论:当点M在直线AB上方时,根据圆周角定理可判断点M在△ABC的外接圆上,如图1,由于抛物线的对称轴垂直平分AC,则△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,﹣t),根据半径相等得到()2+(﹣t+2)2=(﹣4)2+t2,解方程求出t得到圆心O1的坐标为(,﹣2),然后确定⊙O1的半径半径为.从而得到此时M点坐标;当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2,通过证明∠O1AB=∠OAB可判断O2在x轴上,则点O2的坐标为(,0),然后计算出DM即可得到此时M点坐标.【解答】解:(1)令y==0,解得x=4,则A(4,0).令x=0,得y=﹣2,则B(0,﹣2);∵二次函数y=的图象经过A、B两点,∴,解得∴二次函数的关系式为y=﹣x2+x﹣2;当y=0时,﹣x2+x﹣2=0,解得x1=1,x2=4,则C(1,0);(2)如图2,∵PD∥x轴,PE∥y轴,∴∠PDE=∠OAB,∠PED=∠OBA.∴△PDE∽△OAB.∴===2,∴PD=2PE.设P(m,﹣m2+m﹣2),则E(m,m﹣2).∴PD+PE=3PE=3×[﹣m2+m﹣2﹣(m﹣2)]=﹣m2+6m=﹣(m﹣2)2+6;∵0<m<4,∴当m=2时,PD+PE有最大值6;(3)当点M在直线AB上方时,则点M在△ABC的外接圆上,如图1.∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,﹣t),∵O1B=O1A,∴()2+(﹣t+2)2=(﹣4)2+t2,解得t=2.∴圆心O1的坐标为(,﹣2).∴O1A==,即⊙O1的半径半径为.此时M点坐标为(,);当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB.∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为(,0).∴O2D=1,∴DM==.此时点M的坐标为(,).综上所述,点M的坐标为(,)或(,).4.【分析】(1)在Rt△ABD中,依据勾股定理可求得BD的长,然后依据MD=ED•cos∠MDE,cos∠MDE=cos∠ADB=,由此即可解决问题.(2)①可分为点E在AD上,点E在AD的延长线上画出图形,然后再依据MC=MD,CM=CD、DM=DC三种情况求解即可;②当t=0时,圆心O在AB边上.当圆心O在CD边上时,过点E作EH∥CD交BD的延长线与点H.先求得DH的长,然后依据平行线分线段成比例定理可得到DF=DH,然后依据DF=DH列出关于t的方程,从而可求得t的值,故此可得到t的取值范围.【解答】解:(1)如图1所示:连接ME.∵AE=t,AD=8,∴ED=AD﹣AE=8﹣t.∵EF为⊙O的直径,∴∠EMF=90°.∴∠EMD=90°.∴MD=ED•cos∠MDE=.(2)①a、如图2所示:连接MC.当DM=CD=6时,=6,解得t=;b、如图3所示:当MC=MD时,连接MC,过点M作MN⊥CD,垂足为N.∵MC=MD,MN⊥CD,∴DN=NC.∵MN⊥CD,BC⊥CD,∴BC∥MN.∴M为BD的中点.∴MD=5,即=5,解得t=;c、如图4所示:CM=CD时,过点C作CG⊥DM.∵CM=CD,CG⊥MD,∴GD=MD=.∵=,∴DG=CD=.∴=.解得:t=﹣1(舍去).d、如图5所示:当CD=DM时,连接EM.∵AE=t,AD=8,∴DE=t﹣8.∵EF为⊙O的直径,∴EM⊥DM.∴DM=ED•cos∠EDM=.∴=6,解得:t=.综上所述,当t=或t=或t=时,△DCM为等腰三角形.②当t=0时,圆心O在AB边上.如图6所示:当圆心O在CD边上时,过点E作EH∥CD交BD的延长线与点H.∵HE∥CD,OF=OE,∴DF=DH.∵DH==,DF=10﹣t,∴=10﹣t.解得:t=.综上所述,在整个运动过程中圆心O处在矩形ABCD内(包括边界)时,t的取值范围为0≤t≤.5.【分析】(1)由图1和图2直接确定出AD;(2)先利用互余即可得出∠BAP=∠DGA,进而判断出△ABP∽△DGA即可确定出函数关系式;(3)分三种情况利用等腰三角形的性质和勾股定理求出x的值,即可求出y的值.【解答】解:(1)如图,当点P在AB上移动时,点P到P A的距离不变,当点P从B点向C点移动时,点D到P A的距离在变化,由图2知,AD=10,(2)∵四边形ABCD是矩形,∴∠ABP=∠BAD=90°,∵DG⊥AP,∴∠AGD=90°,∴∠ABP=∠DGA,∵∠BAP+∠GAD=90°,∠CAG+∠ADG=90°,∴∠BAP=∠DGA,∴△ABP∽△DGA,∴,∵AB=6,AP=x,DG=y,AD=10,∴,∴y=(6<x≤2);即:图2中C2段图象的函数解析式y=(6<x≤2);(3)∵四边形ABCD是矩形,∴CD=AB=6,BC=AD=10,∠ABC=∠DCB=90°,当AD=AP时,∵AD=10,∴x=AP=10,∴y==6,当AD=DP时,∴DP=10,在Rt△DCP中,CD=AB=6,DP=10,∴CP=8,∴BP=BC﹣CP=2,在Rt△ABP中,根据勾股定理得,x=AP===2,∴y===3,当AP=DP时,点P是线段AD的垂直平分线,∴点P是BC的中点,∴BP=BC=AD=5,在Rt△ABP中,根据勾股定理得,x=AP===,∴y===.6.