井网布置
【全文】油气田开发概论第2章、油藏工程基础

心井参数落实,精度>70% ——制定开发方案的依据
一级储量:探明储量(开发):第一批生产井(基础井网) 参数落实,有生产资料,精度>90%)
——生产计划、调整方案的依据
五、油藏驱动方式及其开采特征
了解油藏特性,预测未来动态,必须掌握有关油藏驱动机理的相关知识。
(二)油田开发指标
——在油气田开发过程中,人们定义一系列说明油 田开发情况的数据。
1、采油速度:年采油量与地质储量的比值,%。衡 量油田开采快慢的指标。
2、采出程度:油田某时期累积产油与地质储量的比 值,%。衡量油田储量的采出情况。
3、采收率:油田开发结束时的累积产量与地质储量 的比值,%。衡量油田开发效果的指标。
六、井网与注水方式 正形井网系统 以正方形井网为基础,井距:a;井距=排距
A、直线系统
M=1:1 F=2a2 S=a2
六、井网与注水方式
B、五点井网 M=1:1;F=2a2;S=a2 C、反九点井网 M=3:1;F=4a2;S=a2 D、反七点井网 M=2:1;F=3a2;S=a2
七、井网部署
1、划分开发层系的意义
(1)有利于发挥各个油层的作用,为油层比较均衡 开发打下基础,减少层间矛盾 (2)提高采油速度,缩短开发时间 (3)提高注水波及体积,提高最终采收率 (4)适应采油工艺技术发展的要求
(一)合理划分开发层系
2、划分开发层系的原则
(1)把特性相近的油层组合在同一开发层系,以保证各油 层对注水方式和井网具有共同的适应性,减少层间矛盾。
(2)一个独立的开发层系应具有一定的储量,以保证油田 满足一定的采油速度,并有较长的稳产期。
二次开发合理井网井距分析方法

SPC-井网密度,口/km2
1.1.1井网密度和水驱控制程度的关系
由上表可以看出,不同类型的油藏,水驱控制 程度对井网密度的敏感性差别很大,因此,要达 到同样的水驱控制程度,各类油藏所必须采用的 井网密度也相差很大。可见,在确定不同油藏的 注采井网密度时,首先应该定量的研究该油藏在 不同井网密度下水驱控制程度的好坏,才能为合 理井网密度的研究提供科学的前提,为合理注采 井网的部署提供可靠的依据。
Ⅴ
<5
18
对于具体油藏,通过研究其采收率和井网密度的具体关系,确定合理 的井网密度,以期达到较高的最终采收率。
1.2 油藏井网密度计算与评价
1.2.1采液吸水指数法 1.2.2合理采油速度法 1.2.3规定单井产能法 1.2.4注采平衡法 1.2.5分油砂体法 1.2.6单井控制储量法 1.2.7最终采收率分析法 1.2.8综合经济分析法 1.2.9俞启泰经验公式 1.2.10其他方法
回归经验相关关系式 M=98e-0.0101/spc M=91e-0.03677/spc
>120 80~120
Ⅲ
Ⅳ Ⅴ
30~80
10~30 <10
14
8 5
37.9
21.6 13.5
M=101.195e-0.0367/spc
M=94e-0.0583/spc M=100.93e-0.1012/spc
一、 合理注采井网系统研究
合理的井网密度进行研究。论证井网密度是油 田开发方案设计的一个极其重要的环节。因为井 网密度的大小直接影响采收率的高低、投资规模 的大小和经济效益的好坏。所谓合理井网密度是 指:在以经济效益为中心的原则下综合优化各项 有关技术、经济指标,包括水驱控制储量、最终 采收率、采油速度、钻井和地面建设等投资、原 油价格、成本、商品率、贷款利率、净现值、内 部收益率、投资回报期等,最后得到经济效益最 佳、最终采收率也高的井网密度。
地下水动态长期观测

地下水动态长期观测一、地下水动态长期观测的目的与任务(一)相明各种不同因素的综合作用对地下水的水位、水量、物理性质、化学成分以及细菌成分的影响变化。
通过地下水动态长期观测,可以了角地下水开采量和水位降深之间的关,以利于合理的调整开采水量,或者有计划地对地下水进行人工回灌。
(二)相清地下水与地表水体之间的动态联系。
(三)提供地下水资源评价所需要的水文地质参数。
通过长期观测工作后,相明不同水文地质单元、不同含水层的地下水动态规律,得出地下水动态要素随时间和空间变化的资料,以利于地下水资源计算和提出水资源管理措施等。
