凸轮机构设计(4学时)
教学大纲-大连理工大学教务处

目录《机械设计基础A》 (1)《机械设计基础B》 (8)《**模型设计概论》 (15)阅后删除:请以学部下设学院为单位将全部课程编辑在同一个文档内《机械设计基础A》教学大纲(学分4 学时64)一、课程说明(200字以内,简单说明本课程的地位及教学内容等,阅后删除红色字体)本课程是工科近机械类(包括机械类某些专业)和非机械类专业大类课程之一,是工科学生学习和掌握各种类型的机械中常用机构和通用机械零件的基本知识和基本设计方法的技术基础课。
该课程也是工科学生将来学习专业机械设备课程的理论基础。
本课程在教学内容方面着重基本知识、基本理论和基本设计方法的讲解;在培养实践能力方面着重设计构思和基本设计技能的基本训练。
二、课程目标(对应毕业要求:1-○1、1-○2、1-○3)1. 学习机械工程基础知识和基本理论知识,掌握常用机构的结构、特性等基本知识,了解各种机械的传动原理,具有分析、选用和设计机械设备中基本机构的能力(对应毕业要求:1-○1);2. 通用机械零件的设计原理、方法和机械设计等的一般规律,具有设计机械传动装置和简单机械的能力(对应毕业要求:1-○1);3. 掌握基本的机械设计创新方法,培养学生追求创新的态度和意识(对应毕业要求:1-○1);4. 培养学生树立正确的设计思想,了解机械设计过程中国家有关的经济、环境、法律、安全、健康、伦理等政策和制约因素(对应毕业要求:1-○1);5. 培养学生的工程实践学习能力,使学生掌握典型零件的实验方法,获得实验技能的基本训练,具有运用标准、规范、手册、图册和查阅有关技术资料的能力(对应毕业要求:1-○1);6. 了解机械设计的前沿和新发展动向(对应毕业要求:1-○1)。
三、教学内容、基本要求与学时分配序号教学内容教学要求学时教学方式对应课程目标1 一、基本概念1. 研究的对象、内容;2. 机械设计的基本要求和一般设计过程。
1. 了解本课程研究的对象、内容2. 了解机械设计的基本要求、一般设计过程。
机械设计与实践教案 项目2 凸轮机构设计 (教案)

项目2 凸轮机构设计1.教学目标(1)了解凸轮机构的分类及应用;(2)了解推杆常用运动规律的选择原则;(3)掌握在确定凸轮机构的基本尺寸时应考虑的主要问题;(4)能根据选定的凸轮类型和推杆运动规律设计凸轮的轮廓曲线。
2.教学重点和难点(1)推杆常用运动规律特点及选择原则;(2)盘形凸轮机构凸轮轮廓曲线的设计;(3)凸轮基圆半径与压力角及自锁的关系。
难点:“反转法原理”与压力角的概念。
3.讲授方法多媒体课件4.讲授时数8学时任务一凸轮机构的应用【任务导入】凸轮机构是由凸轮、从动件、机架以及附属装置组成的一种高副机构。
其中凸轮是一个具有曲线轮廓的构件,通常作连续的等速转动、摆动或移动。
从动件在凸轮轮廓的控制下,按预定的运动规律作往复移动或摆动。
受奥拓汽车零部件制造有限公司委托带领学员分析汽车内燃机凸轮机构的工作过程。
【任务分析】在各种机器中,为了实现各种复杂的运动要求,广泛地使用着凸轮机构,汽车机构也不例外,如图2.1是汽车内燃机凸轮机构的工作简图。
【力学知识】平面汇交力系的简化与平衡方程按照力系中各力的作用线是否在同一平面内,可将力系分为平面力系和空间力系。
若各力作用线都在同一平面内并汇交于一点,则此力系称为平面汇交力系。
按照由特殊到一般的认识规律,我们先研究平面汇交力系的简化与平衡规律。
设刚体上作用有一个平面汇交力系F 1、F 2、…、F n ,各力汇交于A 点(图2.2a )。
根据力的可传性,可将这些力沿其作用线移到A 点,从而得到一个平面共点力系(图2.2b )。
