1八年级数学第一章试题

合集下载

人教版八年级上数学第一单元测试题

人教版八年级上数学第一单元测试题

人教版八年级上数学第一单元测试题一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 1,2,3B. 2,2,4C. 3,4,5D. 3,4,8解析:根据三角形三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。

A选项,1 + 2 = 3,不满足两边之和大于第三边,不能组成三角形;B选项,2+2 = 4,不满足两边之和大于第三边,不能组成三角形;C选项,3 + 4>5,4 + 5>3,3+5>4,且5 3<4,5 4<3,4 3<5,可以组成三角形;D选项,3+4<8,不满足两边之和大于第三边,不能组成三角形。

所以答案是C。

2. 一个三角形的内角和是()A. 90°B. 180°C. 360°D. 720°解析:三角形内角和定理:三角形的内角和等于180°,所以答案是B。

3. 在△ABC中,∠A = 50°,∠B = 60°,则∠C的度数为()A. 50°B. 60°C. 70°D. 80°解析:因为三角形内角和为180°,已知∠A = 50°,∠B = 60°,所以∠C=180°∠A ∠B = 180°50° 60° = 70°,答案是C。

4. 等腰三角形的一个角是80°,则它的底角是()A. 80°B. 50°C. 80°或50°D. 20°解析:当80°角为等腰三角形的顶角时,底角=(180° 80°)÷2 = 50°;当80°角为底角时,底角就是80°,所以答案是C。

5. 下列图形具有稳定性的是()A. 正方形B. 长方形C. 三角形D. 平行四边形解析:三角形具有稳定性,四边形具有不稳定性,正方形、长方形、平行四边形都是四边形,所以答案是C。

初中数学试卷(八年级上册第一章) (含答案)

初中数学试卷(八年级上册第一章) (含答案)

初中数学试卷(八上第一章)一、单选题(共17题;共34分)1、在△ABC中,已知∠A=2∠B=3∠C,则三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、形状无法确定【答案】C【考点】三角形内角和定理【解析】【解答】解:设∠A、∠B、∠C分别为3k、3k、2k,则6k+3k+2k=180°,解得k=°,所以,最大的角∠A=6×°>90°,所以,这个三角形是钝三角形.故选C.【分析】根据比例设∠A、∠B、∠C分别为6k、3k、2k,然后根据三角形内角和定理列式进行计算求出k 值,再求出最大的角∠A即可得解.2、某同学手里拿着长为3和2的两个木棍,想要装一个木棍,用它们围成一个三角形,那么他所找的这根木棍长满足条件的整数解是()A、1,3,5B、1,2,3C、2,3,4D、3,4,5【答案】C【考点】三角形三边关系【解析】【分析】首先根据三角形三边关系定理:①三角形两边之和大于第三边②三角形的两边差小于第三边求出第三边的取值范围,再找出范围内的整数即可.【解答】设他所找的这根木棍长为x,由题意得:3-2<x<3+2,∴1<x<5,∵x为整数,∴x=2,3,4,故选:C.【点评】此题主要考查了三角形三边关系,掌握三角形三边关系定理是解题的关键.3、若三条线段的比是①1:4:6;②1:2:3,;③3:3:6;④6:6:10;⑤3:4:5;其中可构成三角形的有()A、1个B、2个C、3个D、4个【答案】B【考点】三角形三边关系【解析】【解答】①1+4<6,不能构成三角形;②1+2=3,不能构成三角形;③3+3=6,不能够成三角形;④6+6>10,能构成三角形;⑤3+4>5,能构成三角形;故选:B.【分析】此题主要考查了三角形的三边关系.解此题不难,可以把它们边长的比,看做是边的长度,再利用“若两条较短边的长度之和大于最长边长,则这样的三条边能组成三角形”去判断,注意解题技巧.4、根据下列条件,能确定三角形形状的是()①最小内角是20°;②最大内角是100°;③最大内角是89°;④三个内角都是60°;⑤有两个内角都是80°.A、①②③④B、①③④⑤C、②③④⑤D、①②④⑤【答案】C【考点】三角形内角和定理【解析】【解答】(1)最小内角是20°,那么其他两个角的和是160°,不能确定三角形的形状;(2)最大内角是100°,则其为钝角三角形;(3)最大内角是89°,则其为锐角三角形;(4)三个内角都是60°,则其为锐角三角形,也是等边三角形;(5)有两个内角都是80°,则其为锐角三角形.【分析】此题是三角形内角和定理和三角形的分类,关键是要知道钝角三角形、直角三角形和锐角三角形角的特征.5、如图小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A、B、C、D、【答案】B【考点】三角形的稳定性【解析】【解答】因为三角形具有稳定性,只有B构成了三角形的结构.故选B.【分析】根据三角形具有稳定性,可在框架里加根木条,构成三角形的形状.6、如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A、两点之间的线段最短B、长方形的四个角都是直角C、长方形是轴对称图形D、三角形有稳定性【答案】D【考点】三角形的稳定性【解析】【解答】用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.【分析】根据三角形具有稳定性解答.7、如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、任意三角形【答案】A【考点】三角形的角平分线、中线和高【解析】【解答】解:利用三角形高线的位置关系得出:如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是锐角三角形.故选:A.【分析】根据三角形高的定义知,若三角形的两条高都在三角形的内部,则此三角形是锐角三角形.8、如图,∠B+∠C+∠D+∠E﹣∠A等于()A、360°B、300°C、180°D、240°【答案】C【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:∵∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,∴∠B+∠C+∠D+∠E﹣∠A=360°﹣(∠1+∠2+∠A)=180°.故选C.【分析】根据三角形的外角的性质,得∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,两式相加再减去∠A,根据三角形的内角和是180°可求解.9、已知三角形的两边长分别是4和10,则此三角形第三边长可以是()A、15B、12C、6D、5【答案】B【考点】三角形三边关系【解析】【分析】先根据三角形的三边关系求得此三角形第三边长的范围,即可作出判断。

