九年级上册期中考试
2024-2025学年初中九年级上册期中语文试卷答案

长沙市立信中学2024-2025学年第一学期期中考试初三语文试卷答案1.B2.C【解析】A.停滞不前:形容不继续前进,停留不动。
B. 茅塞顿开:原来心里像被茅草塞住,现在忽然一下子就打开了,后比喻忽然理解、明白。
C. 前仆后继:意思是指前面的人倒下了,后面的人继续跟上去。
指英勇斗争,不怕牺牲。
D. 不言而喻:意思是指不用说就可以明白。
形容道理很浅显。
3.D【解析】①搭配不当②前后矛盾③指代不明4.D【解析】顺序:问题背景→问题成因→解决办法→方法一→方法二→补充介绍5.B6.(1)了却君王天下事,赢得生前身后名(2)二者不可得兼,舍生而取义者也7.示例:下半句:分享感悟,收获丰富知识(要点:结构对称1分,与“分享”相关1分)8.示例:感谢小阳同学的精彩推荐。
孔乙己的悲剧人生正是封建科举制度的产物,而受封建科举制度毒害的绝非只有他一人。
明朝也有一老书生因受毒害,在中举后竟喜极而疯。
下面让我们掌声有请小山同学团队带来情景短剧——范进中举。
要点:信息全面(包括活动嘉宾与内容)1分,衔接自然有过渡1分。
9.C10.①我放声高歌,谁来应和?只听空幽的山谷清音响起。
②孤独失落【词意】人在溪边行走溪水映照出人影,蓝天倒映在清清的溪水里。
蓝天上有飘动的白云,人正行走在那飘动的白云里。
我放声高歌,谁来应和?只听空幽的山谷清音响起。
那响声不是来自鬼怪神仙,而是桃花旁的流水声悦耳无比。
11.C【解析】“为大理卿时”的“为”是担任;“乡为身死而不受”的“为”是为了。
12.B13.希望陛下深入思考产生盗贼的缘由,讲求根除(盗贼)的方法,不要只是依靠平盗的军队。
14. 赞同。
(1分)慷慨:①辛弃疾和孝宗一样,有收复中原的愿望,他在接受孝宗的问话时,议论坚强正直,毫不迎合。
②辛弃疾重情重义,朱熹去世后,门生朋友没有来送葬的,但辛弃疾却作祭文哭祭朱熹以表达哀伤之情。
(写一点给1分)大略:①金主完颜亮死后,劝耿京作南归决断。
②他在担任潭州知州兼湖南安抚使期间,给皇帝上疏,希望皇帝告诫州县以仁爱百姓为本,惩处违法贪赃者。
江西省九江市第三中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

江西省2025届九年级期中综合评估数学▶上册◀说明:共有六个大题,23个小题,满分120分,考试时间120分钟.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内错选、多选或未选均不得分.1.若关于的函数是二次函数,则的值为( )A.1B.2C.0D.32.以下是几种化学物质的结构式,其中文字上方的结构式图案属于中心对称图形的是( )A.甲醛B.甲烷 C.水 D.乙酸3.已知关于的一元二次方程有一个根为,则另一根为( )A.7B.3C.D.4.如图,四边形是的内接四边形,连接,,若,则的度数是( )A. B. C. D.5.在平面直角坐标系中,将抛物线绕顶点旋转得到新抛物线,再将新抛物线沿轴翻折得到抛物线,则,,的值分别是( )A.2,,11B.2,,5C.,,11D.,8,56.某校计划举办劳动之星颁奖典礼,想在颁奖现场设计一个如图1所示的抛物线型拱门入口.要在拱门上顺次粘贴“劳”“动”“之”“保”(分别记作点,,,)四个大字,要求与地面平行,且,抛物线最高点的五角星(点)到的距离为,,,如图2所示,则点到的距离为( )图1 图221.124.1~x 31my x x =-+m x 2520x x m -+=2-7-3-ABCD O OA OC 86AOC ∠=︒ADC ∠94︒127︒136︒137︒285y ax x =-+P 180︒x22y x bx c =++a b c 8-8-2-8-2-A B C D BC BC AD ∥E BC 0.6m 2m BC =4m AD =C ADA. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程的解为______.8.在平面直角坐标系中,点关于原点对称的点的坐标是______.9.如图,是半圆的直径,,为的中点,连接,,则的度数为______.10.《九章算术》“勾股”章有一题:“今有二人同所立.甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会,问甲、乙行各几何.”大意是说:已知甲、乙两人同时从同一地点出发,甲每单位时间走7步,乙每单位时间走3步.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?设甲走了步(步为古代长度单位,类似于现在的米),根据题意可列方程:____________.(结果化为一般式)11.在平面直角坐标系中,若抛物线向左平移2个单位长度后经过点,则的最大值为______.12.如图,在矩形中,连接,,,将线段绕点顺时针旋转,得到线段,连接,,当时,的周长为______三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解方程:.(2)如图,将绕点逆时针旋转得到,若,且于点,求的度数.14.某件夏天T 恤的售价为100元,因换季促销,在经过连续两次降价后,现售价为81元,求平均每次降价的百分率.15.自古以来,景德镇就是中国陶瓷文化的象征,生产的瓷器闻名四方,远销世界各地.如图,这是景德镇2m 1.8m 2.4m 1.5m290x -=()2,4-BC OAB AC =D AC OD BD BDO ∠x ()()220y a x c a =-+≠()1,6-ac ABCD AC 1AB =60BAC ∠=︒AB B ()0180a α︒<≤︒BP CP DP 12PCB BAC ∠=∠DPC △()()()2131x x x x +=++ABC △A 28︒AB C ''△40C ∠'=︒AB BC '⊥E BAC ∠生产的某种瓷碗正面的形状示意图,是的一部分,是的中点,连接,与弦交于点,连接,.已知,碗深,求的长.16.如图,是的直径,点,点在上,,,请仅用无刻度的直尺按下列要求作图(保留作图痕迹).(1)如图1,在上作一点,使得是以为底边的等腰三角形.(2)如图2,在上方作一点,使得为等边三角形.图1图217.在平面直角坐标系中,已知抛物线与轴没有交点.(1)求的取值范围.(2)请直接写出抛物线顶点所在的象限.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,在平面直角坐标系中,抛物线经过点.(1)求的值,并求出此抛物线的顶点坐标.(2)当时,请利用图象,直接写出的取值范围.(3)当时,请利用图象,直接写出的取值范围.19.如图,在中,,将绕点顺时针旋转,得到,连接,.(1)求证:点,,在同一条直线上.(2)若,,求的面积.AB O D AB OD AB C OA OB 18cm AB =6cm CD =OA AB O C D O 60COA ∠=︒OD AB ⊥OD E OCE △OC AB F ABF △214y x x c =-++x c 222y x xc c c =-+-24y x mx =-++()3,4A -m 20x -≤≤y 0y ≤x ABC △135BCA ︒∠=ACB △A 90︒ADE △CD CE B C D 2BC=AC =CDE △20.某主播销售一种商品,已知这种商品的成本价为20元/个,规定销售价格不低于成本价,且不高于成本价的2倍,通过前几天的销售发现,该商品每天的销售量(单位:个)与销售价格(单位:元/个)之间满足一次函数关系,部分对应数据如下表:/(元/个) (23252811)/个…540500440…(1)求出关于的函数关系式,并直接写出的取值范围.(2)求销售该商品每天的最大利润.五、解答题(本大题共2小题,每小题9分,共18分)21.追本溯源题(1)来自课本中的习题,请你完成解答,提炼方法并解答题(2).(1)如图1,,比较与的长度,并证明你的结论.方法应用(2)如图2,,是的两条弦,点,分别在,上,连接,,且,是的中点.①求证:.②若圆心到的距离为3,的半径是6,求的长.图1 图222.如图,在平面直角坐标系中,抛物线与轴相交于点和点(点在点的左侧),与轴相交于点,点与点关于轴对称,为该抛物线上一点,连接,,,.(1)求该抛物线的解析式.(2)若的面积与的面积相等,请直接写出点的横坐标.y x x y y x x AD BC = AB CDMB MD O A C MBMD AB CD AB CD =M AC BM DM =O DM O DM 25y x bx =-++x A ()5,0B A B y C D A y E AC CD DE BE BDE △ACD △E(3)当点在第一象限时,连接,设的面积为,求的最大值.六、解答题(本大题共12分)23.综合与实践如图,是等边内一点,,连接,将线段绕点顺时针旋转得到,连接.初步感知(1)如图1,的延长线与交于点,求的度数.特例应用(2)如图2,作点关于的对称点,若点在的角平分线上.