二、长期观测站网的建立和组织根据研究地下水动态的具体任务不同,水文地质观测站网一般分为两种:区域性的水文地质观测站网:也叫基本网,积累主要水文地质单元中地下水动态的多年观测资料,以查明区域性地下水动态规律。
专门性的水文地质观测站网:是为专门目的或特殊要求而建立的观测站网,常常是在水文地质勘察工作中按要解决的具体问题而组织观测的。
(一)观测点的选择观测点是观测站网的基本单位,应充分利用已有钻孔、水井及泉作为观测点,而且一定要选择水文地质条件有代表性而且井(孔)结构、地层剖面和井深都清楚,无人为干扰,能作长期使用的井(孔)。
一般不专门施工坦目的的观测孔。
利用泉作观测点要注意泉水协态的代表性和典型性以及其涌水量观测是否方便等。
(二)观测占的结构与安装长期观测孔的结构可以分为完整孔与不完整孔。
后者的深度最少要达最低水位以下数米。
孔径一般不要小于200mm。
对第四系含水层的潜水或承压水观测孔,在上部要安装观测套管,含水层部位要安装过滤管,底部要安装沉淀管,孔口要加保护帽。
对分层观测的井(孔)要严格进行止水,保证止水的位置正确。
分层观测井(孔)可采用同孔并列或同心式观测管设置。
基岩观测孔可直接将观测管固定在孔底基岩面上,下部不再下管。
观测孔安装时,在下管前要实测井深,为了防止从孔口掉入杂物,应将孔口管高出地面0.5m,并在孔口加盖上锁。
地下水 名词解释

1.起调埋深:潜水层在正常开采条件下,为保证农作物高产稳产、防止土壤沼泽盐渍化、避免土地沙化、维持生态平衡所应保持的潜水埋深
2.井群的布置:直线型布置、三角形和环形布置
3.井网的布置:梅花形井网(等边三角形)
4.地下水超采:一定地域内多年平均地下水实际开采量超过该地域的多年平均地下水可开采量,造成地下水水位多年持续下降的现象
5.井管类型:钢管、铸铁管、石棉水泥井管、塑料井管、混凝土和钢筋混凝土井管
6.大口井的组成:井台、井筒、进水部分
7.允许开采量:指通过技术经济合理的取水建筑物,在整个开采期内水量和动水位不超过设计要求,水质水温变化在允许范围内,不影响已建水源地正常生产,不发生危害性工程地质现象的前提下,单位时间内从水文地质单元中能够取得的水量
8.可开采量:在技术上可能,经济上合理和不造成水位持续下降、水质恶化及其其他不良后果条件下可供开采的多年平均地下水量。
9.地下水资源概念:地下水资源是指对人类生产与生活具有使用价值的地下水,它属于地球上水资源的一部分。
10.潜水含水层:它是指位于地面以下第一个相对稳定(连续分布)的隔水层以上并且具有自由水面的含水层。
11.承压含水层:它是指位于两个相对稳定隔水层(或弱透水层)之间具有静水压力的含水层。
12.降落漏斗:通常是水井中水位下降大,离井越远水位下降越小,形成漏斗状的的下降区,称为下降漏斗。
13影响半径:机井在抽水时,水位下降,井周围附近含水层的水向井内流动,形成一个以抽水井为中心的水位下降漏斗,这个水位下降漏斗的半径就叫影响半径。
14.土壤盐渍化:是指各种易溶性盐类在土壤表层逐渐积累的过程。
15.土壤的碱化:是指土壤胶体上交换性钠离子的饱和度逐渐增高的过程。
第七章注采井组动态分析

第七章注采井组动态分析注采井组动态分析是在单井动态分析的基础上进行的。
单井动态分析基本上以生产动态分析为主。
而井组动态分析则是生产动态分析和油藏动态分析并重的分析内容。
注采井组的划分是以注水井为重心,平面上可划分为一个注采单元的一组油水井。
井组分析的核心问题是在井组范围内找出注水井合理的分层配水强度。
在一个井组中,注水井往往起主导作用,它是水驱油动力的源泉。
从油井的不同的变化可以对比出注水的效果。
因此,一般是先从注水井分析入手,最大限度地解决层间矛盾,在一定程度上调解平面矛盾,改善层内矛盾,也就是说井组分析以找出和解决三大矛盾为目标。
来改善油井的生产状况,提高油田的注采管理水平。
本章所要讲的主要内容是:油田注水开发的“三大矛盾”,注水井的分析,井组动态分析的内容、方法、步骤、及井组动态分析的案例。
第一节注水开发的三大矛盾当注水开发多油层非均质的油田时,由于油层渗透率在纵向上和平面上的非均一性,注入水就沿着高渗透层或高渗透区窜流。
而中低渗透层或中低渗透区却吸水很少,从而引起一系列矛盾,归纳起来主要有三大矛盾。
