人教版(五四制)数学七年级上册全册课件

合集下载

人教版七年级数学上册《相交线与平行线》知识点归纳(五四制)

人教版七年级数学上册《相交线与平行线》知识点归纳(五四制)

人教版七年级数学上册《相交线与平行线》知识点归纳(五四制)第十二章相交线与平行线相交线与平行线一:相交线(1)相交线的定义两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外)相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角: 1,2,3,4对顶角与邻补角(1)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.(2)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.(3)对顶角的性质:对顶角相等.(4)邻补角的性质:邻补角互补,即和为180°.(5)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的邻补角:其中1和2有一条公共边,且他们的另一边互为反向延长线。

像1和2这样的角我们称他们互为邻补角;对顶角:1和3有一个公共的顶点O,并且1的两边分别是3两边的反向延长线,具有这种位置关系的两个角,互为对顶角;1和2互补,2和3互补,因为同角的补角相等,所以1=3。

所以对顶角相等二:垂线(1)垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)垂线的性质过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”“过一点”的点在直线上或直线外都可以.如图所示,图中ABCD,垂足为O。

垂直的两条直线共形成四个直角,每个直角都是90。

垂线段最短(1)垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(2)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(3)实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.点到直线的距离(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.三、平行线在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).(1)平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.(2)同一平面内,两条直线的位置关系:平行或相交,对于这一知识的理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.如图,直线a与直线b平行,记作a//b平行线公理及推论(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.(3)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(4)平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.四、平行线的性质同位角、内错角同旁内角同一个平面中的三条直线关系三条直线在一个平面中的位置关系有4中情况:有一个交点,有两个交点,有三个交点,没有交点(1)有一个交点:三条直线相交于同一个点,如图所示,以交点为顶点形成各个角,可以用角的相关知识解决(2)有两个交点:(这种情况必然是两条直线平行,被第三条直线所截。

鲁教版(五四制)七年级上册数学课件第二章3简单的轴对称图形第1课时(鲁教版七年级上·五四制)

鲁教版(五四制)七年级上册数学课件第二章3简单的轴对称图形第1课时(鲁教版七年级上·五四制)

灿若寒星
灿若寒星
【规律总结】 角平分线图形结构中的位置及数量关系
如图,OC平分∠AOB,PD⊥OA,PE⊥OB,DE交OC于点F,
灿若寒星
可以得到以下结论: (1)角之间的相等关系: ∠AOC=∠BOC=∠PDF=∠PEF; ∠ODP=∠OEP=∠DFO=∠EFO=∠DFP=∠EFP; ∠DPO=∠EPO=∠ODF=∠OEF. (2)线段的相等关系: OD=OE,DP=EP,DF=EF. (3)位置关系:OP⊥DE.
灿若寒星
④由△ADB≌△ADC(SAS),知∠B=∠C,而∠BDE+∠B=90°, ∠CDF+∠C=90°, 所以∠BDE=∠CDF,④正确.
灿若寒星
5.如图,△ABC中,∠C=90°,∠BAC的
平分线交BC于点D,若AB=8,DC=2,则
△ABD的面积为________.
【解析】如图,过D作DE⊥AB于E,
灿若寒星
【跟踪训练】
3.工人师傅常用角尺平分一个任意角.
做法如下:如图,∠AOB是一个任意角,
在边OA,OB上分别取OM=ON,移动角尺,
使角尺两边相同的刻度分别与M,N重合.
过角尺顶点C作射线OC.由作法得△MOC≌△NOC的依据是( )
(A)AAS(B)SAS
(C)ASA(D)SSS
灿若寒星
【解析】选D.根据题意,在△MOC和△NOC中,有OM=ON,CM=CN, 还有公共边OC=OC,因此判断△MOC≌△NOC的依据是SSS,故选 D.
灿若寒星
【归纳】1.角是_轴__对__称__图形,_角__平__分__线__所在的直线是它的 对称轴. 2.角平分线的性质:角平分线上的点到这个角的两边的 _距__离__相__等__.