①当点与点重合时,的长为______;②当点与点不重合时,判断四边形的形状,并证明.拓展延伸(3)如图2,在(2)的条件下,取的中点,记为,当点从点运动到点时,请直接写出点运动的路径长.图1图2E CE ECD △S S P ABC △2AB =CP CP C 60︒CE AE BP AE Q AQB ∠E ACF P ABC △BD P F BP P F BPEF FPG P B D G江西省2025届九年级期中综合评估数学参考答案1.B2.C3.A4.D5.A 提示:由旋转和翻折可知,,抛物线的顶点的坐标为.点关于轴的对称点的坐标为,最后得到的抛物线的解析式为,.故选A.6.B 提示:建立如图所示的平面直角坐标系.由题意易知点的坐标为,点的坐标为,则点的坐标为,故设抛物线的解析式为,将点的坐标代入上式,得,抛物线的解析式为.点的横坐标为2,点的纵坐标为,点到的距离为.故选B.7.8.9.10.11.912.3或或 提示:,,,,,.如图1,当时,此时.易证得为等边三角形,的周长为;2a =8b =-∴2285y x x =-+P ()2,3- ()2,3P -x ()2,3∴()222232811y x x x =-+=-+11c ∴=C ()1,0B ()1,0-E ()0,0.6()()11y a x x =+-E 0.6a =-∴()()0.611y x x =-+- D ∴D ()()0.62121 1.8-⨯+⨯-=-∴C AD 1.8m 3x =±()2,4-22.5︒24020049x x -=2+3+1AB = 90ABC ∠=︒60BAC ∠=︒1CD ∴=22AC AB ==BC ∴==60α=︒1302PCB BAC ∠=︒=∠DPC △DPC ∴△33CD =如图2,当时,此时,,.易证得,,的周长为;如图3,当时,此时,,,.的周长为.综上所述,的周长为3或或.图1 图2 图313.(1)(解法不唯一)解:,,,.(2)解:将绕点逆时针旋转得到.,.又,,.14.解:设平均每次降价的百分率为.由题意得,解得,(舍去).答:平均每次降价的百分率为.15.解:是的中点,,.设,则.在中,由勾股定理得,120α=︒1302PCB BAC ∠=︒=∠30PBC PCB ∴∠=∠=︒1PC BP ∴==DCP BPC ≌△△DP BC ∴==DPC ∴△2CD PC DP ++=+180a =︒1302PCB BAC ∠=︒=∠2PC AC ∴==22AP AB ==DP ∴===DPC ∴△123CD PC DP ++=+=+DPC △2+3+()()()2131x x x x +=++ ()()1230x x x ∴+--=11x ∴=-23x = ABC △A 28︒AB C ''△28BAE ∴∠=︒40C C ∠'=∠=︒AB BC '⊥ 9050EAC C ∴∠=︒-∠=︒285078BAC BAE EAC ∴∠=∠+∠=︒+︒=︒x ()2100181x -=10.110%x ==2 1.9x =10%DAB OD AB ∴⊥19cm 2AC BC AB ∴===cm OA r =()6cm OC r =-Rt OAC △222OC AC OA +=即,解得,的长为.16.解:(1)如图1,即所求.(2)如图2,即所求.图1 图217.解:(1)抛物线与轴没有交点,,即,解得.(2)第二象限.提示:,该抛物线的顶点坐标为.,,点在第二象限.18.解:(1)把代入,得,解得.,抛物线的顶点坐标为.(2)当时,的取值范围是.(3)当时,的取值范围是或.19.解:(1)证明:是由绕点顺时针旋转得到的,,,,.()22269r r -+=394r =OA ∴39cm 4OCE △ABF △ x 240b ac ∴∆=-<10c +<1c <-()2222y x xc c c x c c =-+-=-- ∴(),c c -1c <- 1c ∴->∴(),c c -()3,4A -24y x mx =-++9344m --+=3m =-223253424y x x x ⎛⎫=--+=-++ ⎪⎝⎭∴325,24⎛⎫- ⎪⎝⎭20x -≤≤y 2544y ≤≤0y ≤x 4x ≤-1x ≥ADE△ACB △A 90︒ACB ADE ∴≌△△90CAD ∠=︒AC AD ∴=()1180452ACD ADC CAD ∴∠=∠=︒-∠=︒又,,点,,在同一条直线上.(2)由(1)可知,,.,.,.20.解:(1)设关于的函数关系式为.将,代入上式.得解得.(2)设销售该商品每天的利润为元.由题意得.,,当时,取得最大值,且最大值为4500.答:销售该商品每天的最大利润为4500元.21.解:(1).证明:,,,即.(2)①证明:是的中点,.,,,,.②如图,过点作,是垂足,连接.135BCA ∠=︒ 13545180BCA ACD ∴∠+∠=︒+︒=︒∴B C D 90CAD ∠=︒AC AD=6CD ∴===135ADE BCA ︒∠=∠= 90CDE ADE ADC ︒∴∠=∠-∠=2DE BC == 1162622CDE S CD DE ∴=⋅=⨯⨯=△y x y kx b =+()23,540()25,50023540,25500,k b k b +=⎧⎨+=⎩20,1000,k b =-⎧⎨=⎩()2010002040y x x ∴=-+≤≤W ()()()22202010002014002000020354500W x x x x x =--+=-+-=--+200-< 203540<<∴35x =W AB CD=AD BC = AD BC∴= AD AC BC AC ∴+=+ AB CD=M AC AM CM∴=AB CD = AB CD∴= AB AM CMCD ∴+=+ BMDM ∴=BM DM ∴=O ON MD ⊥N OM在中,,,22.解:(1)∵抛物线与轴相交于点和点,,解得,该抛物线的解析式为.(2.(3),令,即,解得,,点的坐标为.点与点关于轴对称,点的坐标为.设点的坐标为.设直线的解析式为.由点,的坐标可知,解得直线的解析式为.如图,过点作轴,交于点.当时,,点的坐标为,, Rt OMN △3ON =6OM =MN ∴==2DM MN ∴==25y x bx =-++x A ()5,0B 25550b ∴-++=4b =∴245y x x =-++245y x x =-++ ∴0y =2450x x -++=11x =-25x =∴A ()1,0- D A y ∴D ()1,0-E ()2,45m m m -++CE y kx t =+()0,5C ()2,45E m m m -++25,45,t mk t m m =⎧⎨+=-++⎩4,5,k m t =-+⎧⎨=⎩∴CE ()45y m x =-++D DF y ∥CE F 1x =()459y m m =-++=-+∴F ()1,9m -+9DF m ∴=-则,当时,的值最大,且最大值为,故的最大值为.23.解:(1),,即.又,,(SAS ),.,.(2②四边形为平行四边形.证明:如图1,连接.图1在等边中,平分,.又,关于对称,,,,.在等边中,,,.在等边中,,,,,,,.平分,,,,为等边三角形,()2111981922228E S DF x m m m ⎛⎫=⋅⋅=-=--+ ⎪⎝⎭∴92m =S 818S 81860ACB PCE ∠=∠=︒ ACB ACP PCE ACP ∴∠-∠=∠-∠BCP ACE ∠=∠BC AC = CP CE =BCP ACE ∴≌△△CBP CAE ∴∠=∠CBP ACB CAE AQB ∠+∠=∠+∠ 60AQB ACB ︒∴∠=∠=BPEF CF ABC △BD ABC ∠BD AC ∴⊥E F AC AF AE ∴=CF CE =AC EF ∴⊥EF BP ∴∥ PCE △60PCE ∠=︒PC CE PE ==CF PC ∴= ABC △AC BC =60ACB ∠=︒ACB PCE ∴∠=∠PCB ACE ∴∠=∠()SAS BCP ACE ∴≌△△CAE CBP ∴∠=∠BP AE =BD ABC ∠30CBP ︒∴∠=30CAE FAC CBP ∴∠=∠=∠=︒60FAE ∴∠=︒AFE ∴△,.,,四边形为平行四边形.(3.提示:将图1中与的交点记为.由(2)易知.,,,即,易求得,,.如图2,当点从点运动到点时.图2,点的运动路径为图2中的长,为的中点,连接,.,同理可得,是等边三角形.是的中点,,易求得.AE EF ∴=BP EF ∴=BP EF ∥BP EF =∴BPEF AF BP M BP AF =30FAB ABP ∠=∠=︒ AM BM∴=BP BM AF AM ∴-=-PM FM =∴30MPF ∠=︒MPF ABP ∴∠=∠PF AB ∴∥P B D PF AB ∥∴G GH H AB DH HF 112DF AB == 1DH HF ==DFH ∴△G DF 1DH DF ==∴GH =。
人教版2024-2025学年九年级数学上册期中检测考试试卷[含答案]