一、注水开发的三大矛盾1.层间矛盾层间矛盾就是高渗透性油层与中、底渗透性油层在吸水能力、水线(油水前缘)推进速度等方面存在的差异性,是影响开发效果的主要矛盾,也是注水开发初期的根本问题。
生产开发中,高渗透油层由于渗透率高,连通性好,注水效果明显,表现为产油能力高,担负全井产量的大部分。
中、底渗透性油层则由于渗透率底,连通性差,表现为产油量底,生产能力不能充分发挥。
这样在油井中出现了层间压差。
图7-1层间矛盾示意256257在注水井中,高渗透层吸水能力强,可占全井吸水量的30%~70%以上。
水线前缘很快向生产井突进,形成单层突进,如图7-1所示。
因此,渗透率高、连通好的油层,由于注得多,采的多,生产井很快见到注水效果,含水很快上升。
高渗透油层见效及见水后,地层压力和流动压力明显上升,形成高压层,严重的干扰中、低渗透层的工作,致使这些层少出油或不出油,全井产量递减很快,含水上升。
原地浸出采铀合理井型与井距研究

原地浸出采铀合理井型与井距研究The research of reasonable well spacing and well pattern on in-situ leaching of uranium苏 学 斌1,2 王海峰2 韩青涛2Su xuebin W ang Haifeng Han qingtao(1.中国地质大学(北京),北京 100083;2.核工业北京化工冶金研究院,北京 101149)(1. China University of Geosciencs (Beijing ),Beijing 100083; 2.Beijing Research Institute of Chemical Engineering andMetallurgy,CNNC ,Beijing 101149)摘要:选择合理的井网布置是原地浸出采铀研究重要内容。
本文通过对矿体埋藏深度、矿石渗透性、矿体形态、矿石平米铀量、单孔抽液量及抽注液量比值等多种因素的分析, 提出了确定原地浸出采铀的井型与井距的原则。
通过运用溶浸液运移的模拟和技术经济比较等方法,指出了选择合理井型时,应根据砂岩铀矿床的具体条件而选择与之相适应的井型;当确定了井型时,应选取吨金属成本较低或经济效益最大时的井距作为合理的井距。
关键词:原地浸出采铀 井型 井距 溶浸液运移Abstract: It is important that the well pattern and well spacing are detemined reasonably during in-situ leaching mining of uranium.This paper analyzes various factors that inf luence the pattern and spacing of well, f or example: the depth of mineralization, the permeability of ore, the f orms of orebodies, uranium contents per square meter, the rate of pumping well and the ratio of the pumping to injecting, etc.. The reasonable principles of well pattern and well spacing are brought f orward: by the simulations of lixiviant transport models and the compares of technique economy, the appropriat e well patterns based on the actual conditions of the uranium deposits are pointed out; when reasonable well patterns are chosed, the reasonable well spacing may be detemined by the biggest economic benef its or the lower cost products.Key words: in-situ leaching of uranium; well pattern; well spacing; lixiviant transport; echnique economy前言原地浸出采铀是通过钻孔工程,借助化学试剂,从天然埋藏条件下把矿石中的铀溶解出来的集采、选、冶于一体的铀矿开采方法。
