二氧化硫吸收塔课程设计

合集下载

水吸收二氧化硫填料吸收塔_课程设计完整版

水吸收二氧化硫填料吸收塔_课程设计完整版

吉林化工学院化工原理课程设计题目处理量为2500m3/h水吸收二氧化硫过程填料吸收塔的设计教学院化工与材料工程学院专业班级化学工程与工艺0804班学生姓名学生学号 08110430指导教师徐洪军2010 年 12 月 15 日化工原理课程设计任务书专业化学工程与工艺班级化工0804 设计人郑大朋一.设计题目处理量为2500m3/h水吸收二氧化硫过程填料吸收塔的设计二.原始数据及条件生产能力:年处理空气—二氧化硫混合气2.3万吨(开工率300天/年)。

原料:二氧化硫含量为5%(摩尔分率,下同)的常温气体。

分离要求:塔顶二氧化硫含量不高于0.26% 。

塔底二氧化硫含量不低于0.1% 。

建厂地址:河南省永城市。

三.设计要求(一)编制一份设计说明书,主要内容包括:1. 摘要;2. 流程的确定和说明(附流程简图);3. 生产条件的确定和说明;4. 吸收塔的设计计算;5. 附属设备的选型和计算;6. 设计结果列表;7. 设计结果的讨论和说明;8. 主要符号说明;9. 注明参考和使用过的文献资料;10. 结束语(二) 绘制一个带控制点的工艺流程图。

(三)绘制吸收塔的工艺条件图]1[。

四.设计日期: 2010 年 11 月 22 日至 2010 年 12 月 15 日目录摘要 (IV)第一章绪论 (1)1.1 吸收技术概况 (1)1.2 吸收设备发展 (1)1.3 吸收在工业生产中的应用 (3)第二章吸收塔的设计方案 (4)2.1 吸收剂的选择 (4)2.2 吸收流程选择 (5)2.2.1 吸收工艺流程的确定 (5)2.2.2 吸收工艺流程图及工艺过程说明 (6)2.3 吸收塔设备及填料的选择 (7)2.3.1 吸收塔设备的选择 (7)2.3.2 填料的选择 (8)2.4 吸收剂再生方法的选择 (10)2.5 操作参数的选择 (11)2.5.1 操作温度的确定 (11)2.5.2 操作压强的确定 (11)第三章吸收塔工艺条件的计算 (12)3.1 基础物性数据 (12)3.1.1 液相物性数据 (12)3.1.2 气相物性数据 (12)3.1.3 气液两相平衡时的数据 (12)3.2 物料衡算 (12)3.3 填料塔的工艺尺寸计算 (13)3.3.1 塔径的计算 (13)3.3.2 泛点率校核和填料规格 (14)3.3.3 液体喷淋密度校核 (15)3.4 填料层高度计算 (15)3.4.1 传质单元数的计算 (15)3.4.2 传质单元高度的计算 (16)3.4.3 填料层高度的计算 (17)3.5 填料塔附属高度的计算 (18)3.6 液体分布器的简要设计 (18)3.6.1 液体分布器的选型 (18)3.6.2 分布点密度及布液孔数的计算 (19)3.6.3 塔底液体保持管高度的计算 (20)3.7 其他附属塔内件的选择 (21)3.7.1 填料支撑板 (21)3.7.2 填料压紧装置与床层限制板 (21)3.7.3 气体进出口装置与排液装置 (21)3.8 流体力学参数计算 (22)3.8.1 填料层压力降的计算 (22)3.8.2 泛点率 (23)3.8.3 气体动能因子 (23)3.9 附属设备的计算与选择 (23)3.9.1 吸收塔主要接管的尺寸计算 (23)3.9.2 离心泵的计算与选择 (24)工艺设计计算结果汇总与主要符号说明 (26)设计方案讨论 (31)附录(计算程序及有关图表) (32)参考文献 (34)结束语 (35)带控制点的工艺流程图 (36)设备条件图 (37)化工原理课程设计教师评分表 (38)摘要吸收是利用混合气体中各组分在液体中的溶解度的差异来分离气态均相混合物的一种单元操作。