故平面汇交力系可简化为平面共点力系。
连续应用力的平行四边形法则,可将平面共点力系合成为一个力。
在图2.3b 中,先合成力F 1与F 2(图中未画出力平行四边形),可得力F R1,即 F R1=F 1+ F 2;再将F R1与F 3合成为力F R2,即F R2=F R1+ F 3;依此类推,最后可得F R =F 1+ F 2+…+ F n =∑F i (2-1)式中 F R 即是该力系的合力。
机械设计基础第三章凸轮机构

n
使有害分力F"在导路中所引起
的摩擦阻力大于F '时, 无论凸轮加给从动件的作用力
有多大 ,从动件都不能运动,这种现象称为自锁。
压力角的大小反映了机构传力性能的好坏,是 机构设计的重要参数。为使凸轮机构工作可靠,受 力情况良好,必须对压力角加以限制。 在设计凸 轮机构时,应使最大压力角αmax不超过许用值[ α]。根据工程实践的经验,许用压力角[α]的
B
C
7、回程: 从动件在弹簧力或重力作用下,,以一 定的运动规律回到起始位置的过程。
8、回程运动角:
与回程相应的凸轮转角δh。 δh =∠COD
9、近休止角:
从动件在最近位置停止不 动所对应的凸轮转角δs'。
δs' =∠AOD
O
B'
h
A
δs' D δt
δh δs
w
B
C
10、从动件位移线图:
以纵坐标代表从动件位移s2 ,横坐标代表凸轮转角 δ1或t,所画出的位移与转角之间的关系曲线。
§3-1 凸轮机构的应用和分类
一、凸轮机构的应用 二、凸轮机构的分类
一、凸轮机构的应用
1、凸轮机构组成: 凸轮是一个具有曲 线轮廓的构件。含 有凸轮的机构称为 凸轮机构。它由凸 轮、从动件和机架 组成。
2、凸轮机构的应用
凸轮机构是机械中的一种常用机构,在自动化和半 自动化机械中应用十分广泛。主要用于:受力不大的控 制机构或调节机构。
v2
δt
回程: s2=h[1-δ1/δh +sin(2πδ1/δh)/2π]a2 v2=hω1[cos(2πδ1/δh)-1]/δh
a2=-2πhω21 sin(2πδ1/δh)/δh2 无冲击
机械设计基础教学日历

机械设计基础课程大纲、教学计划
(3学分,课内学时48)
教学目标:
以机构的运动设计,机械的动力设计和机械系统计划设计的基本知识为载体,培养学生机械系统计划创新设计的思维方式和主意及自主学习的能力,从而达到提高学生的综合设计能力,创新设计能力和工程实践能力的目的。
主要教学内容:
机构的运动设计:机构的组成与结构;连杆机构;凸轮机构;齿轮机构;轮系;间歇运动机构;其他常用机构;组合机构;开式链机构。
机械的动力设计:机械系统动力学;机械的平衡设计;(机械的效率)。
机械系统计划设计:机械总体计划的拟订;机械执行系统的计划设计;(机械传动系统的计划设计与原动机的挑选);机械系统计划设计案例。
使用教材:《机械原理教程(第2版)》,申永胜主编,清华大学出版社;
《机械原理辅导与习题(第2版)》,申永胜主编,清华大学出版社
课程参考学时及教学日历
(单周4学时,双周2学时)
说明:该表安顿仅供参考。
机械设计教案:凸轮机构的认识与盘形凸轮轮廓的设计

授课教案No任务3.1 凸轮机构的认识一、复习10分钟复习上次课学习内容二、教师导课与课程学习:(1)学习提示,教师介绍本任务的学习内容。
15分钟本项目以直动从动件的盘形凸轮机构为例,在从动件等速运动、等加速等减速运动、余弦加速度运动(简谐运动)规律条件下,分析了凸轮机构中存在的柔性冲击与刚性冲击。
教师介绍本任务的学习内容:凸轮机构的分类;常用术语;从动件的运动规律;凸轮机构的结构形式;常用材料及热处理(2)分小组学习: 40分钟3.1.1常用设备中的凸轮机构1. 凸轮机构的组成如图所示的凸轮机构是由凸轮、从动件和机架等三个基本构件组成的机构。