井网部署布井方式

c 在不利的流度比以下(大于1的流度比),驱替的不稳 定过程对五点和七点注水系统的波及系数的影响小于对 交错式,直线式及九点井网注水系统对波及系数的影响。
无量纲累积注水量Vi/Vd
图 3-6
图 3-7
图 3-8
图3-9
这四幅图是对各种井网在不同无量纲累积注水 量Vi/Vd时,流度比与面积波及系数的关系。 从图看出,见水后继续注水面积波及系数均可 继续增大,但随着注入倍数的增加,其驱替效 率也越来越低。如在五点系统,当流度比为1 时,注入倍数从0.3增到0.4时,面积波及系数 可提高10.5%,而注入倍数从0.9增到1.0时,面 积波及系数只提高1%。
1排
2排
3排
每口油井受六口注水 井影响 每口注水井控制三口 油井 注采比2:1 高强度注水
4排 5排
正 七 点 法
1排
2排 3排 4排 5排
每口油井受三口注水 井影响 每口注水井控制六口 油井 注采比1:2
正 四 点 法
注采井数比: 注/采= (n-3)/2 表3-1 各 面 积 注 水 井 网 特 征
第三章
油田开发部署
主
要
内 容
现代油藏工程设计_井网部署

kx
中国石油大学(北京)
14
§3-2 矢量井网
三、矢量井网部署
各向异性地层矢量井网的方向不再是0°、22.5 °、或45 °等一些 特殊的角度。 矢量井网的方向与地层渗透率主值之比(Ky/Kx)之间呈非线性关系。 当Ky/Kx =1.0时,油藏为各向同性介质,井网方向为45 ° ; 当Ky/Kx =0.5时,井网方向约为35 ° ; 当Ky/Kx =0.25 时,井网方向约为26 ° 。 ——合理的井网方向应随油藏的各向异性程度而进行灵活调整。
②反七点系统
M=2:1 ;F=2.598a2 ; S=0.866a2
③反九点系统
M=3:1 ;F=3.464a2 ;
S=0.866a2
中国石油大学(北京)
8
§3-2 矢量井网
一、地质矢量概念
油藏的地质参数具有较强的方向性——地质矢量
地质矢量(各向异性)和非均质性——影响开发效果
渗透率矢量:
பைடு நூலகம்
碎屑岩(沉积岩)——骨架颗粒——非球形(不规则椭球形 状)——定向排列趋势——长轴与水流一致——压实作用强化 其排列。
(2)根据油藏具体特点,选择合适的水驱方向。
中国石油大学(北京)
10
§3-2 矢量井网
三、矢量井网部署
油藏不同方向(α)渗透率大小的计算公式:
kn kmax cos 2 kmin sin2
矢量井网部署原则:均衡驱替 ——指通过注入井注到地下的流体在相同的时间驱替到 周围的每一口油井。
中国石油大学(北京)
二、油田注水方式
(一)正方形井网系统 ②反五点系统
M=1:1 ;F=2a2 ;S=a2
③反九点系统
M=3:1 ;F=4a2 ;S=a2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、多分支水平井井身结构多分支水平井是指在主水平井眼的两侧不同位置分别侧钻出多个水平分支井眼,也可以在分支上继续钻二级分支,因其形状像羽毛,国外也将其称为羽状水平井等。
多分支水平井集钻井、完井和增产措施于一体,是开发低压、低渗煤层的主要手段。
煤层气多分支水平井工艺集成了煤层造洞穴、两井对接、随钻地质导向、钻水平分支井眼、欠平衡等多项先进的钻井技术,具有技术含量高和钻井风险大的特点。
目前美国、加拿大、澳大利亚等国应用多分支水平井开采煤层气已取得了非常好的效益,而我国处于刚刚起步阶段。
2005年廊坊分院组织施工的武M1-1羽状水平井顺利完钻,该井垂深达900m,是世界最深的一口煤层气羽状水平井。
2005年底山西晋城大宁煤矿完成DNP01、DNP02两口羽状水平井,每口井的日产气量约为2~3万方。
2006年2月中联煤公司完成了DS-01井的钻井施工,目前该井处于排水阶段。