鲁教版(五四制)七年级上册数学课件第五章1确定位置(鲁教版七年级上·五四制)

鲁教版(五四制)七年级上册数学课件第五章1确定位置(鲁教版七年级上·五四制)
灿若寒星
【点拨】在现实生活中,确定位置的方式很多,不管什么定位 方式,平面内确定位置都需要两个数据. 【预习思考】北偏东30°能否确定物体的位置? 提示:不能.在平面内确定一个物体的位置要用两个数据,而 北偏东30°只有一个数据,故不能确定该物体的位置.
灿若寒星
知识点1生活中确定位置的方法 【例1】小明家和学校的位置关系如图所示,已知图上距离: OA=2cm,OB=2.5cm,OP=4cm,且C为OP的中点. (1)图中与小明家距离相等的是哪些地方? (2)从图上看商场、学校、公园、停车场分别在小明家的什么 位置?
【高手支招】 用有序实数对确定点的位置时,先确定两个实数的先后顺序, 同学们在做题时易由于颠倒而出错,应加强注意.
灿若寒星
1.某人站在A点,他不能确定B点位置的情况是( ) (A)B点离A点30m (B)B点离A点30m,且在A点北偏西30°方向上 (C)B点在A点向东30m,再向南20m位置 (D)B点在A点正南方向,且AB=50m 【解析】选A.B点离A点30m只能确定点B在以A为圆心,30m为半 径的圆上,不能确定具体位置.
灿若寒星
【互动探究】从商场向东多少cm,再向南多少cm恰好就是小明
家的位置?
提示:过点B作南北方向线的垂线,垂足为D,则∠BOD=30°,
所以BD=O1B=cm,5 由勾股定理可得OD=cm,则5 向3 东cm, 5
24
4
4
再向南c5m.3
4
灿若寒星
【规律总结】 平面上确定位置常用的三种方法
1.行列定位法:常把平面分成若干行、列,然后利用行号和列 号表示平面上点的位置.注意,同样的两个数据若顺序不同, 表示的位置则不同. 2.方位角距离定位法:该定位法常应用于航海和军事上,运用 此法需要两个数据:方位角和距离. 3.经纬定位法:该法需要两个数据经度和纬度.此方法在地理 学中有着极其广泛的应用灿.若寒星

鲁教版(五四制)数学七年级上册 第一章 1.3 全等三角形 复习课件 (16张PPT)

鲁教版(五四制)数学七年级上册  第一章  1.3 全等三角形 复习课件 (16张PPT)
直角三角形的
变式训练
1、若直线AE绕A点旋转到图(2)位置时(BD<CE), 其 余条件不变, 问BD与DE、CE的关系如何? 为什么?
2、若直线AE绕A点旋转到图(3)位置时(BD>CE), 其 余条件不变, 问BD与DE、CE的关系如何? 请直接 写出结果, 不需说明.
课堂小结
• 1、注意三角形全等中的对应关系,灵活运用 三角形全等的判定方法
A
E
D
2
B
1
C
变式训练
△ABC和△ECD都是等边三角形 如图1,若B、C、D三点在一条直线上,
求证:BE=AD;
多个直角型
例5、如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条 直线, 且B、C在A、E的异侧, BD⊥AE 于D, CE⊥AE于E,试说明: BD=DE+CE.
• (1) ΔABC和ΔDEF全等吗?请说明理 由
• (2) AB与DE平行吗?BC与EF平行吗
?说明理由
B
F
A
C
D
E
公共角、对顶角类型
• 例3、如图所示,AE=AD, AB=AC, 求证:△EAB≌△DAC.
A
在ΔEAB和ΔDACA中
Hale Waihona Puke DEOAE=AD ∠A=∠A
B
AB=AC
C
∴ΔEAB≌ΔDAC(SA
学习目标
1.梳理全等三角形的定义、性质 、判定方法等基本知识点; 2.进一步拓展应用全等三角形的 判定方法
3.整理基本模型,解决学习疑难.
• 学习重点:掌握全等三角形的 性质与判定方法.
• 学习难点:全等三角形性质及 判定方法的运用.