![人教版2024-2025学年九年级数学上册期中检测考试试卷[含答案]](https://img.taocdn.com/s3/m/bfdd7c88185f312b3169a45177232f60dccce771.png)
2024-2025学年人教版九年级数学上册期中检测考试试卷同学,你好!答题前请认真阅读以下内容:1.本卷为物理卷,全卷共4页,满分150分,答题时长120分钟,考试形式为闭卷.2.请在答题卡相应位置作答,在试卷上答题视为无效.3.不得使用计算器.一、选择题(每题3分,共计36分,每题只有唯一选项正确,请把正确答案填入答题卡指定位置)1.下列图形中,不属于中心对称图形的是( )A .B .C .D .2.若一元二次方程2440mx x ++=没有实数根,则m 的取值范围是( )A .1m < B .1m <-C .1m ³-D .1m >3.抛物线()21112y x =-+-的顶点坐标为( )A .()1,1--B .()1,1C .()1,1-D .()1,1-4.已知1x ,2x 是方程2440x x ++=的两个根,则12x x +的值为( )A .4-B .4C .2-D .25.如图,在Rt ABC △中,已知9030BAC C Ð=°Ð=°,,将ABC V 绕点A 顺时针旋转70°得到AB C ¢¢△,则CAC ¢Ð的度数是( )A .60°B .70°C .80°D .90°6.二次函数()20y ax bx a =+¹的图象如图所示,则关于x 的一元二次方程20ax bx +=的根的情况是( ) A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根7.若二次函数2y ax =的图象经过()2,4P -,则该图象必经过点( )A .()2,4B .()2,4--C .()4,2--D .()4,2-8.电影《志愿军》不仅讲述了中国人民志愿军抗美援朝的故事,更是通过鲜活生动的人物塑造,让观众体会到历史事件背后的人性和情感,一上映就获得全国人民的追捧.某地第一天票房约3亿元,若以后每天票房按相同的增长率增长,三天后票房收入累计达18亿元,若把增长率记作x ,则方程可以列为( )A .()3118x +=B .()23118x +=C .()233118x +=+D .()()23313118x x +++=+9.为方便市民进行垃圾分类投放,某环保公司第一个月投放1000个垃圾桶,计划第三个月投放垃圾桶y 个,设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x ,那么y 与x 的函数关系是( )A .()210001y x =+B .()210001y x =-C .()211000y x =-+D .21000y x =+10.若方程20x px q -++=的一个根大于1,另一根小于1,则p q +的值( )A .不大于1B .大于1C .小于1D .不小于111.函数2y x bx c =++与y x =的图象如图所示,有以下结论:①240b c ->;②1b c +=-;③360b c ++=;④当13x <<时,()210x b x c +-+<,其中正确的个数是( )A .1B .2C .3D .412.如图,在ABC V 中,90BAC Ð=°,AB AC =,2BC =.点D 在BC 上,且13BD CD =∶∶.连接AD ,将线段AD 绕点A 顺时针旋转90°得到线段AE ,连接BE ,DE .则BDE V 的面积是( )A .14B .38C .34D .32二、填空题(每题4分,共计24分,把答案填在答题卡指定位置上)13.一元二次方程260x x m -+=有两个实数根1x ,2x .若12x =,则2x 的值为 14.若二次函数()232y x =-+,则此二次函数图象的对称轴是 .15.若点(),1A a -关于原点对称的点为()5,B b ,则点(),C a b 关于y 轴对称的点D 的坐标为.16.已知,a b 是一元二次方程2310x x -+=的两个根.则22ba b a b-+=+.17.小明推铅球,铅球行进高度()m y (与水平距离()m x 之间的关系式为()21184105y x =--+,当铅球行进的高度为16m 5时,铅球行进的水平距离x = .18.如图,在Rt ABC △中,90ACB Ð=°,30B Ð=°,AC =P 是BC 边上一动点,连接AP ,把线段AP 绕点A 逆时针旋转60°到线段AQ ,连接CQ ,则线段CQ 的最小值为.三、解答题(19、20、21题每题10分;22-26题每题12分,共计90分;请在答题卡指定位置作答,并写出别要的解答过程和步骤才给分)19.解方程(1)()22250x --=;(2)2520x x +-=.20.如图,在平面直角坐标系中,已知ABC V 的三个顶点的坐标分别为()()()5,4,0,3,2,1A B C .(1)画出ABC V 关于原点成中心对称的111A B C △,并写出点1C 的坐标;(2)画出将111A B C △绕点1C 按顺时针方向旋转90°所得到的221A B C △.21.已知关于x 的一元二次方程()()21360x m x m ---+=.(1)利用判别式判断方程实数根的情况;(2)若该方程只有一个根小于2,求m 的取值范围.22.如图,在ABC V 中,点E 在BC 边上,AE AB =,将线段AC 绕A 点旋转到AF 的位置,使得CAF BAE Ð=Ð,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若63ABC Ð=°,25ACB Ð=°,求FGC Ð的度数.23.已知抛物线2y ax bx c =++经过()2,0A -、()4,0B 、()2,8C 三点.(1)求抛物线的解析式,并写出抛物线的顶点M 的坐标;(2)该抛物线经过平移后得到新抛物线241y x x =-++,求原抛物线平移的方向和距离.24.近年来,湖北省某地致力打造特色乡村旅游,发展以“农家乐”“高端民宿”为代表的旅游度假区.为迎接旅游旺季的到来,某民宿准备重新调整房间价格,已知该民宿有20个房间,当每个房间每天的定价为500元时,所有房间全部住满;当每个房间每天的定价每增加50元时,就会有一个房间无人入住,如果有游客居住房间,民宿每天需要对每个房间各支出100元的其他费用.设每个房间每天的定价增加x 个50元(020x ££,且x 为整数),该民宿每天游客居住的房间数量为y 间,所获利润为W 元.为吸引游客,该地物价部门要求民宿尽最大可能让利游客.(1)分别求出y 与x ,W 与x 之间的函数关系式;(2)当定价为多少元时,民宿每天获得的利润可以达到9600元;(3)求当每个房间的定价为多少元时,民宿每天获得的利润最大,最大利润是多少?25.素材一:秦、汉时期是中国古代桥梁的创建发展时期,此时期创造了以砖石为材料主体的拱券结构,为后来拱桥的出现创造了先决条件.如图(1)是位于某市中心的一座大桥,已知该桥的桥拱呈抛物线形.在正常水位时测得桥拱处水面宽度OB 为40米,桥拱最高点到水面的距离为10米.素材二:在正常水位时,一艘货船在水面上航行,已知货船的宽DE 为16米,露出水面的高DG 为7米.四边形DEFG 为矩形,OD BE =.现以点O 为原点,以OB 所在直线为x 轴建立如图(2)所示的平面直角坐标系,将桥拱抽象为一条抛物线.(1)求此抛物线的解析式.(2)这艘货船能否安全过桥?(3)受天气影响,水位上升0.5米,若货船露出水面的高度不变,此时该货船能否安全过桥?26.如图①,在直角三角形纸片ABC 中,90BAC Ð=°,6AB =,8AC =.【数学活动】将三角形纸片ABC 进行以下操作:①折叠三角形纸片ABC ,使点C 与点A 重合,得到折痕DE ,然后展开铺平;②将DEC V 绕点D 顺时针方向旋转得到DFG V ,点E ,C 的对应点分别是点F ,G ,直线GF 与边AC 交于点M (点M 不与点A 重合),与边AB 交于点N .【数学思考】(1)折痕DE 的长为______;(2)在DEC V 绕点D 旋转的过程中,试判断MF 与ME 的数量关系,并证明你的结论;【数学探究】;(3)如图②,在DEC V 绕点D 旋转的过程中,当直线GF 经过点B 时,求AM 的长;【问题延伸】;(4)在DEC V 绕点D 旋转的过程中,连接AF ,则AF 的取值范围是______.【分析】本题主要考查了中心对称图形,解题的关键是找出对称中心.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据定义逐一判断即可.【详解】解:A .是中心对称图形,故本选项不合题意;B .不是中心对称图形,故本选项符合题意;C .是中心对称图形,故本选项不合题意;D .是中心对称图形,故本选项不合题意.故选:B .2.D【分析】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键.由方程无实数根即240b ac D =-<,从而得出关于m 的不等式,解之可得.【详解】解:∵关于x 的一元二次方程2440mx x ++=无实数根,22444416160b ac m m \D =-=-´=-<,解得:1m >.