【分析】(1)将点B的坐标代入到抛物线的解析式中即可求得a值,从而求得其解析式;(2)利用两点坐标求得线段AB的长,然后利用平行四边形的对边相等求得t=5时,四边形ABOP为平行四边形;若四边形ABOP为等腰梯形,连接AP,过点P作PG⊥AB,过点O作OH⊥AB,垂足分别为G、H,根据△APG≌△BOH求得线段OP=GH=AB﹣2BH=.(3)首先判定四边形ABOD是平行四边形,然后确定S△DOC=×5×4=10.过点P作PN⊥BC,垂足为N,利用△OPN∽△BOH得到PN=t,然后表示出四边形CDPQ的面积S=S△DOC﹣S△OPQ=10﹣×(5﹣2t)×t=t2﹣2 t+10,从而得到当t=时,四边形CDPQ的面积S最小.然后得到点P的坐标是(﹣,﹣1),点Q的坐标是(﹣,0),利用两点坐标公式确定PQ的长即可.【解答】解:(1)把(1,0)代入y=a(x+2)2﹣4,得a=.∴y=(x+2)2﹣4,即y=x2+x﹣;(2)由题意得OP=t,AB==5,若OB∥AP,即四边形ABOP为平行四边形时,OB=AP,且OP=AB=5,即当t=5时,OB=AP,若OB不平行于AP,即四边形ABOP为等腰梯形时,OB=AP,连接AP,过点P作PG ⊥AB,过点O作OH⊥AB,垂足分别为G、H,∴△APG≌△BOH,在Rt△OBM中,∵OM=,OB=1,∴BM=,∴OH=,∴BH=,∴OP=GH=AB﹣2BH=,即当t=时,OB=AP;(3)将y=0代入y=x2+x﹣,得x2+x﹣=0,解得x=1或﹣5.∴C(﹣5,0).∴OC=5,∵OM∥AB,AD∥x轴,∴四边形ABOD是平行四边形,∴AD=OB=1,∴点D的坐标是(﹣3,﹣4),∴S△DOC=×5×4=10,过点P作PN⊥BC,垂足为N.易证△OPN∽△BOH,∴=,即=,∴PN=t,∴四边形CDPQ的面积S=S△DOC﹣S△OPQ=10﹣×(5﹣2t)×t=t2﹣2t+10,∴当t=时,四边形CDPQ的面积S最小,此时,点P的坐标是(﹣,﹣1),点Q的坐标是(﹣,0),∴PQ==.。
2020年江苏中考数学考前压轴题冲刺练习(含参考答案解析)
2020年江苏中考数学考前压轴题冲刺练习一、选择题(共6题)1.如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()A.y=x+B.y=x+C.y=x+1 D.y=x+2.如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD 交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是()A.S1+S2=CP2B.AF=2FD C.CD=4PD D.cos∠HCD=3.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)4.如图,在等腰直角三角形ABC中,∠ACB=90°,BC=2,D是BC边上一动点,将AD 绕点A逆时针旋转45°得AE,连接CE,则线段CE长的最小值为()A.B.C.﹣1 D.2﹣5.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.90°B.100°C.110°D.120°6.如图,P是半圆O上一点,Q是半径OA延长线上一点,AQ=OA=1,以PQ为斜边作等腰直角三角形PQR,连接OR.则线段OR的最大值为()A.B.3 C.D.1二、填空题(共6题)1.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持∠EDF=90°,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①DE=DF;②四边形CEDF的面积随点E、F位置的改变而发生变化;③CE+CF=AB;④AE2+BF2=2ED2.以上结论正确的是(只填序号).2.如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P 是⊙C上一个动点,连接AP交BD于点T,则的最大值是.3.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.第3题第4题4.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.5.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.第5题第6题6.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题(共6题)1.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.2.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx与x轴交于点A(10,0),点B (1,2)是抛物线上点,点M为射线OB上点(不含O,B两点),且MH⊥x轴于点H.