火焰传感器模块电路图
火焰传感器

+第一章引言第一章引言工业生产中,燃料的燃烧以及设备的结构都闩益复杂,对热工参数提出了严格的要求,燃料和设各的防爆问题也变的突出起来,目前很多电站都安装了安全监控系统,防止爆炸。
安全监控系统,它是燃烧器控制和燃料安全燃烧系统,主要由火焰检测、逻辑组件、外围设备等三大部分构称。
火焰检测装麓是安全监控系统的重要组成部分。
从实际使用情况看.火焰检测装簧的使用效果普遍较差,经常出现有火焰检测不出或没火焰误检测为有火焰等问题。
造成这些情况的原因是多方匠的,比如火焰检测装置选型与炉型不匹配、火焰检测装置位置安装不当、火焰检测装置参数设置不当、检测装置部件故障。
火焰检测装置是炉膛安全监控系统十分重要的组成部分,火焰检测装簧能否实时检测炉膛燃烧状态,能否正确反映燃烧状态是锅炉安全可靠运行的十分重要条件。
国外的检测水平比较成熟,价格比较贵。
我国电站使用的火焰检测装置五花八门,品种比较多.在使用中不尽人意。
因此,结合国外先进技术,针对我国电站锅炉燃烧特点,开发火焰检测装置是非常必要的。
火焰检测器将锅炉火焰信号转换为电信号,是本文研究的重点。
通过在熟悉、学习国内外各种成熟的火焰检测装置的基础上,针对我国电站锅炉,对火焰检测装置进行创新和改进。
本文开发研制的新型的火焰检测装置需要具备能实时的反映锅炉的燃烧状态。
直观显示火焰信号强度和背景电平:操作简便,利用面板上的增益调节钮和薄膜按键,可以方便地调节火焰增益、背景信号、延迟时间及模拟量的输出;具备延时功能,针对火焰信号的漂动不定,设置失去火焰信号后.1—los之间的可调延时功能,避免火焰信号的误判断;自检功能,火焰信号处理器在正常工作的过程中,每隔2分钟进行自检,保证信号处理器或检测器工作异常或发生故障,能发出报警信号。
第二章系统方案设计第二章系统方案设计2.1 红外线火焰检测器火焰中存在大量的可见光和0.9Pm以上的红外线,这些波长的光线不易被煤尘、水蒸气和其它燃烧产物吸收,因此适用予检测煤粉火焰和重油火焰。
实验 传感器之火焰篇

物质为主体的高温固体微粒构成的。
火焰的热辐射具有离散光谱的气体辐射和连续光谱的固体辐射。
不同燃烧物的火焰辐射强度、波长分布有所差异,但总体来说,其对应火焰温度的1 ~2 μm 近红外波长域具有最大的辐射强度。
例如汽油燃烧时的火焰辐射强度的波长。
火焰传感器是机器人专门用来搜寻火源的传感器,当然火焰传感器也可以用来检测光线的亮度,只是本传感器对火焰特别灵敏。
火焰传感器利用红外线对对火焰非常敏感的特点,使用特制的红外线接受管来检测火焰,然后把火焰的亮度转化为高低变化的电平信号,输入到中央处理器中,中央处理器根据信号的变化做出相应的程序处理。
火焰传感器是探测在物质燃烧时,产生烟雾和放出热量的同时,也产生可见的或大气中没有的不可见的光辐射。
火焰传感器又称感光式火灾传感器,它是用于响应火灾的光特性,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾传感器。
理;2、通过该实验项目,学生能够学会编写火焰传感器的程序。
1、编写一个读取火焰传感器输出电平信号的程序;2、将火焰检测状态做简单的处理显示,正常无火焰状态为0,检测到火焰状态为1;3、用按键KEY1控制ZIGBEEN 是否发送数据。
6.4.1 硬件部分1、ZIGBEE调试底板一个; 图6-1 ZIGBEE 调试底板2、20PIN 转接线一条和带USB 的J-Link 仿真器一个;图6-2 J-Link 仿真器3、转接板一个; 实验内容 6.3 实验设备 6.4 电源开关 电源传感器C 端口 指示灯 2 J-LINK 接ZigBee_DEBUG复位键 节点按键 拨码开关 ZigBe 按键 红外发射 指示灯1ZigBee 复位键 可调电阻传感器A 端口 传感器B 端口 方口USB 线,另一端连接电上电指示灯 20PIN 转接线,另一端接转接板 20PIN 转接线接口 10PIN 转接线接口串口接口图 6-3 转接板4、9~12V 电源适配器2个; 图6-4 电源适配器5、带普通USB 线的ZIGBEE 仿真器一个;图6-5 ZIGBEE 仿真器6、智能网关一台;图6-6 智能网关 7、ZIGBEE 模块两个;图 5-7 ZIGBEE 模块8、火焰传感器一个;图 6-8 火焰传感器 9、10PIN 转接线和传感器连接线各一条。
实验传感器之火焰篇