故选:D .3.A【分析】本题考查的是二次函数的性质,根据()2y a x h k =-+的顶点式(),h k 即可得到答案,熟练掌握二次函数的顶点式是解题的关键.【详解】解:抛物线()21112y x =-+-的顶点坐标为()1,1--,故选:A 4.A【分析】本题主要考查了根与系数的关系,1x ,2x 是一元二次方程200ax bx c a ++=¹()的两根时,12bx x a +=-.利用一元二次方程根与系数的关系求解即可.【详解】解:∵1x ,2x 是方程2440x x ++=的两个实数根,∴12441x x +=-=-.故选:A .【分析】本题主要考查了旋转的性质,熟知旋转的性质是解题的关键.【详解】解:∵将ABC V 绕点A 顺时针旋转70°得到AB C ¢¢△,∴70CAC ¢Ð=°,故选:B .6.B【分析】本题考查二次函数与一元二次方程的关系,解答本题的关键是掌握二次函数的性质;一元二次方程210ax bx ++=的根即为二次函数20y ax bx a +=¹()的图像与x 轴的交点的横坐标,结合图像即可得到答案.【详解】解:一元二次方程20 ax bx +=的根即为二次函数()20y ax bx a =+¹的图像与直线x轴的交点的横坐标,结合图像,可知二次函数20y ax bx a +=¹()的图像与x 轴有两个不同的交点,即方程20 ax bx +=有两个不相等的实数根,故选:B .7.A【分析】本题考查了二次函数图象与性质,主要利用了二次函数图象的对称性,确定出函数图象的对称轴为y 轴是解题的关键.先确定出二次函数图象的对称轴为y 轴,再根据二次函数的对称性解答.【详解】解:Q 二次函数2y ax =的对称轴为y 轴,且图象经过()2,4P -,\该图象必经过点()2,4,故选:A .8.D【分析】本题考查了增长率问题(一元二次方程的应用),根据题意求出第二天和第三天的票房即可求解.【详解】解:由题意得:第二天的票房为()31x +亿元,第三天的票房为()231x +亿元,∴()()23313118x x ++++=故选:D .【分析】本题主要考查了列二次函数关系式,根据题意可得,第二个月投放垃圾桶数量为()10001x +个,则第三个月投放垃圾桶数量为()210001x +个,据此可得答案.【详解】解:由题意得,()210001y x =+,故选:A .10.B【分析】本题考查的是一元二次方程根与系数的关系,由题意可设20x px q -++=的两个根分别为12,x x ,结合题意设11x >,21x <,12x x p +=,12x x q =-,可得()()12110x x --<,再进一步解得可得答案.【详解】解:设20x px q -++=的两个根分别为12,x x ,结合题意设11x >,21x <,12x x p +=,12x x q =-,∴()()12110x x --<,∴()121210x x x x -++<,∴10q p --+<,∴1p q +>.故选:B .11.B【分析】利用判别式的意义对①进行判断;利用x =1,1y =可对②进行判断;利用3x =,3y =对③进行判断;根据13x <<时,2x bx c x ++<可对④进行判断.本题考查了二次函数与不等式,二次函数图象与系数的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.【详解】解:Q 抛物线与x 轴没有公共点,240b c \D =-<,故①不符合题意;1x =Q ,1y =,11b c \++=,即0b c +=,故②不符合题意;3x =Q ,3y =,933b c \++=,360b c \++=,故③不符合题意;13x <<Q 时,2x bx c x ++<,()210x b x c \+-+<的解集为13x <<,故④不符合题意;故选:B .12.B【分析】本题考查了全等三角形的判定与性质,等腰直角三角形,根据SAS 证明EAB DAC △≌△是解题的关键.据旋转的性质得出,90AD AE DAE =Ð=°,再根据SAS 证明EAB DAC △≌△得出45C ABE Ð=Ð=°,CD BE =,得出90EBC Ð=°,再根据三角形的面积公式即可求解.【详解】解:90BAC Ð=°Q ,AB AC =,45ABC C \Ð=Ð=°,90BAD CAD Ð+Ð=°.由旋转得AD AE =,90BAD BAE DAE Ð+Ð=Ð=°,CAD BAE \Ð=Ð.在ADC △和AEB V 中,AD AE CAD BAE AC AB =ìïÐ=Ðíï=î()SAS ADC AEB \V V ≌,BE CD \=,45ABEC Ð=Ð=°.90EBD ABE ABC \Ð=Ð+Ð=°.2BC =Q ,13BD CD =::,11242BD \=´=, 33242BE CD ==´=,BDE \V 的面积是1113322228BD BE ×=´´=.故答案为:B .13.4【分析】本题考查了一元二次方程根与系数的关系,熟练掌握和运用一元二次方程根与系数的关系是解决本题的关键.根据一元二次方程根与系数的关系,即可求得答案.【详解】解:∵260x x m -+=有两个实数根1x ,2x ,12x =,∴126x x +=,∴24x =;故答案为:4.14.直线2x =-【分析】本题主要考查了二次函数对称轴.根据二次函数的顶点式写出对称轴即可.【详解】解:二次函数()232y x =-+,图象的对称轴是直线2x =-,故答案为:直线2x =-.15.()5,1【分析】本题考查平面直角坐标系中任意一点(),P x y ,关于原点的对称点是(),x y --,即关于原点的对称点,横纵坐标都变成相反数,得出a ,b 的值,根据关于y 轴对称的点横坐标互为相反数,纵坐标相等,即可得出答案.【详解】解:关于原点的对称点,横纵坐标都变成相反数,∴5a =-,1b =,即点C 为()5,1-,根据关于y 轴对称的点横坐标互为相反数,纵坐标相等,∴点(),C a b 关于y 轴对称的点D 的坐标为()5,1,故答案为:()5,1.16.73##123【分析】本题考查了一元二次方程的根与系数的关系,分式的化简,完全平方公式的化简计算,熟练掌握知识点是解题的关键.由题意得,3a b +=,1ab =,故()222927332b a b a b a b a b ab +---+===++.【详解】解:由题意得,3a b +=,1ab =∵22222222b a b b a b a b a b a b a b-++-+==+++,而()2222a b a b ab +=+-,∴()222927332b a b a b a b a b ab +---+===++,故答案为:73.17.2或6【分析】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,把165y =代入函数解析式求解即可。
2023--2024九年级上册语文期中检测卷(含答案)

2023--2024九年级上册语文期中检测卷(统编版)学校:___________姓名:___________班级:___________考号:___________一、基础知识综合阅读下面的文字,完成问题。
鲁迅一直是语文课本中选入作品最多的作家。
我们从《藤野先生》中认识了诲.人不倦、治学严谨、没有狭隘.的民族偏见的藤野先生,他激励鲁迅继续写令“正人君子”所深恶.痛疾的文字;我们从《阿长与〈山海经〉》里了解到青年守寡.的长妈妈,历经千难万险为小鲁迅买来_______________已久的“三哼经”,这让小鲁迅似乎遇着了一个_______________,全身都_______________起来。
读鲁迅,我们读出了温暖,读出了_______________,更读出青年人的责任,鲁迅先生一直与我们同行。
1.上面语段中加点字的读音完全正确的是()A.huǐyìwùguǎB.huìàiègǔC.huìài wùguǎD.huǐyìègǔ2.上面语段横线处所填写的词语,书写完全正确的一项是()A.渴幕霹雳震耸深遂B.渴慕霹雳震悚深邃C.渴幕霹厉震耸深遂D.渴慕霹厉震悚深邃二、句子默写三、名著阅读按要求回答问题。
4.《西游记》是一部很有趣的书,鲁迅先生称之为“神魔小说”,林庚先生称之为“童心之作”。
作者以积极的浪漫主义的创作手法,开拓了我国古代长篇神话小说创作的新领域。
请你结合书中的“人物”或情节,谈谈你对神话特点的理解。
5.用《西游记》中的人名,将下列歇后语补充完整,选项最为恰当的是()(1)()吃人参果——全不知滋味(2)()挑行李——义不容辞(3)()的手心——谁也甭想逃出去(4)()开处方——灵丹妙药①如来佛①沙和尚①太上老君①猪八戒A.①①①①B.①①①①C.①①①①D.①①①①6.名著阅读。
(1)下面对名著的理解不正确的一项是( )A.保尔自我献身的精神,顽强坚韧的意志,坚定不移的信念,是他人格魅力之所在。
2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