(1)求直线OB及抛物线解析式;(2)如图1,过点M作MC∥x轴,且与抛物线交于C,D两点(D位于C左边),若MC=MH,点Q为直线BC上方的抛物线上点,求△BCQ面积的最大值,并求出此时点Q的坐标;(3)如图2,过点B作BE∥x轴,且与抛物线交于E,在线段OA上有点P,在点H从左向右运动时始终有AP=2OH,过点P作PN⊥x轴,且PN与直线OB交于点N,当M 与N重合时停止运动,试判断在此运动过程中△MNE与△BME能否全等,若能请求出全等时的HP长度,若不能请说明理由.3.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s 的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.4.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接P A,点P在运动过程中,P A﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.5.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.6.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD =AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【答案与解析】一、选择题1.【分析】由已知点可求四边形ABCD分成面积=AC×(|y B|+3)==14;求出CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,并求出两条直线的交点,直线l与x轴的交点坐标,根据面积有7=×(3﹣)×(+1),即可求k;【解答】解:由A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),∴AC=7,DO=3,∴四边形ABCD分成面积=AC×(|y B|+3)==14,可求CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,将点B代入解析式得y=kx+2k﹣1,∴直线CD与该直线的交点为(,),直线y=kx+2k﹣1与x轴的交点为(,0),∴7=×(3﹣)×(+1),∴k=或k=0(舍去),∴k=,∴直线解析式为y=x+;故选:D.【点评】本题考查一次函数的解析式求法;掌握平面内点的坐标与四边形面积的关系,熟练待定系数法求函数解析式的方法是解题的关键.2.【分析】根据勾股定理可判断A;连接CF,作FG⊥EC于G,易证得△FGC是等腰直角三角形,设EG=x,则FG=2x,利用三角形相似的性质以及勾股定理得到CG=2x,CF=2x,EC=3x,BC=x,FD=x,即可证得3FD=AD,可判断B;根据平行线分线段成比例定理可判断C;求得cos∠HCD可判断D.【解答】解:∵正方形ABCD,DPMN的面积分别为S1,S2,∴S1=CD2,S2=PD2,在Rt△PCD中,PC2=CD2+PD2,∴S1+S2=CP2,故A结论正确;连接CF,∵点H与B关于CE对称,∴CH=CB,∠BCE=∠ECH,在△BCE和△HCE中,∴△BCE≌△HCE(SAS),∴BE=EH,∠EHC=∠B=90°,∠BEC=∠HEC,∴CH=CD,在Rt△FCH和Rt△FCD中∴Rt△FCH≌Rt△FCD(HL),∴∠FCH=∠FCD,FH=FD,∴∠ECH+∠FCH=∠BCD=45°,即∠ECF=45°,作FG⊥EC于G,∴△CFG是等腰直角三角形,∴FG=CG,∵∠BEC=∠HEC,∠B=∠FGE=90°,∴△FEG∽△CEB,∴==,∴FG=2EG,设EG=x,则FG=2x,∴CG=2x,CF=2x,∴EC=3x,∵EB2+BC2=EC2,∴BC2=9x2,∴BC2=x2,∴BC=x,在Rt△FDC中,FD===x,∴3FD=AD,∴AF=2FD,故B结论正确;∵AB∥CN,∴=,∵PD=ND,AE=CD,∴CD=4PD,故C结论正确;∵EG=x,FG=2x,∴EF=x,∵FH=FD=x,∵BC=x,∴AE=x,作HQ⊥AD于Q,HS⊥CD于S,∴HQ∥AB,∴=,即=,∴HQ=x,∴CS=CD﹣HQ=x﹣x=x∴cos∠HCD===,故结论D错误,故选:D.3.【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.4.【分析】在AB上截取AF=AC=2,由旋转的性质可得AD=AE,由勾股定理可求AB=2,可得BF=2﹣2,由“SAS”可证△ACE≌△AFD,可得CE=DF,则当DF⊥BC时,DF值最小,即CE的值最小,由直角三角形的性质可求线段CE长的最小值.【解答】解:如图,在AB上截取AF=AC=2,∵旋转∴AD=AE∵AC=BC=2,∠ACB=90°∴AB=2,∠B=∠BAC=45°,∴BF=2﹣2∵∠DAE=45°=∠BAC∴∠DAF=∠CAE,且AD=AE,AC=AF∴△ACE≌△AFD(SAS)∴CE=DF,当DF⊥BC时,DF值最小,即CE的值最小,∴DF最小值为=2﹣故选:D.5.