[2018年最新整理]微积分发展历程(二)

合集下载

微积分的历史与现代发展

微积分的历史与现代发展

微积分的历史与现代发展微积分,作为数学的一个重要分支,起源于古代的几何学和无穷小分析,经过漫长的历史发展,逐渐完善并在现代科学中扮演着不可或缺的角色。

本文将从微积分的起源开始,探究其历史演变和现代发展。

一、古代的几何学与无穷小分析微积分最早的雏形可以追溯到古代希腊的几何学。

几千年前,人们就开始通过几何方法来研究曲线的长度、面积和体积等问题。

在这个过程中,人们发现了一些计算面积和弧长的方法,这些方法成为后来微积分理论的基础。

另一方面,无穷小分析的思想也在不同的文化和时期得到了独立的发展。

在古印度、中国和中世纪欧洲,人们通过无穷小量的概念,探索了数列、级数和曲线的性质。

而这些合并到一起的思想,为微积分的产生奠定了基础。

二、牛顿与莱布尼茨的微积分革命17世纪,英国科学家牛顿和德国数学家莱布尼茨几乎同时独立发明了微积分的基本原理。

他们分别创造了微分和积分的概念,并建立了微积分的核心理论。

牛顿的《自然哲学的数学原理》和莱布尼茨的符号法成为微积分学科的奠基之作。

牛顿和莱布尼茨的微积分革命,为科学的飞速发展提供了工具和理论基础。

微积分的应用广泛涉及物理学、工程学、经济学等领域,为解决实际问题提供了强大的工具。

三、微积分的拓展与独立发展近代,微积分得到了更进一步的发展。

19世纪初,法国数学家拉格朗日和法国数学家傅里叶对微积分做出了巨大贡献。

拉格朗日提出了微积分的最优化原理,傅里叶则将微积分应用于热传导的研究中,从而开辟了新的领域。

20世纪,微积分随着计算机技术的发展进一步拓展。

数值计算方法的出现,使得微积分的应用更加便捷和高效。

微积分的概念也得到了进一步的推广和深化,例如广义函数、多元微积分等。

现代,微积分已经和许多其他学科紧密结合,形成了数理科学的基础。

在物理学、工程学、计算机科学等领域,微积分被广泛运用于模型的建立、数据分析和问题求解等过程中。

总结起来,微积分的历史源远流长,经过几千年的演变和发展,从几何学和无穷小分析到牛顿和莱布尼茨的创新,再到近代的拓展与独立发展,微积分已经成为现代科学中不可或缺的工具和理论基础。

微积分发展历程(二).

微积分发展历程(二).

微积分发展历程(二)微积分学的诞生随着时代的发展,实践中提出了越来越多的数学问题,待数学家们加以解决,如曲线切线问题、最值问题、力学中速度问题、变力做功问题……初等数学方法对此越来越无能为力,需要的是新的数学思想、新的数学工具。

不少数学家为此做了不懈努力,如笛卡尔、费马、巴罗……并取得了一定成绩,正是站在这些巨人的肩膀上,牛顿、莱布尼兹以无穷思想为据,成功运用无限过程的运算,创立了微积分学。

这新发现、新方法的重要性使当时的知识界深感震惊,因而出现了一门崭新的数学分支:数学分析。

这一学科的创立在数学发展史上翻开了崭新一页,谱写了光辉动人的乐章。

1)微积分的发展无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。

不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor )、麦克劳林(C.Maclaurin )、棣莫弗(A.de Moivre )、斯特林(J.Stirling )等。

泰勒(1685_1731)做过英国皇家学会秘书。

他在1715年出版的《正的和反的增量方法》一书中,陈述了他早在1712年就已获得的著名定理()23....22..112123vv v x z v x x x x z z z∴+=++++其中v 为独立变量z 的增量,.x 和.z 为流数。

泰勒假定z 随时间均匀变化,故.z 为常数,从而上述公式相当于现代形式的“泰勒公式”:()()()()22!h f x h f x hf x f x '''+=+++。

泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。

但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。

泰勒公式在x=0时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把x=0时的泰勒级数称为“麦克劳林级数”。

麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代表性著作《流数论》,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。

微积分的发展历史

微积分的发展历史

微积分的发展历史1. 古希腊时期:微积分的起源可以追溯到古希腊时期,早在公元前5世纪,数学家祖克里斯特斯(Zeno of Elea)就提出了诸如阿基里斯赛跑等著名的悖论,引发了对无穷小和无穷大的思考。