水吸收二氧化硫填料吸收塔课程设计完整版

水吸收二氧化硫填料吸收塔课程设计完整版

水吸收二氧化硫填料吸收塔--课程设计完整版水吸收二氧化硫填料吸收塔课程设计一、设计背景随着工业化的快速发展,大量的二氧化硫排放进入大气中,严重污染了环境。

为了降低二氧化硫的排放,采用填料吸收塔进行二氧化硫吸收是一种经济有效的技术。

本次课程设计旨在设计一座水吸收二氧化硫填料吸收塔,以控制工业二氧化硫排放。

二、设计要求1.设计一座水吸收二氧化硫填料吸收塔,要求能够有效地吸收工业排放的二氧化硫。

2.考虑填料吸收塔的经济性、可靠性和环保性。

3.确定最佳的操作条件,包括吸收液的流量、喷淋密度、填料高度等。

4.对填料吸收塔的设计进行优化,以提高吸收效率。

三、设计原理填料吸收塔是利用填料作为两相接触的表面,使二氧化硫气体能够与水充分接触。

在填料塔内,气相和液相逆流接触,二氧化硫气体通过填料表面的液膜扩散进入水中,从而降低气相中的二氧化硫浓度。

四、设计方案1.填料选择考虑到二氧化硫吸收的效率和经济的因素,选择聚丙烯鲍尔环作为填料。

聚丙烯鲍尔环具有高的比表面积和通量,可以增加气液接触面积,提高二氧化硫吸收效率。

2.结构设计填料吸收塔的结构包括塔体、进气管、出水管、填料支撑板和聚丙烯鲍尔环填料。

塔体采用圆形结构,直径为1.2m,高度为12m;进气管安装在塔顶部,用于引入二氧化硫气体;出水管位于塔底部,用于排出吸收后的废水;填料支撑板位于塔体中部,用于支撑聚丙烯鲍尔环填料。

3.操作条件在填料吸收塔的操作过程中,需要控制以下条件:(1)吸收液的流量:通过调整水泵的流量来控制吸收液的流量,使其保持在一个最佳值,以提高吸收效率。

(2)喷淋密度:通过调整喷嘴的数量和喷射角度来控制喷淋密度,使水能够均匀地分布在填料上,增加气液接触机会。

(3)填料高度:选择合适的填料高度,以确保气液充分接触,提高吸收效率。

五、设计优化1.增加填料层数:通过增加填料的层数,可以增加气液接触的机会,提高吸收效率。

但是填料层数过多会增加压降和塔的能耗,因此需要综合考虑。

水吸收二氧化硫课程设计

水吸收二氧化硫课程设计

课程设计任务书设计题目:水吸收SO2烟气的填料塔设计一、设计任务:设计一个填料塔,用于除去烟气中超标的SO2使其达标排放,并完成其工艺设计与计算以及附属设备的设计和选型,绘制水吸收SO2的工艺流程图和填料塔的装置图,编写设计说明书。

二、操作条件:(1)混合烟气处理量为1000m3/h(30℃,100KN/m2);(2)进塔气体组成:9%(体积比)SO2,其余可视为空气;(3)回收其中所含SO2的95%;(4)吸收塔操作温度为30℃,压力位100KN/m2;(5)液气比为最小液气比的1.2倍;(6)空塔气速取泛点气速的0.65倍;(7)填料:自选;三、设计内容:1、设计方案的选择及流程的确定;2、塔的物料衡算和热量衡算;3、塔的主要工艺尺寸(塔高、塔径、全塔压降)的确定;4、辅助设备的选型与计算;5、绘制工艺流程图(2号图纸);6、绘制浮阀塔设备图(1号图纸);7、编写设计说明书。

摘要:介绍了吸收技术的基本知识;叙述了水吸收SO2的设计方案和流程;根据操作条件设计出符合要求的填料塔,包括塔设备的工艺尺寸计算、填料选择及辅助设备的选型和计算。

