圆柱凸轮分度机构的设计计算及运动仿真

合集下载

凸轮机构的设计和计算

凸轮机构的设计和计算

凸轮机构的设计和计算凸轮机构是机械传动中常用的一种机构,它可以将旋转运动转化为直线或者非圆轨迹运动。

在机械设计中,凸轮机构的设计和计算是一个重要的环节,下面将从凸轮的选择、轮廓线的设计、凸轮刚度的计算以及凸轮与连接杆的配合等方面进行详细探讨。

一、凸轮的选择凸轮的选择主要考虑两个因素,一是工作台速度要求,二是工作台运动规律要求。

根据工作台速度要求,可以确定凸轮直径或转速,并结合工作台的惯性力矩计算,选取合适的凸轮惯量。

根据工作台运动规律要求,可以确定凸轮的轮廓线类型,如简单凸轮、非圆滚子凸轮等。

二、凸轮轮廓线的设计凸轮的轮廓线设计可以按照几何法或图形法进行。

几何法常用于简单凸轮的设计,通过几何学原理计算得到凸轮的轮廓线。

图形法常用于复杂凸轮的设计,通过图形法绘制凸轮的轮廓线。

对于简单凸轮的设计,可以先确定凸轮的中心轴线,然后根据工作台的运动规律要求,计算得到凸轮相对于中心轴的偏置量。

根据几何关系,可以发现工作台特定点的运动与该点到凸轮中心轴的距离成正比关系,因此可以画出凸轮轮廓线。

对于复杂凸轮的设计,可以根据工作台的运动规律要求,通过图形法绘制凸轮的轮廓线。

首先,在平面上绘制凸轮的中心轴线和工作台的运动轨迹,然后根据几何关系,绘制工作台各点与凸轮中心轴的距离曲线,最后得到凸轮的轮廓线。

三、凸轮刚度的计算凸轮机构在工作过程中会受到惯性力矩的作用,因此需要进行凸轮刚度的计算。

凸轮刚度可以通过应力分析的方法进行计算,可以分为弹性刚度和塑性刚度。

弹性刚度计算可以根据凸轮的材料及几何尺寸进行,通过几何学和材料力学的知识,可以得到凸轮的弹性变形及应力分布。

而塑性刚度计算则需要根据凸轮的材料本构关系及极限变形条件,通过材料损伤理论及极限分析法进行计算。

四、凸轮与连接杆的配合凸轮与连接杆的配合是凸轮机构中的关键问题。

凸轮与连接杆之间要保持一定的配合间隙,以确保运动的精度。

配合间隙的大小应根据凸轮的制造及组装精度、工作台的运动精度要求等因素进行综合考虑。

圆柱分度凸轮机构的分析与设计

圆柱分度凸轮机构的分析与设计

圆柱分度凸轮机构的分析与设计【摘要】如何分析圆柱分度机构。

【关键词】分度盘;圆柱凸轮根据机构运动分配图所确定的原始数据,分别设计各组独立的执行机构。

进行凸轮机构尺寸设计时,通常需完成以下过程。

1.凸轮机构选型在设计计算凸轮几何参数前,要先确定采用何种形式的凸轮机构,其中包括凸轮的几何形状、从动件的几何形状、从动件的运动方式、从动件和凸轮轮廓维持接触的方式等。

选型设计的灵活性很强,同一工作要求可以由多种不同的凸轮机构类型来实现:(1)从动件的运动方式可以与执行机构的运动方式相同,也可以不同。

他们之间可通过适当的传动机构进行变换,即移动变为摆动,或者摆动变为移动。

(2)凸轮的几何形状(平面的或空间的)选择要考虑到它在机床中的安装位置,目的是尽量简化由从动件至执行机构之间的传动机构。

(3)平面凸轮机构可用各种形式的从动件,即尖底、滚子或平底的,而空间凸轮机构中通常只能采用滚子从动件。

2.计算从动件的主要运动参数根据执行构件的运动要求计算出凸轮机构的从动件行程(最大位移量或最大旋转角度)。

对于执行构件与凸轮机构的从动件固定连接的情况,运动要求是一致的。

对于执行构件与凸轮机构的从动件两者之间还具有运动传递机构的情况,则需要采用机构位置分析方法进行计算。

如果执行机构件在运动过程中有一个或数个驻点位置需要保证与其它执行构件的运动协调关系,则也需计算出与这些驻点对应的从动件位置参数。

3.确定从动件的运动规律从动件在整个运动范围内的运动特性,诸如位移、转角、速度等(有驻点要求时还包括通过驻点位置时的运动特性),是与执行构件工作特性密切相关的,也与所选定的凸轮机构的类型之间存在一定制约因素。