北师大版八年级数学上册第一章章节测试题及答案 - 副本

北师大版八年级数学上册第一章章节测试题及答案 - 副本

北师大版八年级数学上册第一章章节测试题及答案一、选择题(共11小题)1. 一个直角三角形的三边长分别为,,,则为A. B. C. D. 或2. 如图,一个工人拿一个米长的梯子,底端放在距离墙根点米处,另一头点靠墙,如果梯子的顶部下滑米,梯子的底部向外滑多少米?A. B. C. D.3. 如图所示,正方体的棱长为,一只蜘蛛从正方体的一个顶点爬行到另一个顶点,则蜘蛛爬行的最短距离的平方是A. B. C. D.4. 【例】下列结论中,错误的有①在中,已知两边长分别为和,则第三边的长为;②的三边长分别为,,,若,则;③在中,若,则是直角三角形;④若三角形的三边长之比为,则该三角形是直角三角形.A. 个B. 个C. 个D. 个5. 如图,有一个直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,且与重合,则等于A. B. C. D.6. 如图,有一个池塘,其底面是边长为尺的正方形,一个芦苇生长在它的中央,高出水面部分为尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部恰好碰到岸边的.则这根芦苇的长度是A. 尺B. 尺C. 尺D. 尺7. 如图所示,有一个高,底面周长为的圆柱形玻璃容器,在外侧距下底的点处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处的点处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是A. B. C. D.8. 硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是A. 正面向上B. 正面不向上C. 正面或反面向上D. 正面和反面都不向上9. 张瑞同学制作了四块全等的直角三角形纸板,准备复习功课用,六岁的弟弟看到纸板随手做拼图游戏,结果七拼八凑地拼出了如图所示的图形.张瑞热爱思考,借助这个图形设计了一道数学题:如图是由四个全等的直角三角形拼成的图形,设,,则斜边的长为A. B. C. D.10. 如图所示,矩形纸片中,,,现将其沿EF对折,使得点与点重合,则的长为A. B. C. D.11. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面米,则小巷的宽度为A. 米B. 米C. 米D. 米二、填空题(共10小题)12. 如图所示,,,,,则.13. 如图,有一块直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,点与点重合,则长为.14. 如图,在一个长为米,宽为米的纸板上有一长方体木块,它的长和纸板宽平行且大于,木块的正面是边长为米的正方形,一只蚂蚁从处爬行到处需要走的最短路程是米.15. 已知三角形的三边长分别为,,,则此三角形面积是.16. 如图,在离水面高度为米的岸上,有人用绳子拉船靠岸,开始时绳子的长为米,此人以米每秒的速度收绳,秒后船移动到点的位置,问船向岸边移动米.(假设绳子是直的)17. 如图,在中,,,,点在上,将沿折叠,使点落在边上的点处,则的长为 .18. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为.19. 如图,在中,,分别以,,为边向外作正方形,面积分别记为,,,若,,则.20. 阅读下列题目的解题过程:已知,,为的三边,且满足,试判断的形状.解:,(A),(B),(C)是直角三角形.问:()上述解题过程,从哪一步开始出现错误?请写出该步的代号:;()错误的原因为;()本题正确的结论为 .21. 我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有尺,牵索沿地面退行,在离木柱根部尺处时,绳索用尽.问绳索长是多少?示意图如下图所示,设绳索的长为尺,木柱的长用含的代数式表示为尺,根据题意,可列方程为.三、解答题(共7小题)22. 如图,有一张直角三角形纸片,两直角边,,将折叠,使点与点重合,折痕为,求的长.23. 如图,有一只小鸟在一棵高的小树的树梢上捉虫子,它的伙伴在离该树,高的一棵大树的树梢上发出友好的叫声,该小鸟立刻以的速度飞向大树树梢,那么这只小鸟至少经过几秒才能到达大树和伙伴在一起?24. 列方程解下列应用题.如图,,厘米,点从点开始沿边向点移动,的速度为厘米/秒.点同时从点开始沿边向移动,的速度为厘米/秒.几秒后,两点相距厘米?25. 如图所示,若,,,,,,则的度数是多少?26. 如图,在正方形网格中,每个小正方形的边长均为,以格点为线段的端点,按下列要求仅用无刻度的直尺作图(保留作图痕迹,不写作法与证明).(1)在图中画一条线段,使,并标出的中点;(2)在图中画一条线段,使,并标出的中点.27. 如图,在长方形中,,,是边的中点,是线段上的动点,将沿所在直线折叠得到,连接,求的最小值.28. 如图,某学校(点)到公路(直线)的距离为,到公交站(点)的距离为,现要在公路边上建一个商店(点),使之到学校及到车站的距离相等,求商店与车站之间的距离.