关键字:课程设计SO2吸收填料塔Abstract:In this design paper ,I Introduced the basic knowledge of the absorption technology;meanwhile ,I described the design scheme and process of water absorbing SO2 ; At last ,chose a consilient packed tower according to the operating conditions, which including the tower equipment technology size calculation, filler selection and auxiliary equipment selection and calculation.Keywords:Curriculum design,sulfur dioxide absorption,packed tower一、前言 (1)1、吸收技术概况 (1)2、吸收在工业生产中的应用 (2)3、吸收设备 (2)二、设计方案 (3)1、吸收剂的选择 (3)2、吸收流程的选择 (4)2.1 气体吸收过程分类 (4)2.2吸收装置的流程 (5)3、吸收塔设备及填料的选择 (6)3.1 吸收塔设备 (6)3.2 填料的选择 (6)4、吸收剂再生方法的选择 (7)5、操作参数的选择 (8)5.1操作温度的确定 (8)5.2操作压力的确定 (8)三、吸收塔工艺条件的计算 (9)1、基础物性数据 (9)1.1液相物性数据 (9)1.2气相物性数据 (9)1.3气液两相平衡时的数据 (10)2、物料衡算 (10)3、填料塔的工艺尺寸计算 (11)3.1塔径的计算 (11)3.2泛点率校核和填料规格 (12)3.3液体喷淋密度校核 (12)4、填料层高度计算 (13)4.1传质单元数的计算 (13)4.2传质单元高度的计算 (13)4.3填料层高度的计算 (15)5、填料塔附属高度的计算 (15)6、液体分布器的简要设计 (16)6.1液体分布器的选型 (16)6.2分布点密度及布液孔数的计算 (17)6.3塔底液体保持管高度的计算 (18)7、其它附属塔内件的选择 (19)7.1 填料支撑板 (19)7.2 填料压紧装置与床层限制板 (19)7.3气体进出口装置与排液装置 (19)8、流体力学参数计算 (20)8.1填料层压力降的计算 (20)9、吸收塔主要接管的尺寸计算 (21)9.1液体进料接管 (22)9.2气体进料接管 (22)9.3吸收剂输送管路直径及流速计算 (22)10、离心泵的计算与选择 (23)四、工艺设计计算结果汇总与主要符号说明 (25)1、填料塔工艺尺寸计算结果表: (25)2、流体力学参数计算结果汇总: (26)3、附属设备计算结果汇总: (27)4、所用38D聚丙烯塑料阶梯环填料主要性能参数汇总: (27)N5、主要符号说明: (28)五、设计方案讨论 (30)六、心得体会 (30)附录 (31)附录(一)水的物性数据表 (31)附录(二)塔径与填料公称直径的比值D/d的推荐值 (32)附录(三)贝恩(Bain)--霍根(Hougen)关联式中的A、K值 (32)附录(五) IS型单级单吸离心泵性能表(摘录) (33)参考文献 (34)一、前言1、吸收技术概况化学工业中的废气二氧化硫主要来自化石燃料的燃烧、含硫矿石的冶炼、硫酸、磷肥等生产的工业废气。

(完整版)水吸收二氧化硫填料塔课程设计..

(完整版)水吸收二氧化硫填料塔课程设计..

《化工原理课程设计》报告设计任务书(一)设计题目试设计一座填料吸收塔,用于脱除混于空气中的SO2,混合气体的处理为2500m3/h,其中SO2(体积分数)8﹪。

要求塔板排放气体中含SO2低于0.4%,采用清水进行吸收。

(二)操作条件常压,20℃(三)填料类型选用塑料鲍尔环、陶瓷拉西环填料规格自选(四)设计内容1、吸收塔的物料衡算2、吸收塔的工艺尺寸计算3、填料层压降的计算4、吸收塔接管尺寸的计算5、绘制吸收塔的结构图6、对设计过程的评述和有关问题的讨论7、参考文献8、附表目录一、概述 (4)二、计算过程 (4)1. 操作条件的确定 (4)1.1吸收剂的选择 (4)1.2装置流程的确定 (4)1.3填料的类型与选择 (4)1.4操作温度与压力的确定 (4)2. 有关的工艺计算 (5)2.1基础物性数据 (5)2.2物料衡算 (6)2.3填料塔的工艺尺寸的计算 (6)2.4填料层降压计算 (11)2.5吸收塔接管尺寸的计算 (12)2.6附属设备……………………………………………… ..12三、评价 (13)四、参考文献 (13)五、附表 (14)一、概述填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以它特别适用于处理量小,有腐蚀性的物料及要求压降小的场合。