2020最新鲁教版七年级数学上册(五四制)电子课本课件【全册】

2020最新鲁教版七年级数学上册(五四制)电子课本课件【全册】

2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
第二章 轴对称
2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
1 轴对称现象
2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
第一章 三角形
2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
1 认识三角形
2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
2 图形的全等
2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
3 探索三角形全等的条件
2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
4 三角形的尺规作图
2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
5 利用三角形全等测距离
2020最新鲁教版七年级数学上册( ቤተ መጻሕፍቲ ባይዱ四制)电子课本课件【全册】目

0002页 0036页 0068页 0119页 0146页 0198页 0219页 0257页 0314页 0362页 0419页 0472页 0512页 0543页 0598页 0661页
第一章 三角形 2 图形的全等 4 三角形的尺规作图 第二章 轴对称 2 探索轴对称的性质 4 利用轴对称进行设计 1 探索勾股定理 3 勾股定理的应用举例 1 无理数 3 立方根 5 用计算器开方 第五章 位置与坐标 2 平面直角坐标系 第六章 一次函数 2 一次函数 4 确定一次函数的表达式

七年级数学上册第一章三角形1认识三角形第1课时课件鲁教版五四制

七年级数学上册第一章三角形1认识三角形第1课时课件鲁教版五四制

至D. 因为∠ACE =∠A, 所以CE∥AB,
所以∠DCE =∠B,
又因为 ∠ACE+∠DCE +∠ACB =180°,
所以 ∠A+∠B+∠C=180°.
三角形分类
锐角三角形 (三个内角都是锐角)
直角三角形 (有一个内角是直角)
钝角三角形 (有一个内角是钝角)
【探究新知】
“直角三角形ABC”用“Rt△ABC”表示.
C
此图中有几个三角形? 你能表示出来吗?
DE B
6个,△ABD, △ADE, △AEC, △ABE, △ADC, △ABC.
【想一想】
三角形的三个内角有什么关系? 三角形三个内角的和等于180°. 小学里,是用什么方法得到三角形内角和为180°的 结论的?
将一个三角形的三个角撕下来,拼在一起,可以得到 三角形的内角和为180°.
三边可表示为AB,BC,AC,顶点A所对的边BC也 可表示为a,顶点B所对的边AC也可表示为b,顶点 C所对的边AB也可表示为c.
【揭示新知】
1.当表示三角形时,字母没有先后顺序.
2.如图,我们把BC(或a)叫做A的对边,把AB(或c)、 AC(或b)叫做A的邻边.
A
c
b
B
a
C
如果我说三角形有三要素,
3.(苏州·中考)△ABC的内角和为( )
(A)180°
(B)360°
(C)540°
(D)720°
【解析】选A.根据三角形的内角和为180°,得△ABC
的内角和为180°,故A正确.
通过本课时的学习,需要我们掌握: 1.三角形的概念. 2.三角形的内角和为180°. 3.三角形的任意两边之和大于第三边,任意两边之 差小于第三边. 4.直角三角形两个锐角互余.

人教版五四制七年级数学上册全套教案

人教版五四制七年级数学上册全套教案

从算式列方程【教学目标】1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。

2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。

3.培养学生获取信息,分析问题,处理问题的能力。

【教学重难点】重点:掌握如何列出方程,了解方程的概念。

难点:掌握方程的实际应用。

【教学过程】一、直接引入师:今天这节课我们主要学习从算式列方程,这节课的主要内容有从算式列方程,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。

二、讲授新课(1)教师引导学生在预习的基础上了解从算式列方程内容,形成初步感知。

(2)首先,我们先来学习从算式列方程,它的具体内容是:含有未知数的等式叫做方程。

方程和等式的联系:方程是一种特殊的等式;等式包含方程。

方程和等式的区别:方程是含有未知数的等式;等式可以含有未知数,也可以不含未知数。

只含有一个未知数(元),未知数的次数都是1,等号两边都是整式这样的方程叫做一元一次方程。

在理解一元一次方程时,要注意把握三点:(1)含有一个未知数;(2)未知数的次数是1;(3)是整式方程,也就是分母中不含有未知数。

它是如何在题目中应用的呢?我们通过一道例题来具体说明。

例:下列各式哪些是方程?(1)347+=;(2)275x -=;(3)2256x x -=-解一元一次方程(一)——合并同类项和移项【教学目标】1.掌握解方程中的合并同类项。