人教版九年级上册《语文》期中考试卷及答案【可打印】

人教版九年级上册《语文》期中考试卷及答案【可打印】一、选择题(每题1分,共5分)A. 勇B. 惑C. 狡D. 熊2. 九年级上册《语文》课本中的《背影》一文的作者是谁?A. 鲁迅B. 朱自清C. 茅盾D. 郭沫若A. 温故知新B. 知无不言C. 知难而进D. 知足常乐4. 九年级上册《语文》课本中的《岳阳楼记》一文的作者是谁?A. 范仲淹B. 王勃C. 欧阳修D. 苏轼A. 谨慎B. 贪婪C. 勤奋D. 懒惰二、判断题(每题1分,共5分)1. 九年级上册《语文》课本中的《背影》一文讲述了父子之间的深情。
2. 九年级上册《语文》课本中的《论语》是孔子及其弟子的言行录。
3. 九年级上册《语文》课本中的《岳阳楼记》是范仲淹为岳阳楼所作的记。
4. 九年级上册《语文》课本中的《劝学》是荀子为劝勉人们学习而作的文章。
5. 九年级上册《语文》课本中的《背影》一文中的“背影”指的是父亲的背影。
三、填空题(每题1分,共5分)1. 九年级上册《语文》课本中的《背影》一文中的“背影”指的是父亲的背影。
2. 九年级上册《语文》课本中的《论语》是孔子及其弟子的言行录。
3. 九年级上册《语文》课本中的《岳阳楼记》是范仲淹为岳阳楼所作的记。
4. 九年级上册《语文》课本中的《劝学》是荀子为劝勉人们学习而作的文章。
5. 九年级上册《语文》课本中的《背影》一文讲述了父子之间的深情。
四、简答题(每题2分,共10分)1. 请简述九年级上册《语文》课本中的《背影》一文的主旨。
2. 请简述九年级上册《语文》课本中的《论语》中的“温故知新”的含义。
3. 请简述九年级上册《语文》课本中的《岳阳楼记》中的“先天下之忧而忧,后天下之乐而乐”的含义。
4. 请简述九年级上册《语文》课本中的《劝学》中的“学不可以已”的含义。
5. 请简述九年级上册《语文》课本中的《背影》一文中的“背影”指的是什么。
五、应用题(每题2分,共10分)1. 请根据九年级上册《语文》课本中的《背影》一文,写一篇200字左右的读后感。
人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、单选题1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.将方程2410x x --=的左边变成平方的形式是()A .2(2)1x -=B .2(4)1x -=C .2(2)5x -=D .2(1)4x -=3.二次函数y=ax 2+bx+c 的图象如图所示,则该二次函数的顶点坐标为()A .(1,3)B .(0,1)C .(0,—3)D .(2,1)4.关于方程2450x x -+=的根的情况,下列说法正确的是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法判断5.在平面直角坐标系中,将点M (0,3-)绕原点顺时针旋转90°后得到的点的坐标为()A .(0,3-)B .(3,0)C .(3-,0)D .(0,3)6.如图,ABCDE 是正五边形,该图形绕它的中心至少旋转()可以跟自身重合。
A .60︒B .120︒C .75︒D .72︒7.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是()A .y =(x +2)2+1B .y =(x -2)2+1C .y =(x +2)2-1D .y =(x -2)2-18.关于x 的一元二次方程x 2+px +q =0的两根同为负数,则()A .p >0且q >0B .p >0且q <0C .p <0且q >0D .p <0且q <09.在同一坐标系内,一次函数y ax b =+与二次函数28y ax x b =++的图象可能是A .B .C .D .10.如图,已知△ABC 的顶点坐标分别为A(0,2),B(1,0),C(2,1).若二次函数y=x 2+bx+1的图像与阴影部分(含边界)一定有公共点,则实数b 的取值范围是()A .b≤-2B .b<-2C .b≥-2D .b>-2二、填空题11.已知点(2,1)在抛物线y=ax 2上,则此函数的开口方向___________12.若关于x 的一元二次方程(m ﹣2)x 2+x+m 2﹣4=0的一个根为0,则m 值是_____.13.在平面直角坐标系中,点P (—10,a )与点Q (b ,b+1)关于原点对称,则a+b=____14.二次函数y=ax 2+bx+c (a≠0)图象上部分点的坐标(x ,y )对应值列表如下:x…-3-2-101…y…-4-3-4-7-12…则该图象的对称轴是___________15.如图,在等腰直角三角形△ABC中,∠C=90°,AC=,将△ABC绕点B顺时针旋转60°得到△DBE,连接DC,则线段DC=_____________cm.三、解答题16.抛物线y=-x2+bx+c的部分图象如图所示,若y≥0,则x的取值范围是___________17.解方程(1)x2+2x—8=0(2)2x2+3x+1=018.在正方形网格中建立平面直角坐标系xOy,△ABC的三个顶点均在格点上,(1)画出△ABC关于点O的中心对称图形△A1B1C1(2)线段AC与线段A1C1的位置关系是______________19.王师傅开了一家商店,七月份盈利2500元,九月份盈利3600元,且每个月盈利的平均增长率都相等,求每月盈利的平均增长率.20.已知关于x的方程x2+5x﹣p2=0.(1)求证:无论p取何值,方程总有两个不相等的实数根;(2)设方程的两个实数根为x1、x2,当x1+x2=x1x2时,求p的值.21.如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.(1)求此抛物线的解析式;(2)求△BCD的面积.22.如图,P是等边三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A 逆时针旋转后,得到△P AB(1)点P与点P’之间的距离;(2)∠APB的度数.23.已知某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售的单价每降低1元,每天就多卖5件,但要求销售单价不得低于成本.(1)设降价x元,求出每天的销售利润y(元)与x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元时,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)24.如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.(1)当DF⊥AC时,求证:BE=CF;(2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由;(3)在旋转过程中,连接EF,设BE=x,△DEF的面积为S,求S与x之间的函数解析式,并求S的最小值.25.已知:抛物线l1:y=—x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为直线x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5—2)(1)求抛物线2l 的函数表达式;(2)P 为直线1x =上一动点,连接PA ,PC ,当PA PC =时,求点P 的坐标;(3)M 为抛物线2l 上一动点,过点M 作直线//MN y 轴,交抛物线1l 于点N ,求点M 自点A 运动至点E 的过程中,线段MN 长度的最大值.参考答案1.C【详解】解:A 、是中心对称图形,不是轴对称图形,故选项错误;B 、是轴对称图形,不是中心对称图形,故选项错误;C 、既是轴对称图形,又是中心对称图形,故选项正确;D 、是中心对称图形,不是轴对称图形,故选项错误.故选C.2.C【详解】2410x x --=2445x x +=-()225x -=故答案为:C .【点睛】本题考查了一元二次方程的转换问题,掌握配方法是解题的关键.3.D【解析】【分析】根据抛物线与x 轴的两个交点坐标确定对称轴后即可确定顶点坐标.【详解】解:观察图象发现图象与x 轴交于点(1,0)和(3,0),∴对称轴为2x =,∴顶点坐标为(2,1),故选:D .【点睛】本题考查了二次函数的性质及二次函数的图象的知识,解题的关键是根据交点坐标确定对称轴,难度不大.4.B【解析】【分析】根据一元二次方程根的判别式直接判断即可.【详解】解:关于方程2450x x -+=,∵1,4,5a b c ==-=,∴224(4)41540b ac -=--⨯⨯=-<,∴方程2450x x -+=没有实数根,故选:B .【点睛】本题主要考查一元二次方程根的判别式,熟知240b ac ->,有两个不相等的实数根;240b ac -=,有两个相等的实数根;24<0b ac -,没有实数根;是解题的关键.5.C【解析】【分析】根据旋转的性质即可确定点坐标.【详解】解:点(0,3)M -绕原点O 顺时针旋转90︒,得到的点的坐标为(3,0)-,故选:C .