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线AH,∵∠BAE=120°,∴∠HAA′=60°,∴∠A′+∠A″=∠HAA′=60°,∵∠A′=∠MAA′,∠NAE=∠A″,且∠A′+∠MAA′=∠AMN,∠NAE+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAE+∠A″=2(∠A′+∠A″)=2×60°=120°,故选:D.6.【分析】将△RQO绕点R顺时针旋转90°,可得△RPE,可得ER=RO,∠ERO=90°,PE=OQ=2,由直角三角形的性质可得EO=RO,由三角形三边关系可得EO≤PO+EP =3,即可求解.【解答】解:将△RQO绕点R顺时针旋转90°,可得△RPE,∴ER=RO,∠ERO=90°,PE=OQ=2∴EO=RO,∵EO≤PO+EP=3∴RO≤3∴OR的最大值=故选:A.二、填空题1.【分析】连接CD.证明△ADE≌△CDF,利用全等三角形的性质即可一一判断.【解答】解:连接CD,∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴ED=DF,故①正确;∴S△ADE=S△CDF,∴S四边形CEDF=S△ADC=S△ABC=定值,故②错误,∵△ADE≌△CDF,∴AE=CF,∴CE+CF=CE+AE=AC=AB,故③正确,∵AE=CF,AC=BC,∴EC=BF,∴AE2+BF2=CF2+CE2=EF2,∵EF2=2DE2,∴AE2+BF2=2ED2,故④正确.故答案为①③④.2.【分析】方法1、过点A作BD的垂线AG,AG为定值;过点P作BD的垂线PE,只要PE最大即可,进而求出PE最大,即可得出结论;方法2、先判断出最大时,BE最大,再用相似三角形的性质求出BG,HG,CH,进而判断出HM最大时,BE最大,而点M在⊙C上时,HM最大,即可HP',即可得出结论.【解答】方法1、解:如图,过点A作AG⊥BD于G,∵BD是矩形的对角线,∴∠BAD=90°,∴BD==5,∵AB•AD=BD•AG,∴AG=,∵BD是⊙C的切线,∴⊙C的半径为过点P作PE⊥BD于E,∴∠AGT=∠PET,∵∠ATG=∠PTE,∴△AGT∽△PET,∴,∴=×PE∵==1+,要最大,则PE最大,∵点P是⊙C上的动点,BD是⊙C的切线,∴PE最大为⊙C的直径,即:PE最大=,∴最大值为1+=3,故答案为3.方法2、解:如图,过点P作PE∥BD交AB的延长线于E,∴∠AEP=∠ABD,△APE∽△ATB,∴,∵AB=4,∴AE=AB+BE=4+BE,∴,∴BE最大时,最大,∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=4,过点C作CH⊥BD于H,交PE于M,并延长交AB于G,∵BD是⊙C的切线,∴∠GME=90°,在Rt△BCD中,BD==5,∵∠BHC=∠BCD=90°,∠CBH=∠DBC,∴△BHC∽△BCD,∴,∴,∴BH=,CH=,∵∠BHG=∠BAD=90°,∠GBH=∠DBA,∴△BHG∽△BAD,∴=,∴,∴HG=,BG=,在Rt△GME中,GM=EG•sin∠AEP=EG×=EG,而BE=GE﹣BG=GE﹣,∴GE最大时,BE最大,∴GM最大时,BE最大,∵GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,∴GP'=HP'+HG=,过点P'作P'F∥BD交AB的延长线于F,∴BE最大时,点E落在点F处,即:BE最大=BF,在Rt△GP'F中,FG====,∴BF=FG﹣BG=8,∴最大值为1+=3,故答案为:3.3.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG 都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.4.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则P A+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴P A+PC=GP+PC=GC=PE∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,5.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.6.【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC 为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三、解答题1.【分析】(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.利用勾股定理构建方程组解决问题即可.(2)如图2中,作CH⊥AB于H.证明△ACH是等腰直角三角形,四边形EFHC是矩形,求出EF即可解决问题.