2. 阿基米德和群测强微积分:在古希腊和古罗马时期,一些数学家如阿基米德和群测强(Archimedes)开始探索几何学和代数学的基本概念,在解决实际问题的过程中也涉及到了微积分的雏形。

3.牛顿和莱布尼兹的发现:17世纪,英国科学家牛顿和德国数学家莱布尼兹几乎同时独立发现了微积分的基本原理。

牛顿将微积分用于机械学和物理学的研究,而莱布尼兹则用它来解决代数和几何方程。

这两位伟大的数学家将微积分作为一门独立的学科加以发展并系统化。

4. 微积分的形式化建立:18世纪,欧拉(Leonhard Euler)将微积分的概念进一步抽象化和形式化,构建了函数和级数的理论,为微积分的应用奠定了坚实的基础。

5. 国际象棋问题的解决:19世纪初,法国数学家拉格朗日(Joseph-Louis Lagrange)研究国际象棋中的一个问题,首次利用微积分的方法进行了解决。

这个问题不仅使微积分在数学界引起了重视,也增强了人们对微积分的研究兴趣。

6. 分析学的发展:19世纪,数学分析学迎来了一个又一个的里程碑。

来自法国的布尔巴基(Augustin-Louis Cauchy)和庞加莱(Henri Poincaré)等人对极限、连续性和导数等概念进行了严格的定义和证明,进一步完善了微积分的理论。

7.微积分的应用:20世纪初期,微积分得到了广泛应用,特别是在物理学、工程学和经济学等领域。

爱因斯坦的相对论理论、量子力学的发展以及现代金融学等都离不开微积分的支持。

8.持续发展和改进:自20世纪起,微积分一直在不断发展和改进。

函数论、复分析及它们与微积分的关系等新理论的出现,使微积分的应用更加广泛,对更加复杂的问题提供了更加深入的分析。

微积分发展简史(二)

微积分发展简史(二)
17世纪后期和18世纪,为了适应航海、天文学和地理学的发展,摆在数学家们面前的问题之一是函数表的插值。由于对函数表的精确度要求较高,数学家们开始寻求较好的插值方法,牛顿和格雷戈里给出了著名的内插公式。1721年,泰勒(B. Taylor,1685~1731)在牛顿-格雷戈里公式的基础上,提出了函数展开为无穷级数的一般方法,建立了著名的泰勒定理。18世纪末,拉格朗日在研究泰勒级数时,给出了我们今天所谓的泰勒定理,即
三.无穷级数
在数学史上级数出现的很早。古希腊时期,亚里士多德就知道公比小于1(大于零)的几何级数可以求出和数。阿基米德(Archimedes, BC.287~BC.212)也求出了公比为的几何级数的和。14世纪的法国数学家奥雷姆证明了调和级数的和为无穷,并把一些收敛级数和发散级数区别开来。但直到微积分发明的时代,人们才把级数作为独立的概念。
函数项级数的一致收敛性概念最初由斯托克斯和德国数学家赛德尔认识到。1842年,维尔斯特拉斯给出一致收敛概念的确切表述,并建立了逐项积分和微分的条件。狄里克莱在1837年证明了绝对收敛级数的性质,并和黎曼(B. Riemann,1826~1866)分别给出例子,说明条件收敛级数通过重新排序使其和不相同或等于任何已知数。到19世纪末,无穷级数收敛的许多法则都已经建立起来。
个人花费大量时二)
微积分的创立,由于运算的完整性和应用的广泛性,使其成为研究自然科学的有力工具,被誉为"人类精神的最高胜利"。自18世纪以来,微积分在被广泛应用的同时,也得到了不断发展和完善,内容越来越丰富。
重积分的概念,牛顿在他的《原理》中讨论球与球壳作用于质点上的万有引力时就已经涉及到,但他是用几何形式论述的。在18世纪上半叶,牛顿的工作被以分析的形式加以推广。1748年,欧拉用累次积分算出了表示一厚度为的椭圆薄片对其中心正上方一质点的引力的重积分:

微积分的发展史简述(两篇)

微积分的发展史简述(两篇)