答案1. D2. D【解析】米,米,(米),梯子的顶部下滑米,米,米,米.梯子的底部向外滑出(米).3. D【解析】将正方体的前面、上面展开放在同一平面上,连接,如图所示,爬行的最短路径为线段.由勾股定理得,,故选D.4. C【解析】①在中,已知两边长分别为和,则第三边的长为或,错误;②的三边长分别为,,,若,则,错误;③在中,若,则是直角三角形,正确;④若三角形的三边长之比为,则该三角形是直角三角形,正确;故选:C.5. A【解析】在中,由勾股定理可知:,由折叠的性质可知:,,,,,设,则,,在中,由勾股定理得:,即,解得:,.6. D【解析】设芦苇长尺,则水深尺,因为边长为尺的正方形,所以尺.在中,,解之得,即水深尺,芦苇长尺.故选:D.7. C【解析】如图展开后连接,求出的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过作于,则,,在中,由勾股定理得:,答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是.8. C【解析】A.正面向上的可能性为;B.正面不向上的可能性为;C.正面或反面向上的可能性为;D.正面和反面都不向上的可能性为.9. C【解析】设,则,,,,,,.10. B【解析】设,则 .矩形纸片中,,,现将其沿对折,使得点与点重合,.在中,,.解得 .11. A【解析】如图,在中.,米,米,,.在中,,米,,..,米,米.即小巷的宽度为米,故答案选A.12.【解析】,,,,;;.13.14.【解析】如图,将木块看成是由纸片折成的,将其拉平成一个长方形,连接,米,米,,米,妈蚁从处爬行到处需要走的最短路程为米.15.16.【解析】在中:,米,米,(米),此人以米每秒的速度收绳,秒后船移动到点的位置,(米),(米),(米),答:船向岸边移动了米.17.18. 米【解析】若假设竹竿长米,则水深米,由题意得,,解之得,.所以水深米.19.【解析】中,,,.,,,.20. C,没有考虑的情况,是等腰三角形或直角三角形21. ,【解析】;由题意可知,由勾股定理可得.22. 由题意得;设,则,,在中,根据勾股定理得:,即,解得;即.23. 这只小鸟至少经过才能到达大树和伙伴在一起.24. 秒或秒25. 在中,,,,所以,所以是直角三角形,且,在中,,,,所以,所以是直角三角形,且,所以.26. (1)如图,,点为线段的中点.(2)如图,,点为线段的中点.27. 如图,当,点在上时,的值最小.根据折叠的性质,得,所以, .因为是边的中点,,所以 .因为,所以,所以 .28. 过点作于点,,,,设,则,在中,,,.北师大版八年级数学上册第一章章节测试题及答案一、选择题(共11小题)1. 一个直角三角形的三边长分别为,,,则为A. B. C. D. 或2. 如图,一个工人拿一个米长的梯子,底端放在距离墙根点米处,另一头点靠墙,如果梯子的顶部下滑米,梯子的底部向外滑多少米?A. B. C. D.3. 如图所示,正方体的棱长为,一只蜘蛛从正方体的一个顶点爬行到另一个顶点,则蜘蛛爬行的最短距离的平方是A. B. C. D.4. 【例】下列结论中,错误的有①在中,已知两边长分别为和,则第三边的长为;②的三边长分别为,,,若,则;③在中,若,则是直角三角形;④若三角形的三边长之比为,则该三角形是直角三角形.A. 个B. 个C. 个D. 个5. 如图,有一个直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,且与重合,则等于A. B. C. D.6. 如图,有一个池塘,其底面是边长为尺的正方形,一个芦苇生长在它的中央,高出水面部分为尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部恰好碰到岸边的.则这根芦苇的长度是A. 尺B. 尺C. 尺D. 尺7. 如图所示,有一个高,底面周长为的圆柱形玻璃容器,在外侧距下底的点处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处的点处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是A. B. C. D.8. 硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是A. 正面向上B. 正面不向上C. 正面或反面向上D. 正面和反面都不向上9. 张瑞同学制作了四块全等的直角三角形纸板,准备复习功课用,六岁的弟弟看到纸板随手做拼图游戏,结果七拼八凑地拼出了如图所示的图形.张瑞热爱思考,借助这个图形设计了一道数学题:如图是由四个全等的直角三角形拼成的图形,设,,则斜边的长为A. B. C. D.10. 如图所示,矩形纸片中,,,现将其沿EF对折,使得点与点重合,则的长为A. B. C. D.11. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面米,则小巷的宽度为A. 米B. 米C. 米D. 米二、填空题(共10小题)12. 如图所示,,,,,则.13. 