2.凸轮机构应用实例自动钻床进给机构、冲床凸轮机构等。
3.1.2凸轮机构的分类凸轮机构的类型很多,按凸轮和从动件的形状及其运动形式的不同,凸轮机构的分类方法有以下几种:1.按凸轮形状分类(1)盘形凸轮(2)移动凸轮。
(3)圆柱凸轮2.按从动件形式分类(1)尖顶从动件(2)滚子从动件(3)平底从动件从动件的结构形式3.按从动件的运动形式分类学生发言汇报、记录学习笔记学生发言汇报并记录学习笔记阅读教材和PPT、分组讨论、撰写发言提纲、学生发言汇报,课,记录学习笔记No(1)直动从动件直动从动件指相对于机架作直线往复移动的从动件,如图3.1.1中所示。
直动从动件又分为对心直动从动件和偏置直动从动件。
(2)摆动从动件:绕某一固定转动中心摆动的从动件。
4.按凸轮与从动件的锁合方式分类 (1)力锁合利用从动件的重力、弹簧力或其他外力使从动件与凸轮轮廓保持接触,(2)形锁合利用从动件和凸轮特殊的几何形状来维持接触,例如圆柱凸轮机构是利用滚子与凸轮凹槽两侧面的配合来实现形锁合。
3.1.3凸轮机构的常用术语如下:1.凸轮基圆与基圆半径b r2.凸轮的转角δ凸轮相对于某一位置转过的角度,称为凸轮转角δ。
具体包括推程运动角0δ、远停程运动角S δ回程运动角0′δ和近停程运动角Sδ'。
机械设计基础课程建设计划(五篇范文)

机械设计基础课程建设计划(五篇范文)第一篇:机械设计基础课程建设计划机械设计基础合格课程建设方案为进一步推进课程建设,深化课程改革,不断提高各类课程的教学水平,提高应用型人才培养质量,学校决定实施合格课程建设。
为保证合格课程建设有计划、有组织、有步骤、高标准地进行,特制订本实施方案。
一、建设意义课程建设是专业建设的基础,是深化教学改革、提高教学水平、保证人才培养质量的重要措施。
实施普通本科合格课程建设,是建设高水平、有特色的应用型本科院校的基础工程。
通过合格课程建设,逐步确立应用型人才培养的理念,落实应用型人才培养的目标;进一步优化课程内容,促进教学方法改革;解决课程教学内容与经济社会发展对人才需求不适应的矛盾,解决课程教学目标与专业人才培养目标联系不紧密、课程教学针对性和应用性不强等问题,不断提升课程教学质量。
二、建设目标合格课程建设旨在明晰课程目标定位、重构课程教学体系、优化课程教学内容、改革教学方法,以保障课程教学目标与专业人才培养目标相符合,充分发挥课程教学在培养高质量的应用型人才过程中的功能。
合格课程建设采取“主讲教师负责、分阶段建设”的办法来实施,本课程在建设过程中,重在实训设备、理实一体化授课方式等方面的建设,使本课程能够成为一门合格的机械类专科培养方案中的课程。
三、建设内容合格课程建设主要从以下几个方面进行:(一)课程设置。
机械设计基础要能成为一门合格的机械类专业基础课。
本课程对学生职业能力培养和职业素养养起到重要的支撑或促进作用,并且能为其他专业课程的学习起到促进作用。
以培养学生的职业能力为重点,充分体现职业性、实践性和开放性。
(二)教学内容。
根据职业发展要求结合实际的职业岗位需求,增加新的教学内容、删除一些不适用的教学内容并调整教学内容中的重难点,为学生可持续发展奠定良好基础。
在教学内容组织与安排方面,科学设计学习性工作任务,教、学、做结合,理论与实践一体化,实训、实习等教学环节合理设计。
青大精密机械设计教学大纲

青大精密机械设计教学大纲05010092《精密机械设计》教学大纲学分4学时:(60+8)一、课程性质和目标本课程是为仪器仪表类及相近专业的本科学生开设的学科基础课,学时为68学时。