引言:微积分是数学中的一个重要分支,对于解决各种实际问题具有重要意义。

本文将继续探讨微积分的发展史,重点关注于17世纪到19世纪初期这段时间内微积分的发展。

通过了解微积分的历史,我们可以更好地理解微积分的概念和应用。

概述:17世纪至19世纪初期是微积分发展的关键时期。

在这个时期,许多数学家和科学家对微积分的理论和应用进行了深度研究。

他们的贡献奠定了现代微积分的基础。

正文:一、近似计算方法的改进1.1泰勒级数的发现1.2泰勒级数在近似计算中的应用1.3拉格朗日中值定理的发展与应用1.4极限的概念的确立二、变分法的兴起2.1最速降线问题的解决2.2欧拉对变分法的贡献2.3欧拉拉格朗日方程的建立2.4变分法在物理学领域的应用三、微分方程的研究3.1微分方程的基本概念与分类3.2欧拉对微分方程理论的贡献3.3柯西与克拉末对微分方程的研究3.4微分方程在物理学和工程学中的应用四、复变函数与积分变换4.1复变函数的引入与发展4.2柯西黎曼方程的建立4.3积分变换的概念与应用4.4拉普拉斯变换的研究与应用五、极限分析的深化5.1极限分析理论的完善5.2庞加莱对极限理论的贡献5.3序列与级数的研究5.4极限分析在数学和物理学中的应用总结:微积分的发展经历了17世纪至19世纪初期的重要阶段。

通过改进近似计算方法、变分法的兴起、微分方程的研究、复变函数与积分变换以及极限分析的深化等方面的努力,微积分的理论和应用得到了极大的发展。

这些成果为现代数学、物理学和工程学的发展奠定了坚实的基础,并在解决实际问题中发挥着重要作用。

了解微积分发展史的过程,有助于我们更好地理解微积分的概念和应用,并能够更加深入地探索微积分在各领域中的应用前景。

微积分的发展史简述引言概述:微积分是数学中的一个重要分支,它是解析几何和数学分析的基础。

从古代到现代,微积分的发展历程经历了众多数学家和科学家的探索和贡献。

本文将以引言概述、五个大点和详细的小点阐述微积分的发展史,并在文末进行总结。

微积分的发展史

微积分的发展史

微积分的发展史微积分的发展史微积分是数学中的一个重要分支,发挥着重要的作用,它具有重要的实用价值,是现代数学中一门重要的学科。

微积分在古代有着很长的历史,从古至今,在发展的过程中,受到了许多著名的数学家的不懈努力,其演变虽然有一定的规律,但是发展也呈现出复杂的趋势,下面来看看微积分的发展历史。

一:古代的微积分古代微积分的发源可以追溯到公元前三世纪古希腊哲学家斐波那契和欧几里德的古典时代,他们最早提出了微积分的相关概念,比如斐波那契提出的“变化率”的思想,欧几里德提出的“误差积分”的思想,他们发明出来的数学模型也是微积分发展的基础。

二:新罗马时代的微积分新罗马时期的微积分研究已经开始流行,公元七世纪达·索马里(d’Alembert)等科学家在此期间正式提出“积分”的概念,但他们只是把微积分引入到数学体系中,并没有真正深入的研究。

三:十七世纪的微积分在十七世纪,英国数学家派克完成了微积分的重大突破,他把斐波那契和欧几里德的相关概念作为微积分的基础,将微积分作为一个独立的学科,开始全面系统地研究微积分,由此开创了微积分的新观念,彻底改变了古代的微积分的思维模式,他的成果也在欧洲开始流行。

四:十八世纪的微积分到了十八世纪,派克的微积分在欧洲开始广泛受到关注和应用,微积分的研究开始更加深入和系统化,出现了许多在微积分领域有重大贡献的著名数学家,比如拉格朗日,瓦西里和弗拉基米尔,他们的成就使微积分的研究得到进一步的发展。

五:十九世纪的微积分到了十九世纪,微积分的研究开始发生重大变化,出现了许多在微积分领域有重大贡献的著名数学家,比如高斯,尤金和庞加莱,他们的发现把微积分推向了新的高度。

同时也有一些新的应用,使微积分的研究发生了重大变化,这个时期也是微积分发展史上的一个重要时期。

六:二十世纪的微积分到了二十世纪,微积分的研究取得了重大的进展,出现了许多在微积分领域有重大贡献的著名数学家,比如黎曼,爱因斯坦和明斯基,他们的成就使微积分的研究取得了突破性的进展,使微积分得到了全面的发展,成为现代数学中重要的学科之一。

