小升初奥数试题之行程问题(附答案).doc
小升初数学试题-专题17行程问题 有答案 全国通用

17.行程问题知识要点梳理一、基本公式:1.路程=速度×时间2.速度=路程÷时间3.时间=路程÷速度二、问题类型1.相遇问题:①相遇时间=总路程÷速度和②速度和=总路程÷相遇时间③总路程=速度和×相遇时间2.追及问题:①追及时间=路程差÷速度差②速度差=路程差÷追及时间③路程差=速度差×追及时间3.流水行船问题:①顺水速度=船速+水速②逆水速度=船速-水速③船速=(顺水速度+逆水速度)÷2④水速=(顺水速度-逆水速度)÷24.列车过桥问题:(1) 火车过桥(隧道):火车过桥(隧道)时间=(桥长+车长)÷火车速度(2) 火车过树(电线杆、路标):火车过树(电线杆、路标)时间=车长÷火车速度(3) 火车过人:①火车经过迎面行走的人:迎面错过的时间=车长÷(火车速度+人的速度)②火车经过同向行走的人:追及的时间=车长÷(火车速度-人的速度)(4) 火车过火车:①错车问题:错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)②超出问题:错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析典例精讲考点1 一般行程问题【例1】小王骑公共自行车从家去上班,每分钟行350米,用了20分钟,下午下班沿原路回家,每分钟比去时多骑50米,多少分钟到家?【精析】先根据路程=速度×时间,求出家到单位的距离,再求出下班的速度,最后根据时间=路程÷速度即可解答。
【答案】350×20=7000(米)350+50=400 (米/分)7000÷400=17.5(分钟)答:17.5分钟到家。
【归纳总结】本题考查知识点:依据速度,时间以及路程之间的数量关系解决冋题。
考点2 相遇问题【例2】甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A 城到B城需6小时,乙车从B城到A城需12小时。
(完整版)小升初行程问题经典试题

一、相遇问题1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6小时相遇,相遇后快车继续行驶3小时后到达乙站。
已知慢车每小时行45千米,甲、乙两站相距多少千米?2、甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距多少千米?3.一列快车从甲城开往乙城,每小时行65千米,一列客车同时从乙城开往甲城,每小时行60千米,两列火车在距中点20千米处相遇,相遇时两车各行了多少千米4、兄弟两人同时从家里出发到学校,路程是1400米。
哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。
从出发到相遇,弟弟走了多少米?相遇处距学校有多少米?5、有两只蜗牛同时从一个等腰三角形的顶点A出发(如图),分别沿着两腰爬行。
一只蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在离C点6米处的P点相遇,BP的长度是多少米?6、甲、乙两人同时从A、B两地相向而行,相遇时距A地120米,相遇后,他们继续前进,到达目的地后立即返回,在距A地150米处再次相遇,AB两地的距离是多少米?7、A、B两地相距38千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行8千米,乙每小时行11千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中相遇?相遇时距A地多远?10、甲、乙两人从A地到B地,丙从B地到A地。
他们同时出发,甲骑车每小时行8千米,丙骑车每小时行10千米,甲丙两人经过5小时相遇,再过1小时,乙、丙两人相遇。
求乙的速度。
11、甲、乙、丙三人行走的速度依次分别为每分钟30米、40米、50米。
甲、乙在A地,丙在B地,同时相向而行,丙遇乙后10分钟和甲相遇。
求A、B两地相距多少米?12、甲、乙两车分别从A、B两地同时相对开出,经过5小时相遇,相遇后各自继续前进,又经过3小时,甲车到达B地,这时乙车距A地还有120千米。
奥数行程问题归纳总结及部分例题及答案

行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。
每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度×时间2.相遇问题:路程和=速度和×时间3.追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。
第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。
总之,行程问题是重点,也是难点,更是锻炼思维的好工具。
只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
多人行程---这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。
小学奥数 行程问题(下)