作为专业骨干课程,本课程是在具备机械制图、工程力学知识的基础上展开的。
它融合机械原理,机械零件,工程材料与热处理,零件的精度设计于一门课程,对精密机械及仪器仪表中常用机构和零部件的工作原理,适用范围,结构设计,理论计算方法,工程材料以及零件几何精度的基础知识等诸方面进行阐述,是该专业本科学习期间的一门综合性机械类课程。
在课程科学知识体系上,充分考虑仪器仪表类专业精密机械设计的特点,削减了对仪器仪表专业应用性较弱的知识点,贯彻落实“少而精,教给手”的教育理念,著重培育学生的结构设计能力,工程化和标准化设计能力。
充分利用一流设计手段,强化课堂教学环节,注重精密机械设计特点,特别强调设计方法和设计者素质的培育。
通过本课程的自学:1)使学生基本掌握精密仪器仪表中通用机构的结构分析、运动分析、动力分析及其设计方法;2)并使学生掌控通用型零、部件的工作原理、特点、选型及其计算方法,培育学生能够运用所学基础理论科学知识,化解精密机械零、部件的设计问题;3)培养学生具有设计精密机械传动和仪器机械结构的能力,以及对某些典型零、部件的精度分析,并提出改进措施;4)并使学生介绍常用机构和零、部件的试验方法;初步具备某些零、部件的性能测试和结构分析能力;5)使学生了解零件的材料与热处理方法、精度设计和互换性方面的基本知识,并能在工程设计中如何正确选用。
二、课程基本建议本门课是一门实践性很强的技术基础课。
主要由课堂教学,实验教学和集中课程设计。
在课堂教学中主要通过教师讲授与应用多媒体课件结合,采用启发式,问答式等方法进行教学。
实验教学为学生提供实验指导,由院实验中心组织任课老师和实验员负责实验的准备和实施,通过形式生动的实验教学,培养学生的感性认识。
《机械原理》课程教学大纲(本科)

《机械原理》课程教学大纲一、课程基本信息课程编号:020*******课程名称:机械原理总学时:56学时实验学时:12学时总学分: 3.5学分课程类别:专业技术基础课课程性质:必修课先行课程:高等数学机械制图工程力学材料科学基础适用专业:机械设计制造及其自动化专业本科生责任单位:机电工程学院开课学期:第4学期二、课程简介机械原理课程是高等工科学校本科机械类专业教学计划中的一门必修的技术基础课。
本课程主要研究各种机械的一般共性问题,即机构的组成原理、运动学及机器动力学和常用机构的分析与设计,以及机械传动系统方案设计等问题。
本课程的内容包括绪论、机构的结构分析、平面连杆机构、凸轮机构、齿轮机构、轮系、其他常用机构、机械平衡、机械系统动力学和机械传动系统方案设计等。
三、课程目标课程目标1.具有正确识别和表达常用机构并能正确选择常用机构的能力。
课程目标2.具有利用基本知识、原理、特性分析比较机构的能力。
课程目标3.具有运用基本知识、方法和原理拟定、设计机械运动方案,设计机构的能力。
课程目标4.能够按着实验要求,正确构建实验方案的能力。
课程目标5.能够选择并熟练使用常用测量工具、仪器,获取实验数据的能力。
课程目标6.能够对获得的实验数据进行分析处理、获得有效结论的能力。
四、课程目标与毕业要求指标点的支撑关系五、课程的内容及要求、教学重点与难点(一)机械原理概述(支撑课程目标1)(1)主要教学内容本课程的研究对象和研究内容,课程的地位与作用,课程的性质与学习方法。
(二)平面机构的结构分析(支撑课程目标1、2、4、5、6)(1)主要教学内容机构结构分析的内容及目的,机构的组成,机构的运动简图(在实验课中结合实验进一步讲述),机构具有确定运动的条件,平面机构自由度的计算,计算平面机构自由度时应注意的事项,机构的组成原理、结构分类及结构分析。