【点睛】本题考查了坐标与图形变化-旋转,解题的关键是掌握图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45︒,60︒,90︒,180︒.6.D【解析】【分析】根据正五边形的每个中心角相等且其和为360°即可得到结论.【详解】根据正五边形的性质,每个中心角的相等,则每个中心角的度数为360°÷5=72°,故该图形绕它的中心至少旋转72度可以跟自身重合.故选:D .【点睛】本题考查了图形的旋转及正多边形的性质,关键是抓住正多边形的中心角相等这一性质,问题即解决.7.B【解析】【分析】根据抛物线的平移规律“上加下减,左加右减”解答即可.【详解】将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是y =(x -2)2+1.故选B.本题考查了抛物线的平移规律,熟记抛物线的平移规律“上加下减,左加右减”是解决问题的关键.8.A【解析】【详解】试题解析:设x1,x2是该方程的两个负数根,则有x1+x2<0,x1x2>0,∵x1+x2=-p,x1x2=q∴-p<0,q>0∴p>0,q>0.故选A.9.C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一、三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.【点睛】=+在不同情况下所在本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y kx b的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.10.C【解析】根据y=x 2+bx+1与y 轴交于点(0,1),且与点C 关于x=1对称,则对称轴x≤1时,二次函数y=x 2+bx+1与阴影部分一定有交点,据此可求出b 的取值范围.【详解】当二次函数y=x 2+bx+1的图象经过点B (1,0)时,1+b+1=0.解得b=-2,故排除B 、D ;因为y=x 2+bx+1与y 轴交于点(0,1),所以(0,1)与点C 关于直线x=1对称,当对称轴x≤1时,二次函数y=x 2+bx+1与阴影部分一定有交点,所以-2b ≤1,解得b≥-2,故选C.【点睛】本题考查二次函数图象,解题的关键是利用特殊值法进行求解.11.向上【解析】【分析】根据二次函数图象上点的坐标特征,将点(2,1)代入抛物线方程,然后解关于a 的方程,求得a 的值,从而可以确定抛物线方程的二次项系数,即可以判断这条抛物线的开口方向.【详解】解:∵点(2,1)在抛物线y=ax 2上,∴点(2,1)满足抛物线方程y=ax 2,∴1=4a ,解得a =14;∴抛物线方程y =14x 2的二次项系数a =14>0,∴这条抛物线的开口方向向上.故答案是:向上.【点睛】本题考查了二次函数图象上点的坐标特征.经过图象上的某点时,该点一定满足该函数的关系式.12.-2【解析】【分析】根据一元二次方程的解的定义把x=0代入方法解得m=±2,然后根据一元二次方程的定义确定m 的值.【详解】把x=0代入方程(m-2)x 2+(2m-1)x+m 2-4=0得m 2-4=0,解得m=2或m=-2,而m-2≠0,所以m=-2.故答案为-2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13.1-【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反可得10b =,11a =-,进而可得a b +的值.【详解】解: 点(10,)P a -与点(,1)Q b b +关于原点对称,10b ∴=,111a b =--=-,11101a b ∴+=-+=-,故答案为:1-.【点睛】本题主要考查了两个点关于原点对称,解题的关键是掌握点的坐标的变化规律:点关于原点对称时,它们的坐标符号相反.14.2x =-【解析】【分析】根据二次函数的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴.【详解】解:由表格可得,当x 取-3和-1时,y 值相等,该函数图象的对称轴为直线3(1)22-+-==-x ,【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的对称性解答.15.2##2-+【解析】【分析】连接CE,延长DC交AB于H,先证明CH⊥AB,由直角三角形的性质可求解.【详解】如图,连接CE,延长DC交AB于H,∵将△ABC绕点B顺时针旋转60°得到△DBE,∴∠ABD=∠CBE=60°,BC=BE=AC=DE,∠ACB=∠DEB=90°,∴△BCE是等边三角形,∠EDB=45°,∴CE=BC,∠CEB=60°,∴CE=DE,∠DEC=30°,∴∠EDC=∠ECD=75°,∴∠BDH=∠EDC−∠EDB=30°,∵∠BDH+∠DBA=90°,∴CH⊥AB,又∵∠ACB=90°,BC=AC=2cm,∴AB AC=4(cm),CH=AH=BH=2(cm),∵CH⊥AB,BH=2cm,∠BDH=30°,∴BD=2BH=4cm,=(cm),)(cm),∴DC=DH−CH=(【点睛】本题考查了旋转的性质,等边三角形的性质,等腰直角三角形的性质,直角三角形的性质,灵活运用这些性质解决问题是本题的关键.16.−3≤x≤1【解析】【分析】函数的对称轴为:x=−1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(−3,0),即可求解.【详解】解:函数的对称轴为:x=−1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(−3,0),故:y≥0时,−3≤x≤1,故答案为:−3≤x≤1.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点,及这些点代表的意义及函数特征.17.(1)x1=2,x2=-4(2)x1=-1,x2=-1.2【解析】【分析】(1)利用因式分解法即可求解;(2)利用因式分解法即可求解.【详解】(1)x2+2x—8=0(x-2)(x+4)=0∴x-2=0或x+4=0∴x1=2,x2=-4(2)2x2+3x+1=0(2x+1)(x+1)=0∴2x+1=0或x+1=0∴x1=-12,x2=-1.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的运用.18.(1)见解析;(2)平行【解析】【分析】(1)分别作出三顶点关于原点的对称点,再顺次连接即可得;(2)根据中心对称的性质,即可得出平行且相等的关系.【详解】A B C即为所求.解:(1)如图所示,△111(2)由中心对称的性质可知:线段AC与线段A1C1平行且相等,线段AC与线段A1C1的位置关系是平行,故答案是:平行.【点睛】本题考查了利用旋转变换作图、中心对称图形,解题的关键是熟练掌握网格结构准确找出对应点的位置.19.20%【解析】【分析】设从七月到九月,每月盈利的平均增长率为x,根据该商店七月份及九月份的盈利额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设从七月到九月,每月盈利的平均增长率为x ,依题意,得:22500(1)3600x +=,解得:10.220%x ==,2 2.2x =-(不合题意,舍去).答:从从七月到九月,每月盈利的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.20.(1)证明见解析;(2)p =【解析】【分析】(1)求出根的判别式△=25+p 2,根据判别式的意义即可得出无论p 取何值,方程总有两个不相等的实数根;(2)根据根与系数的关系求出两根和与两根积,再代入x 1+x 2=x 1x 2,得到一个关于p 的一元二次方程,解方程即可.【详解】(1)证明:△=52﹣4(﹣p 2)=25+4p 2,∵无论p 取何值时,总有p 2≥0,∴25+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)解:由题意可得,x 1+x 2=﹣5,x 1x 2=﹣p 2,∵x 1+x 2=x 1x 2,∴﹣5=﹣p 2,∴p =【点睛】本题考查了根的判别式和根与系数的关系,注意熟记以下知识点:(1)一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.(2)一元二次方程ax 2+bx+c =0(a≠0)的两实数根分别为x 1,x 2,则有x 1+x 2=﹣a b ,x 1•x 2=c a.21.(1)2(1)4y x =--+;(2)6【解析】【分析】(1)设抛物线顶点式解析式2(1)4y a x =-+,然后把点B 的坐标代入求出a 的值,即可得解;(2)令0y =,解方程得出点C ,D 坐标,再用三角形面积公式即可得出结论.