物质为主体的高温固体微粒构成的。
火焰的热辐射具有离散光谱的气体辐射和连续光谱的固体辐射。
不同燃烧物的火焰辐射强度、波长分布有所差异,但总体来说,其对应火焰温度的1 ~2 μm 近红外波长域具有最大的辐射强度。
例如汽油燃烧时的火焰辐射强度的波长。
火焰传感器是机器人专门用来搜寻火源的,当然火焰传感器也可以用来检测光线的亮度,只是本传感器对火焰特别灵敏。
火焰传感器利用红外线对对火焰非常敏感的特点,使用特制的红外线接受管来检测火焰,然后把火焰的亮度转化为高低变化的电平信号,输入到中央处理器中,中央处理器根据信号的变化做出相应的程序处理。
火焰传感器是探测在物质燃烧时,产生烟雾和放出热量的同时,也产生可见的或大气中没有的不可见的光辐射。
火焰传感器又称感光式火灾传感器,它是用于响应火灾的光特性,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾传感器。
理;2、通过该实验项目,学生能够学会编写火焰传感器的程序。
1、编写一个读取火焰传感器输出电平信号的程序;2、将火焰检测状态做简单的处理显示,正常无火焰状态为0,检测到火焰状态为1;3、用按键KEY1控制ZIGBEEN 是否发送数据。
6.4.1 硬件部分1、ZIGBEE调试底板一个; 图6-1 ZIGBEE 调试底板2、20PIN 转接线一条和带USB 的J-Link 仿真器一个;图6-2 J-Link 仿真器3、转接板一个; 实验内容 实验设备 电源开关 电源传感器C 端口 指示灯 2 J-LINK 接ZigBee_DEBUG复位键 节点按键 拨码开关 ZigBe 按键 红外发射 指示灯1ZigBee 复位键 可调电阻传感器A 端口 传感器B 端口 方口USB 线,另一端连接电上电指示灯 20PIN 转接线,另一端接转接板 20PIN 转接线接口 10PIN 转接线接口串口接口图 6-3 转接板4、9~12V 电源适配器2个; 图6-4 电源适配器5、带普通USB 线的ZIGBEE 仿真器一个;图6-5 ZIGBEE 仿真器6、智能网关一台;图6-6 智能网关 7、ZIGBEE 模块两个;图 5-7 ZIGBEE 模块8、火焰传感器一个;图 6-8 火焰传感器 9、10PIN 转接线和传感器连接线各一条。
消防模块的接线图

松江消防设备利达消防设备现场编写逻辑关系及后期维护保养建议采取以下顺序编址:感烟探测器→感温探测器→燃气探测器→手动报警按钮→消火栓按钮→输入模块→输入输出模块。
其次是探测器、模块等的接线方式。
一、现场经常用到的几种探头1、LD10EN底座:用于LD3000EN/A、LD3300EN等探测器,采用二总线并联接线方式,TC+,TC-端子不分正负极。
图1.12、LD2000E-A手动火灾报警按钮内部接线图(如图1.2所示):3、4脚是二总线端子,TC2、TC1无极性,1、2脚是一组无源常开接点,通过电压小于30V通过电流100MA,5脚6脚是备用消防电话接口,配合电话手柄使用。
如使用总线电话需要配合总线电话模块使用。
图1.23、LD2001EN消火栓按钮内部接线图(如图1.3所示):3、4脚是二总线端子,TC2、TC1无极性,1、2脚是一组无源常开接点,接直接启泵线(图1.4),通过电压小于30V通过电流 100MA,7脚是24V+,8脚是消防泵的反馈线。
图1.3图1.44.、LD3101/B点型可燃气体探测器内部接线示意图(如图1.5所示):TC+,TC-,24V+,24V-四个端子。
3101/B点型可燃气体探测器探头编码方式是将TC+与24V+短接,TC-与24V-短接,用编码器的红色夹子夹在TC+上,黑色夹子夹在TC-上进行编码。
图1.55、LD4400EN-1/2输入模块端子图与接线图示例(如图1.6、1.7所示):6脚5脚是二总线TC+,TC-原则上不分正负极,11脚12脚是一组无源长开点,8脚7脚是一组无源长开点。
端子现场设备上需要加15K线路检测电阻。
图1.6图1.76、LD6800EC-1输入/输出模块内部接线图(如图1.8所示):1脚24V+,2脚24V-必须分极性,5、6脚TC+、TC-,11、12脚现场反馈信号接入点,需要接82K线路检测电阻。
9、10脚24V输出,接5.1K线路检测电阻。
火焰监测系统