液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。

因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。

二、设计方案的确定(一) 操作条件的确定1.1吸收剂的选择因为用水作吸收剂,同时SO2不作为产品,故采用纯溶剂。

1.2装置流程的确定用水吸收SO2属于中等溶解度的吸收过程,故为提高传质效率,选择用逆流吸收流程。

1.3填料的类型与选择用不吸收SO2的过程,操作温度低,但操作压力高,因为工业上通常选用塑料散堆填料,在塑料散堆填料中,塑料鲍尔环填料的综合性能较好。

二氧化硫填料吸收塔的课程设计

二氧化硫填料吸收塔的课程设计

二氧化硫填料吸收塔的课程设计二氧化硫填料吸收塔是一种常用的工业废气处理设备,其主要作用是将工业烟气中的二氧化硫(SO2)等有毒有害气体经过吸收液处理后转化为无害的硫酸或硫酸盐等物质。

以下是二氧化硫填料吸收塔的课程设计建议:一、设计任务设计一套二氧化硫填料吸收塔,对污染气体中的二氧化硫进行吸收处理,将其转化为硫酸盐等物质。

具体要求如下:1.设计一套单级立式填料吸收塔,应考虑吸收效率、填料摆放方式、液流量和泵选型等参数。

2.选择合适的吸收液,建立吸收液稀释与循环系统,并估算其化学消耗量。

3.设计吸收塔底部的收集槽,实现二氧化硫的收集和回收。

4.制定操作规程和紧急处理方案,保证设备的安全运行。

二、设计步骤1.确定设计参数,包括吸收液种类、填料类型和数量、吸收液循环流量和泵型号、收集槽尺寸和材质等。

2.进行吸收液配制试验,并根据试验结果确定吸收液的组成、浓度和稀释方案。

3.根据塔内流体动力学理论,优化填料摆放方式,选择合适的填料高度和层数。

4.设计吸收塔的结构和支撑体系,选择合适的材料和标准进行设计。

5.进行工艺流程模拟和设备性能计算,优化设计参数,并绘制各项工艺图纸。

6.制定操作规程和紧急处理方案,并进行模拟实验和应急演练。

三、注意事项1.设计中应充分考虑环保和安全要求,确保设备能够达到相关标准和指标。

2.设计中应注重填料的选择和摆放,以及吸收液的循环流量和泵选型,这对于吸收效率和设备运行费用有着重要的影响。

3.设计中应充分考虑设备的可维护性和易操作性,尽可能地降低运行成本。

4.设计完成后应进行安全评估和性能测试,确保设备的可靠性和稳定性。

总之,二氧化硫填料吸收塔的设计需要充分考虑各方面因素,以实现高效环保的处理效果。

同时,还要注重设备的安全运行和易操作性,并进行必要的测试和评估,确保设备能够在长期使用中保持良好的工作状态。

【课程设计】水吸收二氧化硫填料吸收塔的设计

【课程设计】水吸收二氧化硫填料吸收塔的设计

【课程设计】水吸收二氧化硫填料吸收塔的设计【综述】水吸收二氧化硫(SO2)填料吸收塔是一种重要的排放控制设备,它能够将工业废气中的SO2转换为亚硫酸盐,有效地净化空气污染。

水吸收二氧化硫填料吸收塔包括三部分:溶液填料,水池和水壶。

溶液填料一般由碳酸钙或膨润土组成,其中的小孔可以增加二氧化硫在填料表面的吸附。

水池前面的水壶可以源源不断地向填料供水,从而对工业废气中的SO2进行吸附和吸收。

【填料的选择】传统的水吸收二氧化硫填料吸收塔一般选用碳酸钙或膨润土作为溶液填料。

碳酸钙具有较强的吸附SO2的性能,但它容易受到H2SO4(硫酸)的影响,使得机器变得不稳定。

膨润土则有着较低的吸附性能,但具有更高的耐硫酸性,因此在高浓度的硫酸环境中,可以得到更优的效果。

【塔体的选择】水吸收二氧化硫填料吸收塔一般采用圆塔、矩形塔或多面塔这三种不同形式的塔体。

圆塔具有完整的弧形外观,适合一些低浓度的环境条件;矩形塔具有狭长的视窗,适合那些对空间和安装有较高要求的地方使用;多面塔具有多种多样的表面处理,能够满足不同空间要求。