【详解】解:(1) 抛物线的顶点为(1,4)A ,∴设抛物线的解析式2(1)4y a x =-+,把点(0,3)B 代入得,43a +=,解得1a =-,∴抛物线的解析式为2(1)4y x =--+;(2)由(1)知,抛物线的解析式为2(1)4y x =--+;令0y =,则20(1)4x =--+,1x ∴=-或3x =,(1,0)C ∴-,(3,0)D ;4CD ∴=,11||43622BCD B S CD y ∆∴=⨯=⨯⨯=.【点睛】本题二次函数综合题,主要考查了待定系数法,坐标轴上点的特点,三角形的面积公式,解本题的关键是求出抛物线解析式,是一道比较简单的中考常考题.22.(1)6;(2)150︒【解析】【分析】(1)由已知PAC ∆绕点A 逆时针旋转后,得到△P AB ',可得PAC ∆≅△P AB ',PA P A =',旋转角60P AP BAC ∠'=∠=︒,所以APP ∆'为等边三角形,即可求得PP ';(2)由APP ∆'为等边三角形,得60APP ∠'=︒,在△PP B '中,已知三边,用勾股定理逆定理证出直角三角形,得出90P PB ∠'=︒,可求APB ∠的度数.【详解】解:(1)连接PP ',由题意可知10BP PC '==,AP AP '=,PAC P AB ∠=∠',而60PAC BAP ∠+∠=︒,所以60PAP ∠'=度.故APP ∆'为等边三角形,所以6PP AP AP '=='=;(2)利用勾股定理的逆定理可知:222PP BP BP '+=',所以∆'BPP 为直角三角形,且90BPP ∠'=︒可求9060150APB ∠=︒+︒=︒.【点睛】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,解题的关键是你掌握旋转的图形的大小、形状都不改变.23.(1)252002500,(050)y x x x =-++≤≤;(2)销售单价为80元时,每天的销售利润最大,最大利润是4500元;(3)销售单价应该控制在82元至90元之间【解析】【分析】(1)根据“利润=(售价-成本)⨯销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)每天的销售利润不低于4000元,根据二次函数与不等式的关系求出x 的取值范围,再根据每天的总成本不超过7000元,以及50100100x ≤-≤,列不等式组即可.【详解】解:(1)由题意得:(10050)(505)y x x =--+,(50)(505)x x =-+,252002500,(050)x x x =-++≤≤,所以252002500,(050)y x x x =-++≤≤;(2)22520025005(20)4500y x x x =-++=--+ ,50a =-< ,∴抛物线开口向下.050x ≤≤Q ,对称轴是直线20x =,∴当20x =时,即销售单价是80元,每天的销售利润最大,最大利润是4500y =最大值;即销售单价为80元时,每天的销售利润最大,最大利润是4500元;(3)当4000y =时,2400052002500x x =-++,解得:110x =,230x =,∴当1030x ≤≤时,即销售单价在7010090x ≤-≤,每天的销售利润不低于4000元,由每天的总成本不超过7000元,得50(550)7000x + ,解得:18x ≤,82100x ∴≤-,50100100x ≤-≤Q ,∴销售单价应该控制在82元至90元之间.【点睛】本题主要考查二次函数的实际应用,解题的关键是弄清题意,列出相应等式,借助二次函数解决实际问题.24.(1)见解析;(2)BE+CF =2,是为定值;(3)S x ﹣1)2,当x =1时,S最小值为4.【解析】【分析】(1)根据四边形内角和为360°,可求∠DEA =90°,根据“AAS”可判定△BDE ≌△CDF ,即可证BE =CF ;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可证到△EMD ≌△FND ,则有EM =FN ,就可得到BE+CF =BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=12BC=2;(3)过点F作FG⊥AB,由题意可得S△DEF=S△ABC﹣S△AEF﹣S△BDE﹣S△BCF,则可求S与x 之间的函数解析式,根据二次函数最值的求法,可求S的最小值.【详解】(1)∵△ABC是边长为4的等边三角形,点D是线段BC的中点,∴∠B=∠C=60°,BD=CD,∵DF⊥AC,∴∠DFA=90°,∵∠A+∠EDF+∠AFD+∠AED=180°,∴∠AED=90°,∴∠DEB=∠DFC,且∠B=∠C=60°,BD=DC,∴△BDE≌△CDF(AAS)(2)过点D作DM⊥AB于M,作DN⊥AC于N,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,BMD CNDB CBD DC∠=∠⎧⎪∠∠⎨⎪⎩==∴△MBD≌△NCD(AAS)BM=CN,DM=DN.在△EMD 和△FND 中,EMD FND DM DN MDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EMD ≌△FND (ASA )∴EM =FN ,∴BE+CF =BM+EM+CF =BM+FN+CF =BM+CN=2BM =2BD×cos60°=BD =12BC =2(3)过点F 作FG ⊥AB ,垂足为G,∵BE =x∴AE =4﹣x ,CF =2﹣x ,∴AF =2+x ,∵S △DEF =S △ABC ﹣S △AEF ﹣S △BDE ﹣S △BCF ,∴S =12BC×AB×sin60°﹣12AE×AF×sin60°﹣12BE×BD×sin60°﹣12CF×CD×sin60°=12×(4﹣x )×(2+x )1212×(2﹣x )∴Sx ﹣1)2(∴当x =1时,S【点睛】本题主要考查了等边三角形的判定与性质、四边形的内角和定理、全等三角形的判定与性质、三角函数的定义、特殊角的三角函数值等知识,通过证明三角形全等得到BM =CN ,DM =DN ,EM =FN 是解决本题的关键.25.(1)215222y x x =--;(2)(1,1);(3)12【解析】【分析】(1)由对称轴可求得b ,可求得1l 的解析式,令0y =可求得A 点坐标,再利用待定系数法可求得2l 的表达式;(2)设P 点坐标为(1,)y ,由勾股定理可表示出2PC 和2PA ,由条件可得到关于y 的方程可求得y ,可求得P 点坐标;(3)可分别设出M 、N 的坐标,可表示出MN ,再根据函数的性质可求得MN 的最大值.【详解】解:(1) 抛物线21:3l y x bx =-++的对称轴为1x =,12b∴-=-,解得2b =,∴抛物线1l 的解析式为2y x 2x 3=-++,令0y =,可得2230x x -++=,解得1x =-或3x =,A ∴点坐标为(1,0)-,抛物线2l 经过点A 、E 两点,∴可设抛物线2l 解析式为(1)(5)y a x x =+-,又 抛物线2l 交y 轴于点(20,5)D -,552a ∴-=-,解得12a =,2115(1)(5)2222y x x x x ∴=+-=--,∴抛物线2l 的函数表达式为215222y x x =--;(2)设P 点坐标为(1,)y ,由(1)可得C 点坐标为(0,3),22221(3)610PC y y y ∴=+-=-+,2222[1(1)]4PA y y =--+=+,PC PA = ,226104y y y ∴-+=+,解得1y =,P ∴点坐标为(1,1);(3)由题意可设215(,2)22M x x x --,//MN y 轴,2(,23)N x x x ∴-++,令221523222x x x x -++=--,可解得1x =-或113x =,①当1113x -< 时,2222153113449(23)(2)4()2222236MN x x x x x x x =-++---=-++=--+,显然411133-< ,∴当43x =时,MN 有最大值496;②当1153x < 时,2222153113449(2)(23)4()2222236MN x x x x x x x =----++=--=--,显然当43x >时,MN 随x 的增大而增大,∴当5x =时,MN 有最大值,23449(512236⨯--=;综上可知在点M 自点A 运动至点E 的过程中,线段MN 长度的最大值为12.【点睛】本题主要考查二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理等知识点,在(1)中求得A 点的坐标是解题的关键,在(2)中用P 点的坐标分别表示出PA 、PC 是解题的关键,在(3)中用M 、N 的坐标分别表示出MN 的长是解题的关键,注意分类讨论.。
九年级上册数学期中考试试卷