专题三:行程问题(下)例15.甲、乙两辆车的速度分别为每小时52千米和40千米,它们同时从甲地出发开到乙地去,出发6小时,甲车遇到一辆迎面开来的卡车,1小时后,乙车也遇到了这辆卡车,求这辆卡车速度。
分析:题目中没有给任何卡车与甲车相遇前或与乙车相遇后的情况,因此只能分析卡车从与甲车相遇到乙车相遇这段时间的问题。
解:卡车从甲车相遇到与乙车相遇这段时间与乙车在做一个相遇运动,距离为出发6小时,甲、乙两车的距离差:(52-40)×6=72(千米)因此卡车与乙车速度和为:72÷1=72(千米/时)卡车速度为:72-40=32(千米/时)答:卡车速度为32千米/时。
注:在比较复杂的运动中,选取适当时间段和对象求解是非常重要的。
例16.一列客车与一列货车同时同地反向而行,货车比客车每小时快6千米,3小时后,两车相距342千米,求两车速度。
分析:已知两车行进总路程及时间,这是典型的相遇问题。
解:两车速度和为:342÷3=114(千米/小时)货车速度为:(114+6)÷2=60(千米/时)客车速度为114-60=54(千米/时)答:客车速度54千米/时,货车速度为60千米/时。
例17.甲以每小时4千米的速度步行去某地,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙几小时可以追上甲?解:路程差:4×4 = 16(千米)速度差:12—4 = 8(千米)追及时间:16÷8 = 2(小时)答:乙2小时可以追上甲。
例18.小明和小亮在一个圆形湖边跑步(假设他们跑步的速度始终不变),小明每分跑100米,小亮每分跑120米,如果他们同时从同一地点出发,相背而行,5分钟相遇,如果同时从同一地点出发,同向而行,几分钟后两人相遇?分析:前者小明和小亮在做相向运动,5分钟相遇,说明5分钟两人共跑了一周:如果同向跑,小亮要想和小明相遇,必须得追上小明,也就是说小亮要比小明多跑一圈,这就是一道追及问题。
(完整版)小升初数学行程问题应用题(附答案)

小升初数学行程问题应用题1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4。
5千米,乙行了5小时。
求AB两地相距多少千米?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB 两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0。
5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米? 12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。
最新小升初奥数试题之行程问题(附答案)

2003年,全年商品消费价格总水平比上年上升1%。消费品市场销售平稳增长。全年完成社会消费品零售总额2220.64亿元,比上年增长9.1%。二、资料网址:
(四)大学生对手工艺制品消费的要求
“碧芝”的成功归于他的唯一,这独一无二的物品就吸引了各种女性的眼光。随科技的迅速发展,人们的生活日益趋向便捷、快速,方便,对ห้องสมุดไป่ตู้我国传统的手工艺制作,也很少有人问津,因此,我组想借此创业机会,在校园内开个DIY创意小屋。它包括编织、刺绣、串珠等,让我们传统的手工制作也能走进大学,丰富我们的生活。
综上所述,DIY手工艺品市场致所以受到认可、欢迎的原因就在于此。我们认为:这一市场的消费需求的容量是极大的,具有很大的发展潜力,我们的这一创业项目具有成功的前提。如果顾客在消费中受到营业员的热情,主动而周到的服务,那就会有一种受到尊重的感觉,甚至会形成一种惠顾心理,经常会再次光顾,并为你介绍新的顾客群。而且顾客的购买动机并非全是由需求而引起的,它会随环境心情而转变。小升初奥数试题之行程问题(附答案)
2.www。cer。net/artide/2003082213089728。shtml。
2、传统文化对大学生饰品消费的影响
小学数学小升初行程问题总结及答案详解