【解答】解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.∵AB∥CD,EF⊥AB,∴EF⊥CD,∴∠CEF=∠BFO=90°∴AF=BF=x,DE=EC=2,根据勾股定理可得:,解得(舍弃)或,∴BF=4,AB=2BF=8.(2)如图2中,作CH⊥AB于H.∵OB⊥OC,∴∠A=∠BOC=45°,∵AH⊥CH,∴△ACH是等腰直角三角形,∵AC=CH,∵AB∥CD,EF⊥AB,∴EF⊥CD,∠CEF=∠EFH=∠CHF=90°,∴四边形EFHC是矩形,∴CH=EF,在Rt△OEC中,∵EC=,OC=,OE===2,∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,∴∠FOB=∠ECO,∵OB=OC,∴△OFB≌△CEO(AAS),∴OF=EC=,∴CH=EF=3,∴AC=EF=6.2.【分析】(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,可求y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),由已知可求C(3m,2m),将点C代入抛物线解析式可得m=,即可求BC的直线解析为y=x+,设Q(n,﹣n2+n),过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),QT=|n2﹣8n+7|,当QT最大时,则△BCQ的面积最大;(3)函数对称轴x=5,E(9,2),设P(t,0),则依次可求N(t,2t),H(5﹣t,0),M(5﹣t,10﹣t),BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,t+1=10﹣t,,此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,由于△<0,t不存在.【解答】解:(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,∴a=﹣,b=,∴y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),∵MC=MH,∴C(3m,2m),∴2m=﹣×9m2+×3m,∴m=,∴C(7,),M(,),∴BC的直线解析为y=x+,设Q(n,﹣n2+n),∴过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),∴QT=|n2﹣8n+7|,∴当n=4时,△BCQ面积的最大值,∴Q(4,);(3)函数对称轴x=5,∴E(9,2),设P(t,0),∴N(t,2t),∵AP=2OH,∴H(5﹣t,0),∴M(5﹣t,10﹣t),∴BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,∴t+1=10﹣t,,∴t=,t=,∴此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,∴△<0,∴t不存在;综上所述:在此运动过程中△MNE与△BME不能全等.3.【分析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.【解答】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当点A′落在边BC上时,由题意得,四边形AP A′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4﹣5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴,即=,解得:x=,∴当点A′落在边BC上时,x=;(2)当A′B=BC时,(5﹣8x)2+(3x)2=32,解得:.∵x≤,∴;当A′B=A′C时,x=.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=P A'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=,∴A′B′=QE﹣PD=x=;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5﹣7x,∴cos B=,∴x=,∴A′B′=B′D﹣A′D=;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=,∴A′B′=P A′sin A=;当A′B′⊥AB时,x=,A′B′=;当A′B′⊥BC时,x=,A′B′=;当A′B′⊥AC时,x=,A′B′=.4.【分析】(1)①由∠ABO=90°和DB⊥PB可得∠DBA=∠PBO,结合边长关系由两边对应成比例及其夹角相等的三角形相似即可证明结论.②过D点作DH⊥BO交OB延长线于H点,由AD∥OB平行可得∠DAB=90°,而△ADB∽△OPB可知∠POB=90°,由已知可求出AD.由Rt△DHO即可计算OD的长,③由△ADB∽△OPB可知,可求AD=,由此可知D在以A为圆心AD为半径的圆上运动,所以OD的最大值为OD过A点时最大.