(2)知识点与能力点要求知识点:掌握机器、机构的概念及组成;了解高副低代方法和杆组划分及机构的级别;理解机器、机构、零件、构件、运动副、运动链、约束、自由度等基本概念;掌握机构运动简图绘制的方法;掌握机构具有确定运动的条件、机构自由度的计算、自由度计算注意事项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章凸轮机构设计(4学时)1.教学目标1)了解凸轮机构的分类及应用;2)了解推杆常用运动规律的选择原则;3)掌握在确定凸轮机构的基本尺寸时应考虑的主要问题;4)能根据选定的凸轮类型和推杆运动规律设计凸轮的轮廓曲线。
2.教学重点和难点1)推杆常用运动规律特点及选择原则;2)盘形凸轮机构凸轮轮廓曲线的设计;3)凸轮基圆半径与压力角及自锁的关系;难点:“反转法原理”与压力角的概念。
3.讲授方法:多媒体课件第四章凸轮机构4.1 凸轮机构的特点和分类4.2 从动件常用的运动规律一、凸轮机构的组成和应用1、组成凸轮机构是由凸轮、从动件和机架三个部分所组成。
2、运动规律凸轮机构可以将主动件凸轮的等速连续转动变换为从动件的往复直线运动或绕某定点的摆动,并依靠凸轮轮廓曲线准确地实现所要求的运动规律。
3、特点优点是:只要正确地设计凸轮轮廓曲线,就可以使从动件实现任意给定的运动规律,且结构简单、紧凑、工作可靠。
缺点是:凸轮与从动件之间为点或线接触,不易润滑,容易磨损。
因此,凸轮机构多用于传力不大的控制机构和调节机构二、凸轮机构的分类1、按凸轮的形状分(l)盘形凸轮也叫平板凸轮。
这种凸轮是一个径向尺寸变化的盘形构件,当凸轮l绕固定轴转动时,可使从动件在垂直于凸轮轴的平面内运动(2)移动凸轮当盘形凸轮的径向尺寸变得无穷大时,其转轴也将在无穷远处,这时凸轮将作直线移动。
通常称这种凸轮为移动凸轮。
(3)圆柱凸轮凸轮为一圆柱体,它可以看成是由移动凸轮卷曲而成的。
曲线轮廓可以开在圆柱体的端面也可以在圆柱面上开出曲线凹槽。
2、按从动件的形式分(l)尖顶从动件结构最简单,而且尖顶能与较复杂形状的凸轮轮廓相接触,从而能实现较复杂的运动,但因尖顶极易磨损,故只适用于轻载、低速的凸轮机构和仪表中。
(2)滚子从动件在从动件的一端装有一个可自由转动的滚子。
由于滚子与凸轮轮廓之间为滚动摩擦,故磨损较小,改善了工作条件。
因此,可用来传递较大的动力,应用也最广泛。
(3)平底从动件从动件一端做成平底(即平面),在凸轮轮廓与从动件底面之间易于形成油膜,故润滑条件较好、磨损小。
当不计摩擦时,凸轮对从动件的作用力始终与平底垂直,传力性能较好,传动效率较高,所以常用于高速凸轮机构中。
但由于从动件为一平底,故不适用于带有内凹轮廓的凸轮机构。
三、基本概念1、基圆:以凸轮轮廓最小半径 rb所作的圆2、推程:从动件经过轮廓AB段,从动件被推到最高位置3、推程角:角δ0,这个行程称为,δ2称为4、回程:经过轮廓CD段,从动件由最高位置回到最低位置;5、回程角:角δ26、远停程角:角δ17、近停程角:角δ3二、凸轮与从动件的关系图7—8 等加速等减速运动规律位移曲线凸轮的轮廓机构取决于从动件的运动规律,从动件的运动规律取决于工作要求。
四、从动件的运动规律1.等速运动规律当凸轮作等角速度旋转时,从动件上升或下降的速度为一常数,这种运动规律称为等速运动规律。
(1) 位移曲线(S —δ曲线)若从动件在整个升程中的总位移为 h ,凸轮上对应的升程角为δ0,那么由运动学可知,在等速运动中,从动件的位移S 与时间t 的关系为: S =v ·t 凸轮转角δ与时间t 的关系为:δ=ω·t则从动件的位移S 与凸轮转角δ之间的关系为:v 和ω都是常数,所以位移和转角成正比关系。