【控制系统的设计】为了确保填料处于正常的吸收状态,在水吸收二氧化硫填料吸收塔中还要安装有一套控制系统。

比如安装湿度传感器、温度传感器、液位传感器等,用来实时监测水壶中的水位和湿度,从而保证吸收效果。

此外,还可以安装一个消防报警系统和一个紧急报警系统,以便及时处理应急事件。

【结论】水吸收二氧化硫填料吸收塔是重要的污染控制设备,它可以有效地将工业废气中的二氧化硫转换为亚硫酸盐,从而净化空气。

在设计水吸收二氧化硫填料吸收塔时,要按照工艺要求合理选择填料、塔体和控制系统,以确保吸收塔的良好性能和可靠运行。

化工原理课程设计SO2填料吸收塔课程设计说明书

化工原理课程设计SO2填料吸收塔课程设计说明书

化工原理课程设计任务书专业班级:姓名:学号:指导老师:目录一·目的和要求二·设计任务三·设计方案1.吸收剂的选择2.塔内气液流向的选择3.吸收系统工艺流程(工艺流程图及说明)4.填料的选择四·工艺计算1.物料衡算,吸收剂用量,塔底吸收液浓度2.塔径计算3.填料层高度计算4.填料层压降计算5.填料吸收塔的主要附属构件简要设计6.动力消耗的计算与运输机械的选择(对吸收剂)五·设备零部件管口的设计计算及选型六·填料塔工艺数据表填料塔结构数据表物性数据表七·对本设计的讨论八·主要符号说明九·参考文献一·目的和要求1.进行查阅专业资料、筛选整理数据及化工设计的基本训练;2.进行过程计算及主要设备的工艺设计计算,独立完成吸收单元的设计;用简洁的文字和图表清晰地表达自己的设计思想和计算结果;3.建立和培养工程技术观点;4.初步具备从事化工工程设计的能力,掌握化工设计的基本程序和方法。

5.独立完成课程设计任务。

二·设计任务1.题目:SO2填料吸收塔2 生产能力:SO2炉气的处理能力为1500 m³/h(1atm,30℃时的体积)3 炉气组成:原料气中含SO2为9%(v),其余为空气4 操作条件:P=1atm(绝压)t=30 ℃5 操作方式:连续操作6 炉气中SO2的回收率为95%三·设计方案1.吸收剂的选择用水做吸收剂。

水对SO2有较大的溶解度,有较好的化学稳定性,有较低的粘度,廉价、易得、无毒、不易燃烧2.塔内气液流向的选择在填料塔中,SO2从填料塔塔底进入,清水从塔顶由液体喷淋装置均匀淋下。

3.吸收系统工艺流程(工艺流程图及说明)二氧化硫炉气经由风机从塔底鼓入填料塔中,与由离心泵送至塔顶的清水逆流接触,在填料的作用下进行吸收。

经吸收后的尾气由塔顶排除,吸收了SO2的废水由填料塔的下端流出。

二氧化硫吸收化工原理课程设计

二氧化硫吸收化工原理课程设计

设计任务与条件 (1)设计方案的确定 (2)工艺流程图 (3)吸收塔的设计计算 (3)一、计算混合气体的平均分子量M和密度 (4)二、物料衡算 (4)三、填料层的高度计算 (6)填料塔的附属装置 (8)一.选择附属装置 (8)二.管口结构的设计 (9)三.液体输送泵的选择 (9)心得体会 (10)参考文献 (10)设计任务与条件1.生产能力:混合气(SO2+空气)的处理量2000m3/h;2.进塔混合气中SO2的含量6%(体积分数);3.吸收率:99%。

4.以清水为吸收剂。

5.平衡线方程:Y = 66.76676X1.152376.操作条件:操作压力:常压(101325Pa);吸收温度:20℃;设计方案的确定化学工业中的废气二氧化硫主要来自化石燃料的燃烧、含硫矿石的冶炼、硫酸、磷肥等生产的工业废气。

二氧化硫是化工生产中极为重要的生产原料,其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,必须进行净化回收,具经济价值的规模应充分回收利用,避免硫资源浪费和造成大气污染,危害人类生存发展。

操作吸收是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。

本次课程设计的目的是根据设计要求采用填料吸收塔吸收的方法来净化含有二氧化硫的工业尾气,使其达到排放标准。

设计采用填料塔进行吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行,而且,填料塔还具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,从而可以使吸收操作过程节省大量人力和物力。