如图,有一块直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,点与点重合,则长为.14. 如图,在一个长为米,宽为米的纸板上有一长方体木块,它的长和纸板宽平行且大于,木块的正面是边长为米的正方形,一只蚂蚁从处爬行到处需要走的最短路程是米.15. 已知三角形的三边长分别为,,,则此三角形面积是.16. 如图,在离水面高度为米的岸上,有人用绳子拉船靠岸,开始时绳子的长为米,此人以米每秒的速度收绳,秒后船移动到点的位置,问船向岸边移动米.(假设绳子是直的)17. 如图,在中,,,,点在上,将沿折叠,使点落在边上的点处,则的长为 .18. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为.19. 如图,在中,,分别以,,为边向外作正方形,面积分别记为,,,若,,则.20. 阅读下列题目的解题过程:已知,,为的三边,且满足,试判断的形状.解:,(A),(B),(C)是直角三角形.问:()上述解题过程,从哪一步开始出现错误?请写出该步的代号:;()错误的原因为;()本题正确的结论为 .21. 我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有尺,牵索沿地面退行,在离木柱根部尺处时,绳索用尽.问绳索长是多少?示意图如下图所示,设绳索的长为尺,木柱的长用含的代数式表示为尺,根据题意,可列方程为.三、解答题(共7小题)22. 如图,有一张直角三角形纸片,两直角边,,将折叠,使点与点重合,折痕为,求的长.23. 如图,有一只小鸟在一棵高的小树的树梢上捉虫子,它的伙伴在离该树,高的一棵大树的树梢上发出友好的叫声,该小鸟立刻以的速度飞向大树树梢,那么这只小鸟至少经过几秒才能到达大树和伙伴在一起?24. 列方程解下列应用题.如图,,厘米,点从点开始沿边向点移动,的速度为厘米/秒.点同时从点开始沿边向移动,的速度为厘米/秒.几秒后,两点相距厘米?25. 如图所示,若,,,,,,则的度数是多少?26. 如图,在正方形网格中,每个小正方形的边长均为,以格点为线段的端点,按下列要求仅用无刻度的直尺作图(保留作图痕迹,不写作法与证明).(1)在图中画一条线段,使,并标出的中点;(2)在图中画一条线段,使,并标出的中点.27. 如图,在长方形中,,,是边的中点,是线段上的动点,将沿所在直线折叠得到,连接,求的最小值.28. 如图,某学校(点)到公路(直线)的距离为,到公交站(点)的距离为,现要在公路边上建一个商店(点),使之到学校及到车站的距离相等,求商店与车站之间的距离.答案1. D2. D【解析】米,米,(米),梯子的顶部下滑米,米,米,米.梯子的底部向外滑出(米).3. D【解析】将正方体的前面、上面展开放在同一平面上,连接,如图所示,爬行的最短路径为线段.由勾股定理得,,故选D.4. C【解析】①在中,已知两边长分别为和,则第三边的长为或,错误;②的三边长分别为,,,若,则,错误;③在中,若,则是直角三角形,正确;④若三角形的三边长之比为,则该三角形是直角三角形,正确;故选:C.5. A【解析】在中,由勾股定理可知:,由折叠的性质可知:,,,,,设,则,,在中,由勾股定理得:,即,解得:,.6. D【解析】设芦苇长尺,则水深尺,因为边长为尺的正方形,所以尺.在中,,解之得,即水深尺,芦苇长尺.故选:D.7. C【解析】如图展开后连接,求出的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过作于,则,,在中,由勾股定理得:,答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是.8. C【解析】A.正面向上的可能性为;B.正面不向上的可能性为;C.正面或反面向上的可能性为;D.正面和反面都不向上的可能性为.9. C【解析】设,则,,,,,,.10. B【解析】设,则 .矩形纸片中,,,现将其沿对折,使得点与点重合,.在中,,.解得 .11. A【解析】如图,在中.,米,米,,.在中,,米,,..,米,米.即小巷的宽度为米,故答案选A.12.【解析】,,,,;;.13.14.【解析】如图,将木块看成是由纸片折成的,将其拉平成一个长方形,连接,米,米,,米,妈蚁从处爬行到处需要走的最短路程为米.15.16.【解析】在中:,米,米,(米),此人以米每秒的速度收绳,秒后船移动到点的位置,(米),(米),(米),答:船向岸边移动了米.17.18. 米【解析】若假设竹竿长米,则水深米,由题意得,,解之得,.所以水深米.19.【解析】中,,,.,,,.20. C,没有考虑的情况,是等腰三角形或直角三角形21. ,【解析】;由题意可知,由勾股定理可得.22. 由题意得;设,则,,在中,根据勾股定理得:,即,解得;即.23. 这只小鸟至少经过才能到达大树和伙伴在一起.24. 秒或秒25. 在中,,,,所以,所以是直角三角形,且,在中,,,,所以,所以是直角三角形,且,所以.26. (1)如图,,点为线段的中点.(2)如图,,点为线段的中点.27. 如图,当,点在上时,的值最小.根据折叠的性质,得,所以, .因为是边的中点,,所以 .因为,所以,所以 .28. 过点作于点,,,,设,则,在中,,,.。