因此,从动件作等速运动的位移曲线是一条向上的斜直线。
从动件在回程时的位移曲线则与下图相反,是一条向下的斜直线。
(2)等速运动凸轮机构的工作特点由于从动件在推程和回程中的速度不变,加速度为零,故运动平稳;但在运动开始和终止时;从动件的速度从零突然增大到v 或由v 突然减为零,此时,理论上的加速度为无穷大,从动件将产生很大的惯性力,使凸轮机构受到很大冲击,这种冲击称刚性冲击。
随着凸轮的不断转动,从动件对凸轮机构将产生连续的周期性冲击,引起强烈振动,对凸轮机构的工作十分不利。
因此,这种凸轮机构一般只适用于低速转动和从动件质量不大的场合。
2.等加速、等减速运动规律当凸轮作等角速度旋转时,从动件在升程(或回程)的前半程作等加速运动,后半程作等减速运动。
这种运动规律称为等加速等减速运动规律。
(1)位移曲线(S —δ曲线)由运动学可知,当物体作初速度为零的等加速度直线运动时,物体的位移方程:在凸轮机构中,凸轮按等角速度ω旋转,凸轮转角δ与时间t 之间的关系为 t=δ/ω则从动件的位移S 与凸轮转角δ之间的关系为:式中a 和ω都是常数,所以位移s 和转角δ成二次函数的关系,所以,从动件作等加速等减速运动的位移曲线是抛物线。
因此,从动件在推程和回程中的位移曲线是由两段曲率方向相反的抛物线连成。
δω⋅=v s 221at s =222δωa s =(2)等加速等减速运动凸轮机构的工作特点从动件按等加速等减速规律运动时,速度由零逐渐增至最大,而后又逐步减小趋近零,这样就避免了刚性冲击,改善了凸轮机构的工作平稳性。
因此,这种凸轮机构适合在中、低速条件下工作。
4.3 凸轮轮廓线(曲线)设计在合理地选择了从东件运动规律以后,结合一些具体地条件可以进行凸轮轮廓地设计。
根据选定的推杆运动规律来设计凸轮具有的廓线时,可以利用作图法直接绘制出凸轮廓线,也可以用解析法列出凸轮廓线的方程式,定出凸轮廓线上各点的坐标,或计算出凸轮的一系列向径的值,以便据此加工出凸轮廓线。
用图解法设计凸轮廓线,简单易行,而且直观,但误差较大,对精度要求较高的凸轮,如高速凸轮、靠模凸轮等,则往往不能满足要求。
所以,现代凸轮廓线设计都以解析法为主,其加工也容易采用先进的加工方法,如线切割机、数控铣床及数控磨床来加工。
但是,图解法可以直观地反映设计思想、原理。
所以从教学角度,本节我们主要介绍图解法,并简单介绍解析法。
但是,不论作图法还是解析法,其基本原理都是相同的。
所以我们下面首先介绍一下凸轮廓线设计方法的基本原理一.凸轮廓线设计方法的基本原理为了说明凸轮廓线设计方法的基本原理,我们首先对已有的凸轮机构进行分析。
如图4-10所示为一对心直动尖顶推杆盘形凸轮机构,当凸轮以角速度ω绕轴心O等ϕ角时,推杆上升至位移s的瞬时位置。
速回转时,将推动推杆运动。
图b所示为凸轮回转现在为了讨论凸轮廓线设计的基本原理,设想给整个凸轮机构加上一个公共角速度-),使其绕凸轮轴心O转动。
根据相对运动原理,我们知道凸轮与推杆间的相对运动(ω-绕凸关系并不发生改变,但此时凸轮将静止不动,而推杆则一方面和机架一起以角速度ω轮轴心O转动,同时又在其导轨内按预期的运动规律运动。
由图C可见,推杆在复合运动中,其尖顶的轨迹就是凸轮廓线。
利用这种方法进行凸轮设计的称为反转法,其基图4-10本原理就是理论力学中所讲过的相对运动原理。
二.用作图法设计凸轮廓线针对不同形式的凸轮机构,其作图法也有所不同。
我们以三类推杆形式给予分别介绍,同学们要注意理解三类机构设计的异同之处。