因此,在确定从动件的运动规律时需要分析各种有关的影响因素。

4.凸轮机构的基本尺寸设计凸轮机构的基本尺寸主要受两种矛盾因素的制约。

如果基本尺寸较大,则相应的机构总体尺寸较大,造成原材料和加工工时的浪费、机器尺寸过大;而基本尺寸太小,会造成运动失真、机构自锁、强度不足等不良后果。

基于Creo的凸轮机构三维参数化设计及运动仿真

基于Creo的凸轮机构三维参数化设计及运动仿真

基于Creo的凸轮机构三维参数化设计及运动仿真刘鹏冯立艳李静卢家宣蔡保杰冷腾飞苗伟晨(华北理工大学以升创新基地河北·唐山063210)摘要本文主要介绍用Creo对凸轮机构进行参数化设计并以圆柱槽状凸轮机构为例进行运动仿真,再通过C#软件完成人机交互,即操作人只需在程序界面输入槽状凸轮相应参数即可完成凸轮的三维建模,从而绘制出相应的位移、速度、加速度曲线进入仿真和分析环节。

这样即缩短了凸轮的设计周期提高了设计质量,并且解决了凸轮教学课程存在的设备成本高、设备数量少、实验时间和空间受限等难题。

关键词凸轮Creo参数化仿真中图分类号:TP391.9文献标识码:A1基于Creo软件下的凸轮三维建模1.1Creo环境下槽状凸轮机构三维参数化造型基本思路(1)参数化过程需准备可变参数包括行程、推程角、远休角、回程角、近休角、外径、壁厚、基底高度、凸轮高度、槽深、槽宽,以上变量成为参数组。

(2)通过根据凸轮不同运动规律编写推程、远休止、回程、近休止段凸轮轮廓线方程,本例应用的凸轮推程回程为正弦加速度运动规律。

(3)分段绘制出理论轮廓曲线,将各段曲线首尾相连封闭,即为完整的凸轮理论廓线。

(4)生成凸轮实体;加入参变量,实现参数化。

1.2三维建模具体步骤Creo是如今今应用最广的三维绘图软件之一,主要用于参数化实体设计,它所提供的功能包括实体设计、曲面设计、零件装配、建立工程图、模具设计、、电路设计、装配管件设计、加工制造和逆向工程等。

其系统特性主要包含单一数据库、全参数化、全相关、基于特征的实体建模等,不仅能实现零件的参数化设计,也可以方便地建立各零部件的通用件库和标准件库,从而提高设计的效率和质量。

1.2.1槽状凸轮机构的三位参数化建模自行设定初步参数组,注意推程角、远休角、回程角、近休角之和为360,(2)运行creo软件,新建零件,进入界面。

(3)选择【工具:程序】,出现菜单管理器,选择编辑设计,出现记事本,在IN PUT和END PUT语句中间输入语句,然后存盘,确认将所做的修改体现到模型中,最后在菜单管理器中输入设定的初步参数值。

Solid Edge中圆柱凸轮机构的建模与运动仿真

Solid Edge中圆柱凸轮机构的建模与运动仿真

D s n r SddE g 的 无缝集 墟 , F 必离 l己 所 e i e 和 ,i d e g 朋 习 熟 悉的 S d e 面 .就 n 以 对昕 垃 汁的犍 伴 进 n oi E g L d T _ 运 动 仿 真 D n mi f s l 产 ^ } i py Ⅵ t n ya c ) i… eg 『 r ¨l . {S e L o M t n和 P fs i a 组 成 .f 】 丰 维 昕 没讣 的复 杂 oi o o r es n l o J 1 链 =rI f 程 度进 行选择 ,也 可【{埘 实际 庸川 的情 连 步 级到 l{ = ! 《高一级 的 D n mi D s t r v a e i  ̄ 产品 在 L 没 } ・熟练 c ’ g 构 艟用以 J _ = 模块 . 完成零 件 的二 维 实 悱造 , 膜拟 ,机掏 二 . 、 的 装配 , 折 装配 }涉 情况 . 而实现 运 动融 分 进 性 能 和呵靠性 , 臧少 从 过计剥 【 仆 发 纠 j { 7 延动 I :
3 凸轮机 构 的装配 与运动 副的 定义

涉 分 析 力分析 . 可 实现 机 构的 精确 设 汁 . { 帆 器 动 即 忧 匕
习 5为装 完 l空 问 唰址,l l 亏 轮机 蜘
列 J轮 饥 “ 1
本 文以空 间 圃牡凸 轮机 构 为削 .简述运 删 l I上模块 进 行零 件 建模 构 的黻 配 l 机 构运 动幔 拟 胜运 功 分 动 力舒析 的 仃法和技 巧
7 示 rI 轮删 触定 义的 } n l 寿肜
圈2 绘 轮 线 制 廓曲

l 绘制 轮 廓商 线 平 行 于【 牡体 中 .,L 、丽 21 = 5 j ] L¥ F L 上, 选择 断线 绘制 C ,命令 . 一 绘 枷 ! 所 鍪. : j』 使 用 投 影 曲线 争, 将 尊 投 影 剁 矧 性 m 卜, 『 l 如珂