用水吸收S02属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流程。

因用水作为吸收剂,且S02不作为产品,故采用纯溶剂。

填料的选择对于水吸收S02的过程、操作、温度及操作压力较低,工业上通常选用所了散装填料。

在所了散装填料中,塑料阶梯环填料的综合性能较好,故本次设计选用塑料鲍尔环为填料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计要求书设计题目处理量为2400m3/h水吸收二氧化硫填料吸收塔的设计设计题目一原始数据及条件1.生产能力:混合气(SO+空气)的处理量2400m3/h;2的含量 5%(摩尔分数);2.进塔混合气中SO23。

吸收率:95%;4.以清水为吸收剂;5.平衡线方程:Y = 66。

7888X1。

163726.操作压力:常压(101325Pa);7。

吸收温度:20℃;(注:吸收过程视为等温吸收过程。

)8.吸收剂的用量为最小用量的1。

5倍。

设计任务完成填料吸收塔的工艺设计及有关附属设备的设计和选用,绘制填料塔系统带控制点的工艺流程图及填料塔的设计条件图,编写设计说明书。

目录设计要求书1设计题目1设计题目一原始数据及条件1设计任务1第1章概述31.1吸收塔的概述31。

2吸收设备的发展31。

3吸收过程在工业生产上应用4第2章设计方案52.1吸收剂的选择52.2吸收流程的确定62。

3吸收塔设备的选择72。

4吸收塔填料的选择7第3章吸收塔的工艺计算113。

1物料衡算113.1。

1液相物性数据113.1.2气相物性数据113.1.3气液相平衡数据113.1.4物料衡算123。

2填料塔的工艺尺寸的计算133。

2。

1塔径的计算133。

2.2填料层高度计算143。

2.3塔高度的确定173。

2.4塔材料以及壁厚等的确定173。

2。

5填料层压降的计算18第4章塔内件及附属设备的计算194。

1液体分布器的计算194.2填料支撑板204。

3填料压紧装置204.4液体除雾器214.5筒体和封头的设计214。

6人孔的设计224。

7法兰的设计22符号说明24英文字母25下标26希腊字母26参考文献27第1章概述1.1吸收塔的概述气体混合物的分离,是根据混合物中各组分间某种物理性质和化学性质的差异而进行的。

吸收作为其中一种,它的基本原理根据混合物各组分在特定的液体吸收剂中溶解度的不同,实现各组分分离的单元操作。

实际生产中,除了少数情况只需单独进行吸收外,一般需对吸收后的溶液继以脱吸,使溶剂再生,循环使用。

因此,除了吸收塔以外,还需与其他设备一道组成一个完整的吸收—脱吸流程。

在设计上应将两部分综合考虑,才能得到较为理想的设计结果。

作为吸收过程的工艺设计,其一般性问题是在给定混合气体处理量、混合气体组成、温度、压力以及分离要求的条件下,完成以下工作:(1)根据给定的分离任务,确定吸收方案;(2)根据流程进行过程的物料和热量衡算,确定工艺参数;(3)依据物料及热量衡算进行过程的设备选型或设备设计;(4)绘制工艺流程图及主要设备的工艺条件图;(5)编写工艺设计说明书。

(6)1。

2吸收设备的发展1.2吸收设备的发展吸收操作主要在填料塔和板式塔中进行,尤以填料塔的应用较为广泛。

填料吸收塔是化学工业中最常用的气液传质设备之一.它具有结构简单、便于用耐腐蚀材料制造以及压降小等优点,采用新型高效填料可以获得很好的经济效果,常用于吸收、精馏等分离过程。

其中塔填料的研究与应用已取得长足的发展:鲍尔环、阶梯环、金属环矩鞍等的出现标志散装填料朝高通量、高效率、低阻力方向发展有新的突破;规整填料在工业装置大型化和要求高分离效率的情况下倍受重视,已成为塔填料的重要品种.填料塔仍处于发展之中,今后的研究方向主要是提高传质效率,同时考虑填料的强度、操作性能及使用上的通用因素并综合环型、鞍型及规整填料的优点开发构型优越、堆积接触方式合理、流体在整个床层均匀分布的新型填料。