1.对心直动尖顶推杆盘形凸轮机构若已知凸轮的基圆半径mm r b 25=,凸轮以等角速度ω逆时针方向回转。
推杆的运动规律如表4-1所示。
利用作图法设计凸轮廓线的作图步骤如下:(1)选取适当的比例尺l μ,取b r 为半径作圆;(2)先作相应于推程的一段凸轮廓线。
为此,根据反转法原理,将凸轮机构按ω-进行反转,此时凸轮静止不动,而推杆绕凸轮顺时针转动。
按顺时针方向先量出推程运动角ο120,再按一定的分度值(凸轮精度要求高时,分度值取小些,反之可以取小些)将此运动角分成若干等份,并依据推杆的运动规律算出各分点时推杆的位移值S 。
考试中,由于学生可以用量角器进行分度,所以角度可取任意值。
作图步骤要写清楚。
本题中取分度值为ο15(教材上为ο12,为作图方便我们分为ο15),据运动规律可求各分点时推杆的位移S 如表(8-2)。
(3)确定推杆在反转运动中所占据的每个位置。
为此,根据反转法原理,从A 点开始,将运动角按顺时针方向按ο15一个分点进行等份,则各等份径向线01,02,……08即为推杆在反转运动中所依次占据的位置。
升程:降程:ϕ0 7.5 15 22.5 30 37.5 45 52.5 60 s2017.51512.5107.552.5(4)确定出推杆在复合运动中其尖顶所占据的一系列位置。
根据表中所示数值s ,沿径向等分线由基圆向外量取,得到’‘、、821'K 点,即为推杆在复合运动中其尖顶所占据的一系列位置。
(5)用光滑曲线连接'8→A ,即得推杆升程时凸轮的一段廓线。
(6)凸轮再转过ο30时,由于推杆停在最高位置不动,故该段廓线为一圆弧。
以O 为圆心,以'8O 为半径画一段圆弧''98。
(7)当凸轮再转过ο60时,推杆等速下降,其廓线可仿照上述步骤进行。
(8)最后,凸轮转过其余的ο150时,推杆静止不动,该段又是一段圆弧。
按以上作图法绘制的光滑封闭曲线即为凸轮廓线,如图4-11所示。
对于其它类型的凸轮机构的凸轮廓线设计,同样可根据如上所述反转法原理进行。
接下来,我们主要讨论其各自的特点及设计时要注意的问题。
2.对心直动滚子推杆盘形凸轮机构对于这种类型的凸轮机构,由于凸轮转动时滚子(滚子半径T r )与凸轮的相切点不一定在推杆的位置线上,但滚子中心位置始终处在该线,推杆的运动规律与滚子中心一致,所以其廓线的设计需要分两步进行。
(1)将滚子中心看作尖顶推杆的尖顶,按前述方法设计出廓线0β,这一廓线称为理论廓线。
(2)以理论廓线上的各点为圆心、以滚子半径T r 为半径作一系列的圆,这些圆的内包络线β即为所求凸轮的实际廓线,如图4-11图4-12图4-12所示。
3.对心直动平底推杆盘形凸轮机构在设计这类凸轮机构的凸轮廓线时,也要按两步进行: (1)把平底与推杆轴线的交点B 看作尖顶推杆的尖顶,按照前述方法,求出尖顶的一系列位置,将其连成曲线,即为凸轮的理论廓线。
(2)过以上各交点B 按推杆平底与推杆轴线的夹角作一系列代表平底的直线,这一系列位置的包络线即为所求凸轮的实际廓线。
求出凸轮廓线后,根据平底推杆的一系列位置,选择出推杆平底的最小尺寸不应小于m ax l 的两倍。
如图4-13。
其它类型的凸轮机构,其廓线的作图法和步骤与前述方法相同,请同学下去自己学习。
三.凸轮廓线设计的解析法对于精度较高地高速凸轮、检验用的样板凸轮等需要用解析法设计,以适合数控机床加工。
在研究过凸轮廓线设计的作图法之后,接下来我们就利用如图4-15所示的偏置滚子直动推杆盘形凸轮机构,介绍解析方法。
解析法主要采用解析表达式计算并确定凸轮轮廓,计算工作量大,一般采用计算机精确地计算出凸轮轮廓或刀具轨迹上各点地坐标进行。
如图所示为偏置直动滚子从动件盘型凸轮机构。