2.熟练运用移项变号法则解决一些实际问题。

3.亲历移项变号进行解方程的探索过程,体验分析归纳得出移项变号法则,进一步发展学生的探究、交流能力。

【教学重难点】重点:掌握利用合并同类项移项变号法则解一元一次方程。

难点:正确地找到等量关系列一元一次方程,会用“数学建模思想”解决实际问题,用“化归思想”分析以及分类讨论思想解方程。

初步养成了学生与他人合作交流、勇于探索的良好习惯。

【教学过程】一、直接引入师:今天这节课我们主要学习解一元一次方程(一)——合并同类项和移项,这节课的主要内容有解一元一次方程(一)——合并同类项和移项,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。

认识三角形课件2021-2022学年鲁教版(五四制)数学七年级上册

认识三角形课件2021-2022学年鲁教版(五四制)数学七年级上册

(1)
(2)
(3)
锐角三角形


形 的
钝角三角形


直角三角形
三个内角都是锐角 有一个内角是钝角 有一个内角是直角
1.常用符号“Rt∆ABC”来表示 直
直角三角形ABC.


2.直角三角形的两个锐角之间
有什么关系? 直角三角形的两个锐角互余
斜 边
直角边
如果一个三角形有两个角互余,.1.2 认识三角形
由不在同一直线的三条线段
首尾顺次连接所组成的图形叫三角形。
A
“三角形”可
以用符号“Δ”
表示
B
C
三条边 三个顶点 三个内角
三角形的三个内角和 等于180度.
下面的图⑴、图⑵、图⑶中的三角形被遮住 的两个内角是什么角?试着说明理由。
(1)
(2)
(3)
将图⑶的结果与图⑴、图⑵的结果进行比较, 可以将三角形如何按角分类?
5.在△ABC中, ∠A=1/3∠B=1/5∠C,则△ABC 是 钝角 三角形.
6.已知∠ACB=90°,CD⊥AB,垂足为D. ⑴ 图中有几个直角三角形?是哪几个?分别
说出它们的直角边和斜边。 ⑵ ∠ACD和∠A有什么关系?∠BCD和∠A呢?
C
B
DA
C
解:(1)直角三角形
有三个,分别是:
B
DA
2.直角三角形的两个锐角互余。
请你谈一谈:
通过这节课的学习,你对三角形 又多了哪些认识?
1.观察下面的三角形,并把 它们的标号填入相应图内:







锐角三角形 直角三角形
③⑤
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上册 数学 全册优质课件
从算式列方程
你知道什么 叫方程吗?
含有未知数的 等式——方程 你能举出一些 方程的例子吗?
练习:
1.判断下列式子是不是方程,正确打“√”,错误打 “x ”. (1) 1+2=3 ( x) (2) 1+2x=4 (√ ) (4) x+y=2 (√ ) (3) x+1-3 (x ) (5) x2-1=0 (√ )
2、重温新知
感受过程
1、只含有一个未知数(元),未 知数的次数都是1, 这样的整式方 程叫做——一元一次方程
2、列方程的步骤:
①先设字母表示未知数 ②根据问题中的相等关系,建立等式。 (即:设未知数,找等量关系,建立方程)
简称:设、找、列
4、巩固方法 体会新知
例1 根据下列问题,设未知数并列出方程:
例1:一元一次方程2x=4的解为( )
A、2 B、4 C 、3 D、1
练习3:
一元一次方程2x-6=0的解为(
A、2 B、4 C、3

D、1
5、 归纳总结 巩固发展
练习:根据下列问题,设未知数,列出方程,并指 出是不是一元一次方程: (1)环形跑道一周长400 m,沿跑道跑多少周,可 以跑3 000 m? (2)甲种铅笔每支0。3 元,乙种铅笔每支0。6 元, 用9 元钱买了两种铅笔共20 支,两种铅笔各买了多少支? (3)一个梯形的下底比上底多2 cm,高是5 cm,面 积是40 cm2,求上底. (4)用买10 个大水杯的钱,可以买15 个小水杯, 大水杯比小水杯的单价多5 元,两种水杯的单价各是多 少元?
归纳:
1、像这种用等号“=”来表示相等关系的式子, 叫等式。
2、像这样含有未知数的等式叫做方程。
即:含有未知数的等式——方程
1。 观察归类,定义新知 练习:下列式子哪些是方程? ( 1) 2 x 1 ;(2)2m 15 3 ;
2
( 3) 3 x-5=5 x+4 ;(4)x +2 x-6 0 ; (5)3 x+1.8=3 y ;(6)3a 9 15 .
1 700+150 × 2=2 000. x