与此同时,华北与CDX、长庆、辽河、远东能源等国内外企业都已启动了羽状水平井开发煤层气的项目。
多分支水平井是煤层气高效开发方式的发展趋势,该技术的普遍应用必将为煤层气的勘探开发带来突破性进展,在我国掀起开发煤层气的热潮。
1 煤层气多分支水平井钻井技术难点分析煤层气多分支水平井工艺集成了水平井与洞穴井的连通、钻分支井眼、充气欠平衡钻井和地质导向技术等,这是一项技术性强、施工难度高的系统工程。
同时为了保持煤层的井壁稳定,煤层段一般采用小井眼钻进(φ152.4mm井眼),因而对钻井工具、测量仪器和设备性能等方面都提出了新的要求。
煤层气多分支水平井面临的主要难点可概括为如下几点:(1)煤层比较脆,而且存在着互相垂直的天然裂缝,而这种脆性地层中钻进极易引起井下垮塌、卡钻等复杂事故,甚至井眼报废。
(2)煤层易受污染,储层保护的难度大,一般需采用充气钻井液、泡沫或清水等作为煤层不受污染的钻井液体系。
(3)由于煤层埋藏比较浅,同时井眼的曲率较大,钻压难以满足要求,同时钻水平分支井眼时钻柱易发生疲劳破坏,导致井下复杂。
(4)煤层气多分支水平井工艺属于钻井新工艺,涉及到许多新式的工具和仪器,例如用于两井连通的电磁测量装置、小尺寸的地质导向工具和高效减阻短节等,目前这些装备和仪器在国内仍是一片空白。
2 井眼剖面设计与轨迹控制技术2.1 井眼剖面优化设计因为煤层一般较浅,所以煤层气多分支水平井主水平井眼采用消耗较少垂深而得到较大位移的理念进行井身剖面设计,从而达到更大的水垂比。
煤层气多分支水平井井身剖面设计主要考虑的因素有钻机和顶驱设备的能力、井眼的摩阻/扭矩大小、钻柱的强度、现场施工的难易程度等因素,主要有以下几项设计原则:2.1.1 主井眼入煤层方位的确定考虑煤层的产能优化和井壁稳定,尽量让进入煤层的井眼方位垂直于煤层最小主应力方向。
2.1.2 井眼轨迹设计必须满足现场施工工况的要求由于煤层气多分支水平井垂直井段短,通常在500m以内,而水平段一般在1000m以上,钻柱能提供的钻压是有限的,所以在多分支水平井井身剖面设计中,要使所设计的井眼轨迹满足滑动钻进时的工况要求。
2.1.3 井身剖面设计应当是满足各种设计条件下的最短轨迹根据煤田地质确定的目标点,按照不同设计方法设计出来的轨道,其长度是不同的。
显然应尽可能选择轨迹长度短的轨道,减少无效进尺,既可以提高钻井的经济效益,也可以降低施工风险。
同时应尽量缩小可钻性较差的地层进尺,例如尽量避开研磨性的宁武盆地石盒子组地层。
2.1.4 钻柱摩阻和扭矩最小煤层气多分支井的显著特点是水平位移大,分支较多,80%以上的进尺为水平段,从而导致钻柱和套管柱在井眼内摩阻和扭矩很大,以及钻压难以加上等问题,摩阻和扭矩是多分支水平井的水平位移大小的主要限制因素,所以应尽可能选择摩阻扭矩小的轨迹。
2.1.5 考虑到煤层的井壁稳定性差,主井眼和分支井眼要处于煤层的中上部位,以利于安全钻进。
2.1.6 分支井眼长度、方位和距离的优化设计需要结合煤层气藏、钻柱力学和经济评价等多方面的因素进行综合考虑。
2.2 井身结构优化设计井身结构优化设计是保证全井安全、快速钻达目的层并达到开发目的的重要前提。
2005年某国外公司在山西打了一口煤层气多分支水平井,由于设计的套管鞋进入了煤层,固井时密度为1.80g/cm3的水泥浆将煤层压裂,导致三开后的井壁坍塌,从而影响了整个井的施工。
煤层气多分支井井身结构设计与常规油气井的设计略有区别,需考虑洞穴井与水平井的连通、后期的排水采气和煤层的井壁稳定等因素。
水平分支井通常采用的井身结构为:φ244.5mm表层套管×H1+φ177.8mm技术套管×H2(下至造斜段结束处)+φ152.4mm主水平井眼(裸眼完井)+φ152.4mm分支水平井眼。
洞穴井的井身结构一般为:φ244.5mm表层套管×H1+φ177.8mm技术套管×H2(煤层顶)+裸眼段(包括口袋)。
另外煤层气多分支井井身结构的优化设计还需考虑以下因素:(1)由于煤层承压强度低,技术套管一定不能下到煤层中,防止固井时将煤层压裂,导致后续钻进过程中的井壁坍塌。
(2)从抽排采气的角度考虑,套管必须将煤层上部大量出水的层位封堵。
(3)为了在洞穴井井底造洞穴,井底必须留有合理容量的口袋。