目前看来,填料的材质以陶瓷、金属、塑料为主,为满足化工生产温度和耐腐蚀要求,已开发了氟塑料制成的填料。

填料塔的发展,与塔填料的开发研究是分不开的。

除了提高原有填料的流体力学与传质性能外,还开发了效率高、放大效应小的新型填料。

加上塔填料本身具有压降小、持液量小、耐腐蚀、操作稳定、弹性大等优点,使填料塔开发研究达到了新的台阶。

1。

3吸收过程在工业生产上应用化工生产中吸收操作广泛应用于混合气体的分离:净化或精制气体,混合气体中去除杂质。

如用K2CO3水溶液脱除合成气中的CO,丙酮脱除石油裂解气中的乙炔等。

2制取某种气体的液态产品.如用水吸收氯化氢气体制取盐酸。

混合气体以回收所需组分.如用汽油处理焦炉气以回收其中的芳烃。

工业废气处理.工业生产中所排放的废气中常含有SO2,NO,NO2,HF等有害组分,组成一般很低,但若直接排入大气,则对人体和自然环境危害都很大.因此排放之前必须加以处理,选用碱性吸收剂吸收这些有害的气体是环保工程中最长采用的方法之一.第2章设计方案2。

1吸收剂的选择吸收剂的对吸收操作过程的经济性由十分重要的影响,因此对于吸收操作,选择适宜的吸收剂具有十分重要的意义。

一般情况下,选择吸收剂,着重考虑以下方面:(1)对溶质的溶解度大所选的吸收剂对溶质的溶解度大,则单位的吸收剂能够溶解较多的溶质,在一定的处理量和分离要求条件下,吸收剂的用量小,可以有效地减少吸收剂的循环量。

另一方面,在同样的吸收剂用量下液相的传质推动力大可以提高吸收效率,减小塔设备的尺寸。

(2)对溶质有较高的选择性对溶质有较高的选择性即要求选用的吸收剂应对溶质有较大的溶解度;而对其他组分则溶解度要小或基本不溶。

这样,不但可以减小惰性气体组分的损失,而且可以提高解吸后溶质气体的纯度.(3)不易挥发吸收剂在操作条件下应具有较低的蒸气压,以避免吸收过程中吸收剂的损失提高吸收过程的经济性。

(4)再生性能好由于在吸收剂再生过程中一般要对其进行升温或气提等处理,能量消耗较大.因而,吸收剂再生性能的好坏对吸收过程能耗的影响极大。

选用具有良好再生性能的吸收剂往往能有效地降低过程的能量消耗。

(5)粘度和其他物性吸收剂在操作条件下的粘度越低,其在塔内的流动性越好,有助于传质速率和传热速率的提高。

此外,所选的吸收剂还应尽可能满足无毒性、无腐蚀性、不易燃易暴、不发泡、冰点低,价廉易得以及化学性质稳定的要求。

结合以上吸收剂选择原则和考虑经济最优原则,本设计采用水作为吸收SO在水中的溶解度大、吸收推动力大、溶剂用量小、设备尺寸也小;水的剂:2价格低廉,而且水无毒性、无腐蚀性、不易燃易暴、不发泡、冰点低,水的挥发性也比较低.本设计题目要求吸收剂用水。

表1 物理吸收剂和化学吸收剂的特性物理吸收剂化学吸收剂吸收容量(溶解度)正比于溶质分压吸收热效应很小(近于等温)常用降压闪蒸解吸溶质含量高而净化度要求不太高的场合对设备腐蚀性小,不易变质吸收容量对溶质分压不太敏感吸收热效应显著用低压蒸汽气提解吸溶质含量不高而净化度要求很高的场合对设备腐蚀性大,易变质2。

2吸收流程的确定工业上有多种吸收流程,从所选吸收剂的种类看,有用一种吸收剂的一步吸收流程和用两种吸收剂的两步吸收流程;从所用的塔设备数量看,有单塔吸收流程和多塔吸收流程;从塔内气液两相的流向可分为逆流吸收流程,并流吸收流程等基本流程。

此外,还有特定条件下的部分溶剂循环过程.(1)一步吸收流程和两步吸收流程一步吸收流程一般用于混合气体溶质浓度较低,同时过程的分离要求不高,选用一种吸收剂即可完成吸收任务的情况。