求出OA即可得到答案.(2)在OC上取点B′,使OB′=OP=,构造△BOP~△POB′,可得=P A﹣PB′≤AB',求出AB’即可求出最大值.【解答】解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP~△POB′,∴,∴=P A﹣PB′≤AB',∴∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,P A﹣有最大值为,5.【分析】(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论【解答】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠F AC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.6.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年江苏省中考数学压轴题精选1(08江苏常州28题)如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l ,设P 是直线l 上一动点.(1) 求点A 的坐标;(2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x,当462682S +≤≤+时,求x 的取值范围.2(08江苏淮安28题)28.(本小题14分)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P ,与x 轴交点为 A 、B ,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标;(2)连结AP ,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标;(3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CD(端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值.(第28题)ly x-1-2-4-3-1-2-4-312435123(第24题图)3(08江苏连云港24题)(本小题满分14分)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AOB △,COD △处,直角边OB OD ,在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至PEF △处时,设PE PF ,与OC 分别交于点M N ,,与x 轴分别交于点G H ,.(1)求直线AC 所对应的函数关系式;(2)当点P 是线段AC (端点除外)上的动点时,试探究:①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由.4(08江苏南京28题)(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;问题解决 (5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?(第28题)y5(08江苏南通28题)(14分)已知双曲线k y x =与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C . (1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.6(08江苏苏州28题)28.(本题9分) 课堂上,老师将图①中△AOB 绕O 点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化当△AOB 旋转90°时,得到△A 1OB 1.已知A(4,2)、B(3,0). (1)△A 1OB 1的面积是 ;A 1点的坐标为( , ;B 1点的坐标为( , ); (2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB 绕AO 的中点C(2,1)逆时针旋转90°得到△A′O ′B ′,设O ′B ′交OA 于D ,O ′A ′交x 轴于E .此时A ′、O ′和B ′的坐标分别为(1,3)、(3,-1)和(3,2),且O ′B ′ 经过B 点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与△AOB 重叠部分的面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD 的面积)最小,求四边形CFBD 的面积;(3)在(2)的条件一下,△AOB 外接圆的半径等于 . (第28题)如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为)0,5(,顶点D 在⊙O 上运动.(1)当点D 运动到与点A 、O 在同一条直线上时,试证明直线CD 与⊙O 相切; (2)当直线CD 与⊙O 相切时,求CD 所在直线对应的函数关系式;(3)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.8(08江苏泰州29题)已知二次函数)0(21≠++=a c bx ax y 的图象经过三点(1,0),(-3,0),(0,23-)。