2 000

2 150
4 5ห้องสมุดไป่ตู้
2 300 2 450

2 600
… …
1 700+150x 1 850
当x=5时,1 700+150x的值是2 450,方程1 700+150=2 450中的未知数的值应是5.
像这样,使方程等号两边相等的未知数的值叫方 程的解。
问题1:一辆客车和一辆卡车同时从A地出发沿同一公 路同方向行驶,客车的行驶速度是70 km/h,卡车的行 驶速度是60 km/h,客车比卡车早1 h经过B地。 A,B两 地间的路程是多少? 客车 x 千米 B A x 卡车 h 60 解:设A,B两地间的路程是 x km, x 客车从A地到B地的行驶时间可以表示为:70 h 卡车从A地到B地的行驶时间可以表示为:
3 x 2 3 x 2 y (A) (B) x 1 0(C) 2 (D) 2
3
x
1、 创设情境 提出问题 问题1:一辆客车和一辆卡车同时从A地出发沿同一 公路同方向行驶,客车的行驶速度是70 km/h,卡车 的行驶速度是60 km/h,客车比卡车早1 h经过B地。 A,B两地间的路程是多少?
一元一次方程
分析实际问题中的数量关系,利用其中的相等 关系列出方程,是用数学解决实际问题的一种方法。
想一想:
使得方程1 700+150x = 2 450成立, x 的值应 为多少? 如果x=1,1 700+150x的值是
1 700+150 × 1=1 850 ;1 700+150x的值是 如果x =2,
(7) 1 x 1 0


(8)5x 0

9 2x 1 3 ;
10 3 4 7

(2)(3)(4)(5)(8)是方程。
想一想、议一议
(2) 2m 15 3 (3)3 x-5=5 x+4
(8)5x 0
问题:观察上面例题列出的三个方程有什么特征? (1)只含有一个未知数, (2)未知数的指数都是1, (3)等号两边都是整式(即:整式方程). 只含有一个未知数(元),未知数的次数都是1, 这样的整式方程叫做一元一次方程.
目标检测 1。下列各式中,是方程的是( )。 ① 36 9 ; ② 2x 1 ; ③ 1 x 1 5 ; 3 2 ④ 3 x 4 y 12 ; ⑤5 x x 3 . (A)①②③④⑤ (C)②③④⑤ (B)①③④⑤ (D)③④⑤
2。下列各式中,是一元一次方程的是( )。
(1)用一根长24 cm的铁丝围成一个正方形,正 方形的边长是多少? 解:设正方形的边长为x cm。 4 x=24 。 列方程
4、 巩固方法 体会新知
(2)一台计算机已使用1700 h,预计每月再使用 150 h,经过多少月这台计算机的使用时间达到规定 的检修时间2450 h?
解: 设x月后这台计算机的使用时间达到2450 h, 那么在x月里这台计算机使用了150x h。 列方程 1700 150 x 2450 。
你会用算术方法解决这个问题吗?
1、创设情境 提出问题
问题1:一辆客车和一辆卡车同时从A地出发沿同一 公路同方向行驶,客车的行驶速度是70 km/h,卡车 的行驶速度是60 km/h,客车比卡车早1 h经过B地。 A,B两地间的路程是多少? 此题中涉及哪些量,这些量可以用什么关系表示? 你认为引进什么样的未知量用方程表示这个问题?
4、 巩固方法 体会新知
(3)某校女生占全体学生数的52%,比男生多80 人,这个学校有多少学生? 解:设这个学校的学生数为x,那么女生数为0。 52x, 男生数为(1-0.52)x。 列方程 0.52 x 1 0.52 x 80 。
5、 归纳总结 巩固发展
实际问题 设未知数 列方程
x x 因为客车比卡车早1 h经过B地,所以 70 比 60 小 x x
于1 , 1 列方程的依据是什么? 60 70
1、 创设情境 提出问题
问题1:一辆客车和一辆卡车同时从A地出发沿同一 公路同方向行驶,客车的行驶速度是70 km/h,卡车 的行驶速度是60 km/h,客车比卡车早1 h经过B地。 A,B两地间的路程是多少? 问题2:对于上面的问题,你还能列出其他方程吗?
相关文档
最新文档