2、火焰监测系统火焰监测系统主要由火焰传感器、火焰继电器组成。
火焰监测系统功能:火焰传感器接受光源照射后,光电二极管导通,电信号通过火焰继电器被传送到PLC中,以完成对点火和正常温度功能的控制。
在点火及正常温度控制工程中,如出现故障导致火焰熄灭、燃油泵及风油调节电动机等会自动停止工作,以保证燃烧器控制系统的安全。
3、温度控制系统温度控制系统主要由燃油泵及其控制电磁阀、风油连动调节机构及其控制盒、鼓风机及其控制电磁阀、温度传感器组成。
温度控制系统功能:温度传感器将检测到的温度信号传送到PLC中,PLC将实际温度与设定的温度进行比较,并根据比较结果自动调节火焰大小,使矿料加热温度控制在设定范围内。
PLC自身带有PID调节功能,并具有自适应、自整定功能,可根据现场的实际情况自整定PID的参数,参数调整好后,温度控制器选择自动工作状态,其温度控制准确、稳定,误差在 5C0以内。
二、燃烧器自动控制过程根据燃烧器控制系统开关量及温度模拟量采集的要求,以西门子PLC为例,燃烧控制系统的接线图、CPU模块、EM235模拟量扩展模块地址资源及功能说明,如图7.22所示。
图7.22 燃烧器控制系统工作原理图燃烧器自动控制过程操作燃烧启动点火、运转、温度自动控制、停止的过程,其程序逻辑框图如图7.23所示。
图7.23 燃烧器自动控制过程程序逻辑框图7.5 称量及搅拌控制系统7.5.1称量及搅拌控制系统的组成及功能称量及搅拌控制系统,主要由电子称量系统、称门仓门控制系统、可编程序控制器(或智能控制仪表)工业计算机组成,如图7.24所示。
称量搅拌控制系统是通过工业计算机输入的配方(沥青混合料拌合设备生产配合比)后,按照一定的程序手动或自动完成以下循环过程:将不同规格的热矿料依次累加称量(先沥青称量,后称量矿粉),并按顺序放入搅拌器中,经搅拌器搅拌合格后,由搅拌器底门排入运输车辆或成品料小车中,依次循环。
图7.24 称量及搅拌控制系统组成示意图1、电子称量系统电子称量系统由电子重力传感器、信号放大处理控制器、可编程序控制器(或智能控制仪表)组成,传感器将信号传送到信号放大处理控制器上,信号放大处理控制器采用高精度线性放大器,将信号调整并放大成标准电流或电压信号输送到可编程序控制器或智能仪表中。
火焰传感器电路图

}
if(RI) { date=SBUF; //单片机接受 SBUF=date; //单片机发送 RI=0; }
} }
火焰传感器电路图
光敏电阻模块
公开电路图,需要的朋友可以参******************************* 深圳市育松丰川电子有限公司 传感器触发测试 单片机:STC89C52 波特率:9600
产品用途:光线检测。 *****************************************/ #include <reg52.h> unsigned char date; #define uchar unsigned char #define uint unsigned int sbit key1=P0^1;
/* 函数申明 -----------------------------------------------*/ void delay(uint z); void Initial_com(void); //*********************************************************** /* ******************************************************************* ************* ** 函数名称 : delay(uint z) ** 函数功能 : 延时函数 ******************************************************************* ************* */ void delay(uint z)
{ uint i,j; for(i=z;i>0;i--) for( j=110;j>0;j--); }
物联网环境下基于Arduino的火焰监测报警器的设计与实现