若混合气体中溶质浓度较高且吸收要求也高,难以用一步吸收达到吸收要求或者虽能达到吸收要求,但过程的操作费用较高,从经济性的角度分析不够适宜时,可以采用两步吸收流程.(2)单塔吸收流程和多塔吸收流程单塔吸收流程式吸收过程中的常用流程,如过程无特别需要,则一般采用单塔吸收流程。

若过程的分离要求较高,使用单塔操作时,所需要的塔体过高,或采用两步吸收流程时,则需要采用多塔流程。

(3)逆流吸收与并流吸收吸收塔或再生塔内气液相可以逆流操作也可以并流操作,由于逆流操作具有传质推动力大,分离效率高的显著优点,工业上如无特别需要,一般均采用逆流吸收流程。

(4)部分溶剂循环吸收流程由于填料塔的分离效率受填料层上的液体喷淋量影响较大,挡液相喷淋量过小时,将降低填料塔的分离效率.因此当塔的液相负荷过小而难以充分润湿填料表面时,可以采用部分溶剂循环吸收流程,以提高液相喷林量,改善塔的操作条件。

结合设计要求和以上流程选择原则,在本设计中选择单塔逆流的操作流程:吸收推动力大;吸收任务不大。

2.3吸收塔设备的选择对于吸收过程,一般具有操作液气比大的特点,因而更适应于填料塔.此外,填料塔阻力小、效率高、有利于过程节能。

所以对于吸收过程来说,以采用吸收塔的多。

本设计中二氧化硫气体在水中的溶解度比较大,吸收效率高,设计题目也要求采用填料塔,所以本设计选用填料塔作为气液传质设备.2.4吸收塔填料的选择(1)填料种类的选择填料种类的选择要考虑分离工艺的要求,通常考虑以下几个方面。

①传质效率即分离效率,它有两种表示方法:一是以理论级进行计算的表示方法,以每个理论级当量的填料层高度表示,即HETP值;另一是以传质速率进行计算的表示方法,以每个传质单元相当的填料层高度表示,即HTU值。

在满足工艺要求的前提下,应选用传质效率高,即HETP(或HTU)值低的填料。

对于常用的工业填料,其HETP(或HTU)值可由有关手册或文献中查到,也可以通过一些经验公式来估算。

②通量在相同的液体负荷下,填料的泛点气速愈高或气相动能因子愈大,则通量愈大,它的处理能力也愈大。

因此,在选择填料种类时,在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料.对于大多数常用填料,其泛点气速或气相动能因子可在有关手册或文献中查到,也可由一些经验式来估算。

③填料层的压降填料层的压降是填料的主要应用性能,压降越低,动力消耗越低,操作费用越小。

选择低压降的填料对热敏性物系的分离尤为重要。

比较填料层的压降尤两种方法:一是比较填料层单位高度的压降/p z∆;另一是比较填料层单位传质效率的比压降/Tp N∆。

填料层的压降可用经验公式计算,亦可从有关图标中查出.④填料的操作性能填料的操作性能主要指操作弹性,抗污堵性及抗热敏性等。

所选填料应具有较大的操作弹性,以保证塔内气液负荷发生波动时维持操作稳定。

(2)填料规格的分类①散装填料规格的分类散装填料的规格通常是指填料的公尺直径。

工业塔常用的散装填料主要有DN16、DN25、DN38、DN50、DN76等几种规格。

同类填料,尺寸越小,分离效率越高;但阻力增加,通量减小,填料费用也增加很多。

而大尺寸的填料应用于小直径塔中,又会产生液体分布不良及严重的壁流,使塔的分离效率降低。

因此,对塔径与填料尺寸的比值要有一定的规定.表2常用填料的塔径与填料公称直径比值D/d的推荐值填料种类D/d的推荐值拉西环鞍环鲍尔环阶梯环环矩鞍D/d≥20~30 D/d≥15D/d≥10~15 D/d>8D/d>8②规整填料规格的分类工业上常用规整填料的型号和规格的表示方法很多,国内习惯用比表面积表示,主要有125,150,250,350,500,700等几种规格,同种类型的规整填料,其表面积越大,传质效率越高,但阻力增加,通量减小,填料费用也明显增加.选用时应从分离要求,通量要求,场地条件,物料性质及设备投资,操作费用等方面综合考虑,使所选填料既能满足工艺要求,又具有经济合理性。

相关文档
最新文档