凸轮机构的虚拟设计与运动仿真

凸轮机构的虚拟设计与运动仿真

凸轮机构的虚拟设计与运动仿真
首先,在进行凸轮机构的虚拟设计和运动仿真之前,需要对机构的物
理特性以及设计要求进行分析和确认。

这包括凸轮轴的几何形状、凸轮与
被控件的运动规律和传动比等。

接下来,可以使用CAD软件绘制凸轮轴和被控件的几何形状。

在绘制
凸轮轴时,可以使用CAD软件提供的几何图形工具创建具有不同形状的凸
轮剖面。

在绘制被控件时,可以创建其对应的几何模型,并与凸轮轴进行
连接。

完成几何模型的绘制后,可以使用CAD软件中的运动仿真工具来模拟
凸轮机构的运动。

首先,可以为凸轮轴设置一个恒定速度的输入条件。

然后,可以通过设置凸轮轴与被控件之间的运动关系(例如凸轮与被控件的
接触点位置)来实现凸轮机构的运动仿真。

在进行运动仿真时,可以观察凸轮机构的各个部分的运动情况,并分
析其运动特性,以评估机构的性能。

例如,可以观察被控件的运动轨迹和
速度曲线,以确定被控件是否能够按照要求进行精确的运动。

如果发现机
构存在问题,可以通过调整凸轮轴的几何形状或修改运动关系来进行优化。

除了CAD软件,还可以使用专业的凸轮机构仿真软件来进行虚拟设计
和运动仿真。

这些软件通常具有更强大的仿真功能,可以提供更准确的分
析和评估结果。

通过使用这些软件,可以更好地理解和优化凸轮机构的运
动特性,并减少实际试验的次数和费用。

总之,凸轮机构的虚拟设计与运动仿真可以通过CAD软件或专业仿真
软件来实现。

通过这种方法,可以在设计早期阶段对机构进行分析和优化,从而减少实验和测试的时间和成本,提高设计效率。

圆柱凸轮机构_设计_结构计算

圆柱凸轮机构_设计_结构计算

圆柱凸轮机构_设计_结构计算————————————————————————————————作者:————————————————————————————————日期:本章介绍凸轮机构的类型、特点、应用及盘形凸轮的设计。

凸轮是一种具有曲线轮廓或凹槽的构件,它通过与从动件的高副接触,在运动时可以使从动件获得连续或不连续的任意预期运动。

在第4章介绍中,我们已经看到.凸轮机构在各种机械中有大量的应用。

即使在现代化程度很高的自动机械中,凸轮机构的作用也是不可替代的。

凸轮机构由凸轮、从动件和机架三部分组成,结构简单、紧凑,只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任意的运动规律.在自动机械中,凸轮机构常与其它机构组合使用,充分发挥各自的优势,扬长避短。

由于凸轮机构是高副机构,易于磨损;磨损后会影响运动规律的准确性,因此只适用于传递动力不大的场合.图12-1为自动机床中的横向进给机构,当凸轮等速回转一周时,凸轮的曲线外廓推动从动件带动刀架完成以下动作:车刀快速接近工件,等速进刀切削,切削结束刀具快速退回,停留一段时间再进行下一个运动循环。

图12—1图12—2 图12-2为糖果包装剪切机构,它采用了凸轮—连杆机构,槽凸轮1绕定轴B转动,摇杆2与机架铰接于A点.构件5和6与构件2组成转动副D和C,与构件3和4(剪刀)组成转动副E和F。

构件3和4绕定轴K转动.凸轮1转动时,通过构件2、5、和6,使剪刀打开或关闭。

图12-3为机械手及进出糖机构.送糖盘7从输送带10上取得糖块,并与钳糖机械手反向同步放置至进料工位Ⅰ,经顶糖、折边后,产品被机械手送至工位Ⅱ后落下或由拨糖杆推下。