(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像;(5分) (2)若反比例函数)0(22>=x xy 图像与二次函数)0(21≠++=a c bx ax y 的图像在第一象限内交于点A (x 0,y 0), x 0落在两个相邻的正整数之间。
请你观察图像,写出这两个相邻的正整数;(4分)(3)若反比例函数)0,0(2>>=x k xky 的图像与二次函数)0(21≠++=a c bx ax y 的图像在第一象限内的交点为A ,点A 的横坐标为0x 满足2<0x <3,试求实数k 的取值范围。
(5分)第27题如图,已知点A 从(10),出发,以1个单位长度/秒的速度沿x 轴向正方向运动,以O A ,为顶点作菱形OABC ,使点B C ,在第一象限内,且60AOC ∠=;以(03)P ,为圆心,PC 为半径作圆.设点A 运动了t 秒,求:(1)点C 的坐标(用含t 的代数式表示);(2)当点A 在运动过程中,所有使P 与菱形OABC 的边所在直线相切的t 的值.10(08江苏无锡28题)(本小题满分8分)一种电讯信号转发装置的发射直径为31km .现要求:在一边长为30km 的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求? (2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km 的正方形城区示意图,供解题时选用)图111(08江苏徐州28题)28.如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q 【探究一】在旋转过程中, (1) 如图2,当CE1EA=时,EP 与EQ 满足怎样的数量关系?并给出证明. (2) 如图3,当CE2EA=时EP 与EQ 满足怎样的数量关系?,并说明理由. (3) 根据你对(1)、(2)的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式 为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中:(1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由. (2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围. FC(E)B A(D)Q PDEFCBAQPDEFCBA如图甲,在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF . 解答下列问题:(1)如果AB=AC ,∠BAC=90º.①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF 、BD 之间的位置关系为 ▲ ,数量关系为 ▲ .②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB ≠AC ,∠BAC≠90º,点D 在线段BC 上运动.试探究:当△ABC 满足一个什么条件时,CF ⊥BC (点C 、F 重合除外)?画出相应图形,并说明理由.(画图不写作法)(3)若AC=BC=3,在(2)的条件下,设正方形ADEF 的边DE 与线段CF 相交于点P ,求线段CP 长的最大值.A BCDEF 第28题图图甲图乙 F EBAF E DCB A 图丙已知:矩形ABCD 中,AB=1,点M 在对角线AC 上,直线l 过点M 且与AC 垂直,与AD 相交于点E 。
(1)如果直线l 与边BC 相交于点H (如图1),AM=31AC 且AD=A ,求AE 的长;(用含a 的代数式表示) (2)在(1)中,又直线l 把矩形分成的两部分面积比为2:5,求a 的值;(3)若AM=41AC ,且直线l 经过点B (如图2),求AD 的长; (4)如果直线l 分别与边AD 、AB 相交于点E 、F ,AM=41AC 。
设AD 长为x ,△AEF 的面积为y ,求y 与x的函数关系式,并指出x 的取值范围。
(求x 的取值范围可不写过程)14(08江苏镇江28题)28.(本小题满分8分)探索研究 如图,在直角坐标系xOy 中,点P 为函数214y x =在第一象限内的图象上的任一点,点A 的坐标为(01),,直线l 过(01)B -,且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C Q ,,连结AQ 交x 轴于H ,直线PH 交y 轴于R .(1)求证:H 点为线段AQ 的中点; (2)求证:①四边形APQR 为平行四边形;②平行四边形APQR 为菱形;(3)除P 点外,直线PH 与抛物线214y x =有无其它公共点?并说明理由.x。