⼩学数学⼩升初⾏程问题总结及答案详解⾏程问题经典题型1、甲、⼄两地相距6千⽶,某⼈从甲地步⾏去⼄地,前⼀半时间平均每分钟⾏80⽶,后⼀半时间平均每分钟⾏70⽶。
问他⾛后⼀半路程⽤了多少分钟?2、甲、⼄两辆汽车同时从东西两地相向开出,甲每⼩时⾏56千⽶,⼄每⼩时⾏48千⽶,两车在离两地中点32千⽶处相遇。
问:东西两地的距离是多少千⽶?3、李华步⾏以每⼩时4千⽶的速度从学校出发到20.4千⽶外的冬令营报到。
0.5⼩时后,营地⽼师闻讯前往迎接,每⼩时⽐李华多⾛1.2千⽶。
⼜过了1.5⼩时,张明从学校骑车去营地报到。
结果3⼈同时在途中某地相遇。
问:骑车⼈每⼩时⾏驶多少千⽶?4 ⼩轿车的速度⽐⾯包车速度每⼩时快6千⽶,⼩轿车和⾯包车同时从学校开出,沿着同⼀路线⾏驶,⼩轿车⽐⾯包车早10分钟到达城门,当⾯包车到达城门时,⼩轿车已离城门9千⽶,问学校到城门的距离是多少千⽶?5 ⼩张从家到公园,原打算每分种⾛50⽶.为了提早10分钟到,他把速度加快,每分钟⾛75⽶.问家到公园多远?6、上午8点8分,⼩明骑⾃⾏车从家⾥出发,8分钟后,爸爸骑摩托车去追他,在离家4千⽶的地⽅追上了他.然后爸爸⽴即回家,到家后⼜⽴刻回头去追⼩明,再追上⼩明的时候,离家恰好是8千⽶,这时是⼏点⼏分?“相遇问题”,常常要考虑两⼈的速度和.7、⼩张从甲地到⼄地步⾏需要36分钟,⼩王骑⾃⾏车从⼄地到甲地需要12分钟.他们同时出发,⼏分钟后两⼈相遇?8、⼩张从甲地到⼄地,每⼩时步⾏5千⽶,⼩王从⼄地到甲地,每⼩时步⾏4千⽶.两⼈同时出发,然后在离甲、⼄两地的中点1千⽶的地⽅相遇,求甲、⼄两地间的距离.9、⼀列长100⽶的⽕车过⼀座桥,⽕车的速度是25⽶/秒,它过桥⼀共⽤了10秒,那么桥的长度是多少?10、甲骑摩托车,⼄骑⾃⾏车,同时从相距126千⽶的A、B两城出发、相向⽽⾏。
3⼩时后,在离两城中点处24千⽶的地⽅,甲、⼄⼆⼈相遇。
求甲、⼄⼆⼈的速度各是多少?11、客轮⾏了全程的3\7时,货轮⾏全程的多少? 3/7×7/10=3/10 2.甲⼄两码头相距多少千⽶?12、A、B两城相距240千⽶,⼀辆汽车计划⽤6⼩时从A城开到B城,汽车⾏驶了⼀半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?13、两码头相距231千⽶,轮船顺⽔⾏驶这段路程需要11⼩时,逆⽔每⼩时少⾏10千⽶,问⾏驶这段路程逆⽔⽐顺⽔需要多⽤⼏⼩时?14、⼀辆汽车从甲地出发到300千⽶外的⼄地去,在⼀开始的120千⽶内平均速度为每⼩时40千⽶,要想使这辆车从甲地到⼄地的平均速度为每⼩时50千⽶,剩下的路程应以什么速度⾏驶?15、骑⾃⾏车从甲地到⼄地,以每⼩时10千⽶的速度⾏驶,下午1时到;以每⼩时15千⽶的速度⾏驶,下午1时到;以每⼩时15千⽶的速度⾏进,上午11时到;如果希望中午12时到,应以怎样的速度⾏进?16、⼀辆公共汽车和⼀辆⼩轿车同时从相距299千⽶的两地相向⽽⾏,公共汽车每⼩时⾏ 40千⽶,⼩轿车每⼩时⾏52千⽶,问:⼏⼩时后两车第⼀次相距69千⽶?再过多少时间两车再次相距69千⽶?17、⼀列客车与⼀列货车同时同地反向⽽⾏,货车⽐客车每⼩时快6千⽶,3⼩时后,两车相距342千⽶,求两车速度。
行程问题典型例题及答案详解

行程问题典型例题及答案详解行程问题是小学奥数中的重点和难点,也是西安小升初考试中的热点题型,纵观近几年试题,基本行程问题、相遇追及、多次相遇、火车、流水、钟表、平均速度、发车间隔、环形跑道、猎狗追兔等题型比比皆是,以下是一些上述类型经典例题(附答案详解)的汇总整理,有疑问可以直接联系我。
例1:一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了1/7,问:回来用了多少时间?分析与解答:在行程问题中,路程一定,时间与速度成反比,也就是说速度越快,时间越短。
设汽车去时的速度为v千米/时,全程为s千米,则:去时,有s÷v=s/v=4,则回来时的时间为:,即回来时用了3.5小时。
评注:利用路程、时间、速度的关系解题,其中任一项固定,另外两项都有一定的比例关系(正比或反比)。
例2:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。
解答:后半段路程长:240÷2=120(千米),后半段用时为:6÷2-0.5=2.5(小时),后半段行驶速度应为:120÷2.5=48(千米/时),原计划速度为:240÷6=40(千米/时),汽车在后半段加快了:48-40=8(千米/时)。
答:汽车在后半段路程时速度加快8千米/时。
例3:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?分析:求时间的问题,先找相应的路程和速度。
解答:轮船顺水速度为231÷11=21(千米/时),轮船逆水速度为21-10=11(千米/时),逆水比顺水多需要的时间为:21-11=10(小时)答:行驶这段路程逆水比顺水需要多用10小时。
例4:汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回到甲地,求该车的平均速度。