机械手开闭由机械手开合凸轮(图中虚线)1控制,该凸轮的轮廓线是由两个半径不同的圆弧组成,机械手的夹紧主要靠弹簧力。

图12—6图12—4所示为由两个凸轮组合的顶糖、接糖机构,通过平面槽凸轮机构将糖顶起,由圆柱凸轮机构控制接糖杆的动作,完成接糖工作。

03凸轮机构的设计计算

03凸轮机构的设计计算

03凸轮机构的设计计算凸轮机构是一种用于驱动轴、执行轴、连杆和滑块等机械元件的传动装置,广泛应用于各种机械设备和工业领域中。

它的设计计算涉及到凸轮的形状、尺寸和运动规律等方面,下面将详细介绍凸轮机构的设计计算。

第一步:确定凸轮的类型和运动规律凸轮的类型有很多种,包括圆柱形凸轮、球形凸轮、心形凸轮等。

不同类型的凸轮适用于不同的机械运动规律。

在确定凸轮类型之后,需要确定凸轮的运动规律,例如旋转、摆动、直线运动等。

根据需要确定凸轮的运动规律可以为后续计算提供基础。

第二步:计算凸轮的基本参数计算凸轮的基本参数包括凸轮的直径、偏距、厚度等。

凸轮的直径决定了凸轮的外形尺寸;凸轮的偏距决定了凸轮所产生的运动;凸轮的厚度决定了凸轮的刚度和强度。

第三步:绘制凸轮的曲线在计算凸轮的曲线时,可以采用手工绘制或计算机辅助设计(CAD)绘制。

在绘制凸轮的曲线时,需要根据凸轮的运动规律和基本参数,按照一定比例绘制凸轮的曲线。

第四步:计算凸轮机构的运动参数凸轮机构的运动参数包括凸轮的角速度、轴向加速度、径向加速度、凸轮与随动件之间的相对速度等。

这些参数可以通过对凸轮轮廓曲线进行微分和积分计算得到。

第五步:计算凸轮机构的受力和刚度凸轮机构的受力和刚度是设计计算的重要内容。

在计算凸轮机构的受力和刚度时,需要考虑凸轮与随动件之间的力、力矩和弯曲等因素,并根据材料的强度和刚度计算凸轮的设计要求。

第六步:优化凸轮机构的设计在完成凸轮机构的设计计算后,可以进行适当的优化设计。

优化设计可以根据实际需要调整凸轮的形状、尺寸和运动规律等,以实现更好的运动效果和工作性能。

总结起来,凸轮机构的设计计算包括确定凸轮的类型和运动规律、计算凸轮的基本参数、绘制凸轮的曲线、计算凸轮机构的运动参数、计算凸轮机构的受力和刚度,以及优化凸轮机构的设计等多个步骤。

这些计算需要依靠数学和力学等相关知识,并结合实际工作需求进行。

设计人员应根据实际情况和要求进行适当调整和改进,以满足不同工程和应用领域的需求。

SolidWorks三维设计及运动仿真实例教程 实例23 凸轮机构运动仿真

SolidWorks三维设计及运动仿真实例教程 实例23 凸轮机构运动仿真

添加马达 仿真参数设置 曲线接触运动仿真 实体接触动力学仿真
工作原理 零件造型 装配 仿真
在MotkmManager界面中,拖动键 码将时间的长度拉到1s,单击工具栏上的 “运动算例属性”按钮,在弹出的“运动 算例属性”管理器中的【Motion分析】 栏内将每秒帧数设为“100”,选中【3D 接触分辨率】下的【使用精确接触】复选 框,其余参数采用默认设置,如图所示, 单击“确定”按钮,完成仿真参数的设置。
工作原理 零件造型 装配 仿真
创建凸轮
坐标数据将显示在“曲线文件”中;单击【确定】,
创建滚子、摆杆和机架 凸轮理论廓线被绘制出来,如图所示。
工作原理 零件造型 装配 仿真
创建凸轮 创建滚子、摆杆和机架
点击【草图】【草图绘制】 命令,选择【前视基准面】;点 击【等距实体】命令,单击前面 绘制好的曲线,输入摆杆滚子半 径12mm,点击【反向】,点击 【确定】,将曲线转换成草图曲 线,得到凸轮实际轮廓曲线,如 图所示。
右击 FeatureManager设 计树中的“材质<未指定>”, 在弹出的菜单中选择 “普通碳 钢”。最后以文件名“凸轮”保 存该零件。
工作原理 零件造型 装配 仿真
创建凸轮
根据已知条件:滚子半径=12mm,摆杆长度=
创建滚子、摆杆和机架
120mm,凸轮与摆杆转动中心距离= 150mm,根据以下 三个草图,以距离10mm两侧对称拉伸草图轮廓,得到
入,单击布局选项卡中的【运动算例1】, 在 MotionManager工具栏中的【算例类型】下拉列表中 选择“Motion分析”。
实体接触动力学仿真
单击MotionManager 工具栏中的“马达”按钮 ,为 凸轮添加一逆时针等速旋转 马达,如图所示,凸轮转速 n=72RPM = 432° /s,马达 位置为凸轮轴孔处。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013 年2月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013 年2 月1 日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013 年2 月1 日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2012 年2月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013 年2 月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2 月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2 月1日学生签字:毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2 月1日学生签字:。

相关文档
最新文档