口袋留深以不揭开下部含水层为基本原则,应优先考虑增大口袋留深。
(4)如果多分支水平井为多羽状,则水平井的技术套管不能够下到造斜段中,应下到造斜点以上部分,以便于后续的裸眼侧钻。
2.3 井眼轨迹控制技术煤层气多分支水平井定向控制的主要参数包括:井斜角、方位角、垂深。
水平井主井眼垂直段重点控制井斜,所以常用塔式钻具组合,如果井斜较严重,应使用钟摆钻具等纠斜钻具组合。
主井眼造斜段一般使用“导向马达+MWD”的常用定向钻具组合,施工过程中要确保工具的造斜率能够达到设计要求,使井眼轨迹在煤层中顺利着陆。
水平主井眼及分支一般采用“单弯螺杆钻具+LWD+减阻器”的地质导向钻具组合钻进,通过连续滑动钻进的方式实现增斜、降斜,通过复合钻进的方式稳斜,既达到了连续钻进的目的,又可随时根据需要调整井眼状态,有效地提高了钻井速度和轨迹控制精度。
为了很好地将井眼轨迹控制在煤层中,采用地质导向技术进行井眼轨迹实时监测与控制。
首先利用前期地震的资料建立区块的地质模型,然后利用从LWD 随钻监测到的储层伽玛、电阻率参数来修正地质模型并调整井眼轨迹。
另外,定向井工程师可以结合综合录井仪实时监测到的钻时和泥浆返出的岩屑,判断钻头是否穿出煤层。
煤层中的各个分支是在裸眼中侧钻完成的,裸眼侧钻是煤层气多分支井钻井中的难点。
由于煤层比较脆,所以煤层气多分支井的侧钻不同于油井的侧钻,具体的侧钻工艺如下:(1)起钻至每一个分支的设计侧钻点上部,然后开始上提下放,将钻柱中的扭力释放后开始悬空侧钻。
(2)侧钻时采取连续滑动的方式,严格控制ROP30S参数(30s的平均机械钻速),新井眼进尺的1~2m内ROP30S控制为0.8~1.2m/h,2~3m内控制为1.2~2.5m/h,3~10m内控制为3m/h,整个侧钻工序预计需要5个小时。
(3)侧钻时将工具面角摆到º,首先向左/右下方侧钻,形成了一条向下倾斜的曲线,如下图所示。
因为钻柱处于水平井眼的底部,而不是中心线部位,º的工具面角能够让钻头稳定地和井眼接触,以防止振动引起煤层的跨塌。
(4)滑动侧钻至设计方位和井斜后开始复合钻进,钻进过程中要密切注意摩阻扭矩的变化。
钻完每一个分支后,至少循环一周,然后起钻至下个分支的侧钻点位置。
重复上述步骤,完成其余分支井眼的作业。
图1 裸眼侧钻垂直剖面示意图3煤层造洞穴技术为了易于实现水平井与洞穴井在煤层中成功对接并且建立气液通道,需要在洞穴井的煤层部位造一洞穴,洞穴的直径一般为0.8~1.5m,高为2~5m。
目前有两种造穴方式,即水力造穴和机械工具造穴。
水力射流造穴法利用了高压水射流破碎岩石的能力,施工中用钻具把特殊设计的水力射流装置(图2)送入造穴井段,开泵循环,使循环钻井液在经过小喷嘴时产生高压水力射流,破坏煤储层,形成洞穴。
机械工具造穴利用机械切削的原理,用钻具把特殊设计的机械装置送入造穴井段,然后通过液压控制方式使造穴工具的刀杆张开,并在钻具的带动下旋转,切削储层,形成满足实际需要的洞穴。
图2 水力射流造穴示意图图3 常见的机械式造穴工具4、沁水盆地施工的多分支井井身结构特点:1)两分支井同时开发两层煤层2)两分支井同时开发一层煤层第二节煤层气井型的选择一、两种煤层气井的异同(一)两种井的差异性1、井身结构引起核心技术的差异垂直压裂井:一开钻至基岩,二开钻过目的煤层之下。
多分支水平井:通过随钻测试和造斜技术沿煤层钻进,钻一定长度的主井眼后,撤出一定距离,再侧钻一分支。
2、经济、外界环境的不同(二)两种煤层气井的相同点二、井型选择的影响因素(一)经济可行性(二)技术可行性1、资源丰度与规模含气量、煤厚、含气面积2、煤层气的渗透性和解析能力孔径、割理、煤阶、显微组分、吸附时间、饱和度3、媒体的结构坚固性系数、破坏类型4、水文地质条件水动力条件、构造条件5、外部环境:地形状况、市场需求、煤矿要求三、煤层气开发井型选择第三节煤层气开发井网布置井型选择是进行煤层气开发的基础。
一、井网布置的一般流程最优井网开发方案二、垂直压裂井井网优化垂直压裂井是国内外目前地面开发煤层气的主流井型。
(一)煤炭产业与煤层气产业有矿权纷争1、煤气最高允许含气量2、地面抽采经济评价3、井网布置样式及井位1)井网布置样式:矩形布井法、五点式布井法、梯形布井法、梅花形布井法。
2)井网方位4、井网密度。