九年级上册数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 7B. 2x - 3 = 7C. 2x + 3 = 5D. 2x - 3 = 52. 已知等腰三角形的两边长分别为5和8,那么第三边的长度是多少?A. 3B. 5C. 8D. 103. 函数y = 2x + 3的图像经过哪个象限?A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限4. 以下哪个是完全平方数?A. 16B. 18C. 20D. 225. 一个数的平方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个6. 计算以下表达式的值:(2x - 3)(x + 2)。
A. 2x^2 - x - 6B. 2x^2 + x - 6C. 2x^2 - x + 6D. 2x^2 + x + 67. 以下哪个是一元二次方程?A. x + 3 = 0B. x^2 + 3x + 2 = 0C. 2x - 3 = 0D. x^2 - 4 = 08. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π9. 以下哪个是正比例函数?A. y = 3x + 2B. y = 2xC. y = x^2D. y = 1/x10. 计算以下表达式的值:(a + b)(a - b)。
A. a^2 - b^2B. a^2 + b^2C. 2abD. a^2 + 2ab + b^2二、填空题(每题2分,共20分)11. 已知一个等差数列的首项是3,公差是2,那么第5项的值是_________。
12. 一个直角三角形的两直角边长分别为6和8,那么斜边的长度是_________。
13. 计算以下表达式的值:(3x + 2)(3x - 2) = _________。
14. 一个数的立方根是它本身的数有_________个。
15. 函数y = -x + 5与x轴的交点坐标是(_________, 0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册期中考试
一、单选题(共11题;共11分)
1.(1分)目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是(
)
A.438(1+x )2=389
B.389(1+x )2=438
C.389(1+2x )2=438
D.438(1+2x )2=389
2.(1分)一个两位数等于它的个位数字的平方,且个位数字比十位数字大3,则这个两位数为()A.25
B.36
C.25或36
D.-25或-36
3.(1分)
已知抛物线.当
时,y 随x 的增大而增大;当
时,y 的
最大值为10.那么与抛物线关于y
轴对称的抛物线在内的函数最大值为
()
A.10
B.17
C.5
D.2
4.(1分)在抛物线y=x 2﹣4x ﹣4上的一个点是()A.(4,4)
B.(
-,
-)
C.(3,﹣1)
D.(﹣2,﹣8)
5.(1分)某药品经过两次降价,每瓶零售价由100元降为81元,则平均每次降价()
A.8.5%
B.9%
C.9.5%
D.10%
6.(1分)关于x 的一元二次方程(m-2)x 2+(2m —1)x+m 2—4=0的一个根是0,则m 的值是()A.2
B.—2
C.2或者—2
D.
7.(1分)已知二次函数y =a 2+bx+c (a ≠0)的图象如图所示,现给出下列结论:①abc >0;②9a+3b+c =0;③b 2﹣4ac <0;④5a+b+c >0.其中正确结论的是(
)
A.①②
B.①②③
C.①②④
D.①②③④
8.(1分)关于x 的一元二次方程x 2+(k 2-4)x+k+1=0的两实数根互为相反数,则k 的值()
A.-1
B.±2
C.2
D.-2
9.(1分)一元二次方程:
2+4x +1=0的根的情况是()
A.有两个不相等的实数根
B.有一个实数根
C.有两个相等的实数根
D.没有实数根
10.(1分)如图,二次函数的图象的对称轴是直线
,则以下四个结论中:
①
,②
,
③
,④
.正确的个数是(
)
A.1
B.2
C.3
D.4
11.(1分)二次函数y=ax 2+bx+c 的图象如图所示,则下列结论
正确的是
A.a <0,b <0,c >0,b 2﹣4ac >0
B.a >0,b <0,c >0,b 2﹣4ac <0
C.a <0,b >0,c <0,b 2﹣4ac
>0
D.a <0,b >0,c >0,b 2﹣4ac >0二、填空题(共3题;共3分)12.(1分)如图,直线y=-x+4
分别与x 轴,y 轴相交于点A ,B ,点C 在直线AB 上,D 是坐标平面内一点.若以点0,A ,C ,D 为顶点的四边形是菱形,则点D 的坐标是________
.
13.(1分)(3分)(2016秋•淅川县期中)已知a ,b 是方程x 2﹣x ﹣3=0的两个根,则代数式a 2﹣(a+b )+b 2的值为________.
14.(1分)正方形面积为25,则它的边长为________.三、计算题(共3题;共18分)
15.(6分)解方程:(1).x 2+3=3(x +3)(2).4x(2x -1)=3(2x -1)
16.(6分)用适当的方法解下列方程:
(1).3x(x +3)=2(x +3);
(2).2x2-6x-3=0.
17.(6分)
(1).
计算:;
(2).解方程:x2﹣4x+1=0.
四、解答题(共2题;共10分)
18.(5分)已知关于x的一元二次方程x2﹣4x+m﹣1=0有两个相等的实数根,求m的值及方程的根.
19.(5分)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.
(Ⅰ)求直线y=kx+b的函数解析式;
(Ⅱ)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x 的函数解析式,并求d取最小值时点P的坐标;
(Ⅲ)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小
值.
五、综合题(共7题;共58分)
20.(6分)某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示
.
(1).求y与x的函数表达式;
(2).要使销售利润达到800元,销售单价应定为每千克多少元?21.(9分)已知:如图,抛物线y=-x2+bx+c与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴正半轴交于点C,OA=3,OB=1,点M为点A关于y轴的对称点
.
(1).求抛物线的解析式;
(2).点P为第三象限抛物线上一点,连接PM、PA,设点P的横坐标为t,△PAM的面积为S,求S与t的函数关系式;
(3).在(2)的条件下,PM交y轴于点N,过点A作PM的垂线交过点C与x轴平行的直线于点G,若ON∶CG=1∶4,求点P的坐标.
22.(6分)在如图所示网格内建立恰当直角坐标系后,画出函数y=x2和y=
﹣x2的图象,并根据图象回答下列问题(设小方格的边长为1)
:
(1).抛物线y=x2,当x________时,抛物线上的点都在x轴的上方,它的顶点是图象的最________点;
(2).函数y=
﹣x2,对于一切x的值,总有函数y________0;当x________时,y有最________值是________.
23.(6分)如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,
(1).求出此抛物线的解析式、对称轴以及B 点坐标;
(2).若在y 轴负半轴上存在点D ,能使得以A 、C 、D 为顶点的三角形与△ABC 相似,请求出点D 的坐标.
24.(11分)某宾馆有50个房间可供游客居住,当每个房间每天的定价为180元时,房间会全部住满,当每个房间每天的定价增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间的定价增加x 元(x 为10的整数倍),此时入住的房间数为y 间,宾馆每天的利润为w 元.
(1).直接写出y (间)与x (元)之间的函数关系;(2).如何定价才能使宾馆每天的利润w (元)最大?
(3).若宾馆每天的利润为10800元,则每个房间每天的定价为多少元?25.(12分)如图1
,抛物线
与轴交
于
、
两点,与轴交于
点,顶点
为点
.
(1).求这条抛物线的解析式及直
线的解析式;
(2).段
上一动点(点不与
点、
重合),过点
向轴引垂线,垂足
为
,设
的长为,四边
形
的面积为.求与之间的函数关系式及自变量的取值范围;
(3).在线段上是否存在点,
使
为等腰三角形?若存在,请直接写出点的坐标;若不存在,
请说明理由.
26.(8分)已知关于x 的一元二次方程tx 2−6x+m+4=0有两个实数根x 1、x 2.
(1).当m=1时,求t 的取值范围;
(2).当t=1时,若x 1、x 2满足3|x 1|=x 2+4,求m 的值.。