初二数学上册第一单元测试题【三篇】

初二数学上册第一单元测试题【三篇】

导语:检验数学学得好不好的标准就是会不会解题。

听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独⽴解题、解对题才是学好数学的标志。

以下是⽆忧考整理的初⼆数学上册第⼀单元测试题【三篇】,希望对⼤家有帮助。

初⼆数学上册第⼀单元测试题(⼀)⼀、选择(共30分)1、如图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的⾯积为().A.16πB.12πC.10πD.8π2、三个正⽅形的⾯积如图(4),正⽅形A的⾯积为()A.6B.36C.64D.83、14.在△ABC中,AB=13,AC=15,⾼AD=12,则BC的长为()A.14B.14或4C.8D.4和84、将⼀根24cm的筷⼦,置于底⾯直径为15cm,⾼8cm的圆柱形⽔杯中,如图所⽰,设筷⼦露在杯⼦外⾯的长度为hcm,则h的取值范围是().A.h≤17cmB.h≥8cmC.15cm≤h≤16cmD.7cm≤h≤16cm5、若直⾓三⾓形的两条直⾓边长分别为3cm、4cm,则斜边上的⾼为()A、cmB、cmC、5cmD、cm6、以下列线段的长为三边的三⾓形中,不是直⾓三⾓形的是()A、B、C、D、7、已知三⾓形的三边长为a、b、c,如果,则△ABC是()A.以a为斜边的直⾓三⾓形B.以b为斜边的直⾓三⾓形C.以c为斜边的直⾓三⾓形D.不是直⾓三⾓形8、如果把直⾓三⾓形的两条直⾓边同时扩⼤到原来的2倍,那么斜边扩⼤到原来的().A.1倍B.2倍C.3倍D.4倍9、2002年8⽉在北京召开的国际数学家⼤会会徽取材于我国古代数学家赵爽的《勾股圆⽅图》,它是由四个全等的直⾓三⾓形与中间的⼀个⼩正⽅形拼成的⼀个⼤正⽅形,如图所⽰,如果⼤正⽅形的⾯积是13,⼩正⽅形的⾯积是1,直⾓三⾓形的短直⾓边为a,较长直⾓边为b,那么(a+b)2的值为()A.13B.19C.25D.16910、如图,长⽅体的长为15,宽为10,⾼为20,点离点的距离为5,⼀只蚂蚁如果要沿着长⽅体的表⾯从点爬到点,需要爬⾏的最短距离是()A.B.25C.D.⼆、填空(共24分)11、⼀个三⾓形三个内⾓之⽐为1:2:3,则此三⾓形是__________三⾓形;若此三⾓形的三边为a、b、c,则此三⾓形的三边的关系是__________。