微积分发展历程

微积分发展历程

微积分发展历程微积分的发展历程是数学史上一个充满辉煌成就的章节。

微积分为我们提供了一种强大的工具,用于理解和描述自然界的各种现象,从运动的轨迹到电磁场的行为,从物质的变化到概率的推断,微积分无处不在。

在下面的文章中,我们将探讨微积分的发展历程,包括其起源、关键人物和里程碑事件。

1. 古希腊时期:微积分的历史可以追溯到古希腊时期。

古希腊数学家阿基米德(Archimedes)被认为是微积分的奠基人之一。

他在计算曲线下的面积和体积时使用了无限小的方法,这可以看作微积分的初步尝试。

2. 牛顿和莱布尼兹:微积分的真正发展始于17世纪末。

英国科学家艾萨克·牛顿和德国数学家戈特弗里德·莱布尼兹独立地开发了微积分的基本原理。

牛顿的工作集中在运动和力学方面,而莱布尼兹则更侧重于符号表示法。

他们的成就为微积分的未来发展奠定了坚实的基础。

3. 分析学的建立:18世纪,微积分逐渐成为一门独立的学科,被称为"分析学"。

法国数学家奥古斯丁·路易·柯西(Augustin-Louis Cauchy)和卡尔·威尔斯特拉斯(Karl Weierstrass)等人在微积分中引入了极限概念,从而解决了一些问题的严格性。

4. 黎曼几何和复分析:19世纪中期,德国数学家伯纳尔·黎曼的工作将微积分与几何学相结合,创立了黎曼几何,为曲线和曲面的研究提供了新的工具。

复分析的发展也为微积分的应用领域提供了更多可能性。

5. 泛函分析和分布理论:20世纪,微积分领域进一步扩展,引入了泛函分析和分布理论等新的数学工具,用于研究函数空间和广义函数。

这些理论在数学、物理学、工程学和经济学等领域的应用中发挥了重要作用。

6. 现代微积分的应用:现代微积分广泛应用于科学、工程、计算机科学、经济学和社会科学等各个领域。

它不仅有助于解决实际问题,还推动了数学自身的发展。

微积分的方法和概念也在其他数学分支中找到了应用,如微分方程、积分方程和泛函分析。

论述微积分发展简史

论述微积分发展简史

论述微积分发展简史1一、微积分的萌芽微积分的思想萌芽可以追溯到古代,早在希腊时期,人类已经开始讨论无穷、极限以及无穷分割等概念。

这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论証和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步。