智能应用0 引言在各种灾害中,火灾是最经常、最普遍地威胁公众安全和社会发展的主要灾害之一。
近几年来,我国每年发生火灾约4万起,每年火灾造成的直接财产损失10多亿元,因此火灾的预警装置也是人们一直探索的科研项目。
如果我们能设计一种能够实时监测火焰数据,当有火焰发生时有多渠道报警的装置,且价格低廉,那么就会有绝大多数家庭及公共场所普及使用这种装置,也许就会最大限度地减轻火灾的危害。
在电子信息时代日益发达的今天,笔者利用Arduino及传感器技术,C语言编程技术、物联网技术、3D打印技术设计并制作出一种价格低廉适用广泛的新型便携火焰报警器,遇有火焰时现场具有声光报警功能、同时能把火灾信息通过互联网传输到指定用户的手机上报警,平时我们也可以使用PC或手机对火焰的数据进行远程实时监控,防患未然。
1 系统设计方案火焰是由各种燃烧生成物、中间物、高温气体、碳氢物质以及无机物质为主体的高温固体微粒构成的。
火焰的热辐射具有离散光谱的气体辐射和连续光谱的固体辐射。
不同燃烧物的火焰辐射强度、波长分布有所差异,但总体来说,其对应火焰温度的1~2μm近红外波长域具有最大的辐射强度,火焰传感器(即红外接收二极管)就是根据这一特性制成的。
火焰传感器对火焰特别灵敏。
火焰传感器利用红外线对火焰非常敏感的特点,使用特制的红外线接收管来检测火焰,然后把火焰的亮度转化为高低变化的电平信号,输入到中央处理器,中央处理器根据信号的变化做出相应的程序处理,这样我们就可以按照自己的设计让中央处理器做出相应的功能来。
■1.1 工作原理火焰传感器将采集到的火焰模拟数值直接传输到中央处理器Arduino,系统按照编写好的程序,将收到的火焰传感数据运算后与预设的阈值进行比较,当达到预设的报警值时,系统启动报警电路,蜂鸣器给出高低循环电平,双音报警,LED给出高低循环电平,红光闪烁报警。
同时火焰传感数据通过ESP8266模块与远程物联网平台联接,物联网平台对收到的火焰传感数值进行判断,当达到设定的报警阈值时,通过物联网平台直接发送邮件或微博等信息到指定用户手机上,实现手机报警。
利用光敏电阻实现火焰报警

目录1、课程设计任务书 02、概述 (2)2.1 系统组成框图 (2)2.2 光敏电阻的原理及特性 (2)3、电路原理图 (5)4、总结与展望 (8)5、参考文献 (9)1、课程设计任务书光敏电阻又称光导管,常用的制作材料为硫化镉,另外还有硒、硫化铝、硫化铅和硫化铋等材料。
这些制作材料具有在特定波长的光照射下,其阻值迅速减小的特性。
这是由于光照产生的载流子都参与导电,在外加电场的作用下作漂移运动,电子奔向电源的正极,空穴奔向电源的负极,从而使光敏电阻器的阻值迅速下降。
一、主要内容利用硫化铅光敏电阻实现火焰探测报警二、基本要求1.实现基本功能:感应、存储、放大、报警2.完成3000字设计报告。
三、主要技术指标(或研究方法)1.采用恒压偏置电路2.性能可靠,操作简便。
四、应收集的资料及参考文献1.硫化铅光敏电阻2.恒压偏置电路2、概述2.1 系统组成框图光敏电阻又称光导管,常用的制作材料为硫化镉,另外还有硒、硫化铝、硫化铅和硫化铋等材料。
这些制作材料具有在特定波长的光照射下,其阻值迅速减小的特性。
这是由于光照产生的载流子都参与导电,在外加电场的作用下作漂移运动,电子奔向电源的正极,空穴奔向电源的负极,从而使光敏电阻器的阻值迅速下降。
本课题采用的是利用硫化铅光敏电阻实现火焰探测报警。
系统硬件原理框图如图:图12.2 光敏电阻的原理及特性光敏电阻的工作原理是基于内光电效应。
在半导体光敏材料两端装上电极引线,将其封装在带有透明窗的管壳里就构成光敏电阻如图所示。
为了增加灵敏度,两电极常做成梳状。
构成光敏电阻的材料有金属的硫化物、硒化物、碲化物等半导体。
半导体的导电能力取决于半导体导带内载流子数目的多少。
当光敏电阻受到光照时,价带中的电子吸收光子能量后跃迁到导带,成为自由电子,同时产生空穴,电子—空穴对的出现使电阻率变小。
光照愈强,光生电子—空穴对就越多,阻值就愈低。
当光敏电阻两端加上电压后,流过光敏电阻的电流随光照增大而增大。