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。

八年级上册数学第一章试卷【含答案】

八年级上册数学第一章试卷【含答案】

八年级上册数学第一章试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3, b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 下列哪个数是负数?A. -3B. 0C. 3D. 65. 下列哪个数是立方数?A. 8B. 9C. 10D. 11二、判断题(每题1分,共5分)1. 2是偶数。

()2. 1是质数。

()3. -5是正数。

()4. 4的平方根是2。

()5. 1千等于1000。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 6的平方是______。

3. 10的立方是______。

4. 2的平方根是______。

5. 3的立方根是______。

四、简答题(每题2分,共10分)1. 请简述偶数和奇数的区别。

2. 请简述质数和合数的区别。

3. 请简述正数和负数的区别。

4. 请简述平方和立方的区别。

5. 请简述因数和倍数的区别。

五、应用题(每题2分,共10分)1. 小明有5个苹果,他吃掉了2个,还剩下多少个?2. 一个长方形的长度是6米,宽度是3米,求这个长方形的面积。

3. 一个正方形的边长是4厘米,求这个正方形的面积。

4. 一个数的平方是36,求这个数。

5. 一个数的立方是27,求这个数。

六、分析题(每题5分,共10分)1. 请分析并解答以下问题:一个数的平方是64,这个数是正数还是负数?为什么?2. 请分析并解答以下问题:一个数的立方是8,这个数是正数还是负数?为什么?七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个边长为5厘米的正方形。