公元前五世纪,希腊的德谟克利特提出原子论:他认為宇宙万物是由极细的原子构成。

在中国,《庄子.天下篇》中所言的一尺之捶,日取其半,万世不竭,亦指零是无穷小量。

这些都是最早期人类对无穷、极限等概念的原始的描述。

二、微积分的创立微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微积分的互逆关系。

最后一个阶段是由牛顿、莱布尼茨完成的。

前两个阶段的工作,欧洲的大批数学家一直追溯到希腊的阿基米德都做出了各自的贡献。

中世纪时期,欧洲科学发展停滞不前,人类对无穷、极限和积分等观念的想法都没有甚麼突破。

中世纪以后,欧洲数学和科学急速发展,微积分的观念也於此时趋於成熟。

在积分方面,一六一五年,开普勒把酒桶看作一个由无数圆薄片积累而成的物件,从而求出其体积。

而伽利略的学生卡瓦列里即认为一条线由无穷多个点构成;一个面由无穷多条线构成;一个立体由无穷多个面构成。

这些想法都是积分法的前驱。

在微分方面,十七世纪人类也有很大的突破。

费马在一封给罗贝瓦的信中,提及计算函数的极大值和极小值的步骤,而这实际上已相当於现代微分学中所用,设函数导数為零,然后求出函数极点的方法。

另外,巴罗亦已经懂得透过「微分三角形」(相当於以dx、dy、ds為边的三角形)求出切线的方程,这和现今微分学中用导数求切线的方法是一样的。

由此可见,人类在十七世纪已经掌握了微分的要领。

英国著名数学家、物理学家牛顿从研究物理问题出发创立了微积分(1665—1666),牛顿称之为“流数术理论”.牛顿的“流数术”中,有三个重要的概念:流动量、流动率、瞬.牛顿的流数术以力学中的点的连续运动为原型,把随时问连续变化的量而产生的一个连续变化的变量,即以时间为独立变数的函数(生长中的量)称为流动量,流动率是流动量的变化速度,即变化率(生长率),称为导数牛顿专论微积分的著作有两部,第一部正式的、系统的论述流数术的重要著作是《流数术和无穷级数》,于1671年写成,在1736年才正式出版.另一部著作是《曲线求积论》,于1676—1691年写成,在1704年出版.德国数学家莱布尼兹从儿何角度出发独立地创立了微积分(1675—1676).莱布尼兹当时把微积分称为“无穷小算法”.他的微积分符号的使用最初体现在1675年的手稿中.1684年他在《教师学报》杂志上发表了微分法的论文《一种求极大值、极小值和切线的新方法,它也适用于无理量,以及这种新方法的奇妙类型的计算》.这是历史上最早发表的关于微积分的文章.1686年他在该杂志上又发表了最早的积分法的论文《潜在的几何与不可分量和无限的分析》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分发展历程(二)
微积分学的诞生
随着时代的发展,实践中提出了越来越多的数学问题,待数学家们加以解决,如曲线切线问题、最值问题、力学中速度问题、变力做功问题……初等数学方法对此越来越无能为力,需要的是新的数学思想、新的数学工具。

不少数学家为此做了不懈努力,如笛卡尔、费马、巴罗……并取得了一定成绩,正是站在这些巨人的肩膀上,牛顿、莱布尼兹以无穷思想为据,成功运用无限过程的运算,创立了微积分学。

这新发现、新方法的重要性使当时的知识界深感震惊,因而出现了一门崭新的数学分支:数学分析。

这一学科的创立在数学发展史上翻开了崭新一页,谱写了光辉动人的乐章。

1)微积分的发展
无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。

不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor )、麦克劳林(C.Maclaurin )、棣莫弗(A.de Moivre )、斯特林(J.Stirling )等。

泰勒(1685_1731)做过英国皇家学会秘书。

他在1715年出版的《正的和反的增量方法》一书中,陈述了他早在1712年就已获得的著名定理()2
3
....22..112123v
v v x z v x x x x z z z
∴+=++++其中v 为独立变量z 的增量,.x 和.
z 为流数。

泰勒假定z 随时间均匀变化,故.z 为常数,从而上述公式相当于现代形式的“泰勒公式”:
()()()()2
2!h f x h f x hf x f x '''+=+++。

泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。

但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。

泰勒公式在x=0时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把x=0时的泰勒级数称为“麦克劳林级数”。

麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代表性著作《流数论》,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。

《流数论》中还包括有麦克劳林关于旋转可耻椭球体的引力定理,证明了两个共焦点的椭球体对其轴或赤道上一个质点的引力与它们的体积成正比。

麦克劳林之后,英国数学陷入了长期停滞的状态。

微积分发明权的争论滋长了不列颠数学家的民族保守情绪,使他们不能摆脱牛顿微积分学说中弱点的束缚。

与此相对照,在英吉利海峡的另一边,新分析却在莱布尼茨的后继者们的推动下蓬勃发展起来。

2)积分技术与椭圆积分
18世纪数学家们以高度的技巧,将牛顿和莱布尼茨的无限小算法施行到各类不同的函数上,不仅发展了微积分本身,而且作出了许多影响深远的新发现。

在这方面,积分技术的推进尤为明显。

当18世纪的数学家考虑无理函数的积分时,他们就在自己面前打开了一片新天地,因为他们发现许多这样的积分不能用已知的初等函数来表示。

例如雅各布•伯努利在求双纽线
(在极坐标下方程为22cos2r αθ=)弧长时,
得到弧长积分20r s =
⎰。

在天文学中很重要的椭圆弧长计算则引导到积分
221t
k t dt s a -=⎰。

欧拉在
1774年处理弹性问题时也得到积分2
0x x x dx αβγ++⎰。

所有这些积分都属于后来所说的
“椭圆积分”的范畴,它们既不能用代数函数,也不能用通常的初等超越函数(如三角函数、对数函数等)表示出来。

椭圆积分的一般形式是⎰。

勒让德后来将所有的椭圆积分
归结为三种基本形式。

在18世纪,法尼亚诺、欧拉、拉格朗日和勒让德等还就特殊类型的椭圆积分积累了大量结果。

对椭圆积分的一般研究在19世纪20年代被阿贝尔和雅可比分别独立地从反演的角度发展为深刻的椭圆函数理论。

(待续)。

相关文档
最新文档