2. 请用直尺和圆规画一个直径为6厘米的圆。

八、专业设计题(每题2分,共10分)1. 设计一个实验,验证物体在水平面上的滚动摩擦小于滑动摩擦。

2. 设计一个电路,当温度超过一定阈值时,自动报警。

人教版八年级数学上册第1单元测试卷

人教版八年级数学上册第1单元测试卷

人教版八年级数学上册第1单元测试卷学习八年级数学第一单元知识不在于力量多少,而在能坚持多久。

下面由店铺为你整理的人教版八年级数学上册第1单元测试卷附答案,希望对大家有帮助!人教版八年级数学上册第1单元测试卷第1章分式类型之一分式的概念1.若分式2a+1有意义,则a的取值范围是 ( )A.a=0B.a=1C.a≠-1D.a≠02.当a ________时,分式1a+2有意义.3. 若式子2x-1-1的值为零,则x=________.4.求出使分式|x|-3(x+2)(x-3)的值为0的x的值.类型之二分式的基本性质5.a,b为有理数,且ab=1,设P=aa+1+bb+1,Q=1a+1+1b+1,则P____Q(填“>”、“<”或“=”).类型之三分式的计算与化简6.化简1x-3-x+1x2-1(x-3)的结果是 ( )A.2B.2x-1C.2x-3D.x-4x-17.化简x(x-1)2-1(x-1)2的结果是______________.8.化简:1+1x÷2x-1+x2x.9.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的值代入计算.10.先化简,后求值:x-1x+2•x2-4x2-2x+1÷1x2-1,其中x2-x=0.类型之四整数指数幂11.计算:(1)(-1)2 013-|-7|+9×(7-π)0+15-1;(2)(m3n)-2•(2m-2n-3)-2÷(m-1n)3.类型之五科学记数法12.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 096 3贝克/立方米.数据“0.000 096 3”用科学记数法可表示为__________________ .类型之六解分式方程13.分式方程12x2-9-2x-3=1x+3的解为 ( )A.x=3B.x=-3C.无解D.x=3或-314.解方程:2x-1=1x-2.15.解方程:23x-1-1=36x-2.类型之七分式方程的应用16.李明到离家2.1千米的学校参加九年级联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行匀速回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校,已知李明骑自行车的速度是步行速度的3倍,且李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?17.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求:甲、乙两个工厂每天分别能加工多少件新产品.人教版八年级数学上册第1单元测试卷答案1.C2.≠-23.34.【解析】要使分式的值为0,必须使分式的分子为0,且分母不为0,即|x|-3=0且(x+2)(x-3)≠0.解:要使已知的分式的值为0,x应满足|x|-3=0且(x+2)•(x-3)≠0.由|x|-3=0,得x=3或x=-3,检验知:当x=3时,(x+2)(x-3)=0,当x=-3 时,(x+2)(x-3)≠0,所以满足条件的x的值是x=-3.5.=6.B 【解析】原式=1x-3-1x-1(x-3)=1-x-3x-1=x-1x-1-x-3x-1=2x-1.7.1x-18.解:原式=x+1x÷x2-1x=x+1x×x(x+1)(x-1)=1x-1.9.解:原式=1-a-1a×a(a+2)(a+1)(a-1)=1-a+2a+1=-1a+1.当a=3时,原式=-13+1=-14.(a的取值为0,±1,-2外的任意值)10.【解析】本题是一道含有分式乘除混合运算的分式运算,先化简,然后把化简后的最简结果与已知条件相结合,不难发现计算方法.解:原式=x-1x+2•(x+2)(x-2)(x-1)2•(x+1)(x-1)1=(x-2)•(x+1)=x2-x-2.当x2-x=0时,原式=0-2=-2.11.【解析】先算乘方,再算乘除.解:(1)原式=-1-7+3+5=0;(2)原式=m-6n-2•2-2m4n6÷m-3n3=14m-6+4-(-3)n-2+6-3=14mn.12.9.63×10-513.C 【解析】方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.检验:当x=3时,(x+3)(x-3)=0,即x=3不是原分式方程的解,故原方程无解.14.解:方程两边都乘(x-1)(x-2),得2( x-2)=x-1,去括号,得2x-4=x-1,移项,得x=3.经检验,x=3是原方程的解,所以原分式方程的解是x=3.15.解:方程两边同时乘6x-2,得4-(6x-2)=3,化简,得-6x=-3,解得x=12.检验:当x=12时,6x-2≠0,所以x=12是原方程的解.16.【解析】(1)相等关系:从学校步行回家所用的时间-从家赶往学校所用的时间=20分钟;(2)比较回家取道具所用总时间与42分的大小.解:(1)设李明步行的速度是x米/分,则他骑自行车的速度是3x 米/分,根据题意,得2 100x-2 1003x=20,解得x=70,经检验,x=70是原方程的解,所以李明步行的速度是70米/分.(2)因为2 10070+2 1003×70+1=41(分)<42(分),所以李明能在联欢会开始前赶到学校.17.【解析】本题的等量关系为:甲工厂单独加工完成这批产品所用天数-乙工厂单独加工完成这批产品所用天数=10;乙工厂每天加工的数量=甲工厂每天加工的数量×1.5,则若设甲工厂每天加工x件产品,那么乙工厂每天加工1.5x件产品,根据题意可分别表示出两个工厂单独加工完成这批产品所用天数,进而列出方程求解.解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意,得1 200x-1 2001.5x=10,解得x=40,经检验x=40是原方程的根,所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.。

初二第一单元数学练习题及答案

初二第一单元数学练习题及答案

初二第一单元数学练习题及答案一、选择题1. 下列哪个图形是正方形?A. △ABCB. □DEFGC. ○HIJKD. ∆LMNP答案:B2. 如果一辆车每小时行驶40千米,行驶8小时,共行驶了多少千米?A. 200B. 320C. 280D. 360答案:D3. 化简:2a + 3b + a - 2bA. 2a + bB. 3a + 5bC. 5a + bD. 4a + b答案:3a + b4. 小明购买了一双鞋,原价是180元,现在打7折出售,小明应该支付多少钱?A. 135元B. 140元C. 175元D. 126元答案:126元5. 已知正方形的边长为6cm,求其周长是多少?A. 12cmB. 18cmC. 24cmD. 36cm答案:24cm二、计算题1. 计算:35 + 48 - 26 + 13答案:702. 现有一个圆的半径为6cm,求它的周长和面积分别是多少?答案:周长约为 37.7cm,面积约为 113.1cm²3. 在一个长方形花坛中,长是12m,宽是5m,求花坛的面积是多少?答案:60m²4. 现有一条线段AB,长度为10cm,点C在线段AB上,AC的长度为3cm,求BC的长度。

答案:BC的长度为7cm5. 一块正方形的面积是64cm²,求它的边长是多少?答案:边长为8cm三、应用题1. 小明每周花10元零花钱,他存了20周,一共存了多少元?答案:小明一共存了200元。

2. 书架上有30本书,其中4分之1是数学书,其余是语文书,语文书有多少本?答案:语文书有22本。

3. 钢琴老师把一条长为2.4m的钢琴绳剪成3段,第一段是0.8m,第二段是0.5m,第三段和第二段一样长,求第三段的长度。

答案:第三段的长度是0.5m。

4. 小华和小明一起做作业,小华完成了3/5,小明完成了4/9,两人一共完成了多少?答案:两人一共完成了47/45。

5. 一个正方形花坛的周长是28m,另一个矩形花坛的长是正方形花坛的长的3倍,宽是正方形花坛的宽的2倍,矩形花坛的面积是正方形花坛的几倍?答案:矩形花坛的面积是18倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 勾股定理水平测试
一、选择题
1. 下列结论错误的是( )
(A )三个角度之比为1∶2∶3的三角形是直角三角形; (B )三条边长之比为3∶4∶5的三角形是直角三角形; (C )三条边长之比为8∶16∶17的三角形是直角三角形; (D )三个角度之比为1∶1∶2的三角形是直角三角形。

2. 小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( ) (A ) 小丰认为指的是屏幕的长度 (B ) 小丰的妈妈认为指的是屏幕的宽度
(C ) 小丰的爸爸认为指的是屏幕的周长 (D ) 售货员认为指的是屏幕对角线的长度. 3. 下列各组数中不能作为直角三角形的三边长的是( )
(A ) 1.5,2,3 (B ) 7,24,25 (C ) 6,8,10 (D ) 9,12,15. 4. 直角三角形两直角边长分别为3和4,则它斜边上的高是( )
(A ) 3.5 (B ) 2.4 (C )1.2 (D ) 5. 5. 长方形的一条对角线的长为10cm ,一边长为6cm ,它的面积是( ).
(A )60cm 2
(B )64 cm 2
(C )24 cm 2
(D )48 cm 2
6. 斜边为cm 17,一条直角边长为cm 15的直角三角形的面积是( ) (A) 60 (B) 30 (C) 90 (D) 120
7. 如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( ) (A ) 12米 (B ) 13米 (C ) 14米 (D ) 15米
8. 小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿了钱去图书馆,小芳到家用了6分,从家到图书馆用了8分,小芳从公园到图书馆拐了个( )角.
(A )锐角 (B )直角 (C )钝角 (D )不能确定
9. 如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路 程( 取3)是( ).
(A )20cm (B )10cm (C )14cm (D )无法确定
10. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )
(A ) 2m (B ) 2.5m (C ) 2.25m (D ) 3m 二、填空题
11、如图,带阴影的正方形面积是 .
5米 3米
12、如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.
13、如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________. 14、如图,由Rt △ABC 的三边向外作正方形,若最大正方形的边长为8cm ,则正方形M 与正方形N 的面积之和为 2
cm .
15、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的
边长为7cm,则正方形A ,B ,C ,D 的面积之和为 cm 2
.
16、 传说,古埃及人曾用"拉绳”的方法画直角,现有一根长24厘米的绳子,请你利用它拉出一个周长为24厘米的直角三角形,那么你拉出的直角三角形三边的长度分别为_______厘米,______厘米,________厘米.
17.一座桥横跨一江,桥长12m ,一艘小船自桥北头出发,向正南方向驶去,由于水流原因,到达南岸以后,发现已偏离桥南头5m ,则小船实际行驶了___________________m.
三、解答题
A
B
A
B
C
D
7cm
8 6
第11题
第12题
第13题
第14题 第15题
18、如图,小李准备建一个蔬菜大棚,棚宽4米,高3米,长20米,棚的斜面用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积.
3米
4米
19、如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?
A
E B
M
D
C H
C
F
20、如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。

C
A D
B
21、如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?
A1
B
A
22、如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为
a,b.利用这个图试说明勾股定理?
23.学校校内有一块如图所示的三角形空地ABC,计划将这块空地建成一个花园,以美化校
30元,学校修建这个花园需要投资多少元?
C
第21题图。

相关文档
最新文档