MEMS微机电系统(Micro-Electro-Mechanical Systems)
微机电系统

微机电系统制造工艺史微机电系统(Micro Electro-Me-chanical Systems,MEMS)是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。
MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的。
微机电系统是微米大小的机械系统,其中也包括不同形状的三维平板印刷产生的系统。
这些系统的大小一般在微米到毫米之间。
在这个大小范围中日常的物理经验往往不适用。
比如由于微机电系统的面积对体积比比一般日常生活中的机械系统要大得多,其表面现象如静电、润湿等比体积现象如惯性或热容量等要重要。
它们一般是由类似于生产半导体的技术如表面微加工、体型微加工等技术制造的。
其中包括更改的硅加工方法如压延、电镀、湿蚀刻、干蚀刻、电火花加工等等。
①微机电系统制造发展历程:19世纪照相制版;1951年显像管遮蔽屏(美国RCA公司)(光学应用);1952年表面微加工专利2749598(美);1954年压阻效应;1962年晶体的异向腐蚀;1963年半导体压力计(日本丰田中央研究所);1967年振动门晶体管(美国Westinghouse公司)(牺牲层腐蚀);1968年阳极键合(美国Mallory公司);1969年基于掺杂浓度的腐蚀;1970年硅微电极(斯坦福大学);1973年内窥镜用硅压力传感器(斯坦福大学);1974年集成气相质谱仪(斯坦福大学);1979年集成压力传感器(密西根大学);1982年LIGA工艺(德国原子力研究所);1986年硅反馈式加速度计(瑞士CSEM);1986年集成流量控制器(日本东北大学);1987年微齿轮等(美国加州大学伯克利分校,贝尔研究所);1987年微静电微马达(加州大学伯克利分校,Yu-Chong Tai,Long-Sheng Fan)。
发展阶段:硅微传感器阶段:1963年日本丰田研究中心制作出硅微压力传感器。
微机电系统技术及应用

微机电系统技术及应用微机电系统技术(Micro-Electro-Mechanical Systems,MEMS)是指一种集成微型机械、电子和计算机技术的系统,它利用微型加工技术将传感器、执行器和电子元器件等多种功能集成到一个芯片上,从而实现在微小空间内进行感测、信号处理和控制的复杂系统。
自20世纪80年代以来,MEMS技术在各个领域得到了广泛的应用,成为现代科技进步的重要方向之一。
一、MEMS技术的基本原理MEMS技术的实现基于微机械制造技术,即利用光刻、蚀刻、离子注入、薄膜沉积、微调工艺等多种微加工技术,在硅基底板上制造出微型机械和微型电子元器件,将它们集成在一起实现控制系统的复杂功能。
常见的MEMS元件包括传感器和执行器两类。
传感器一般是将物理量转换成电信号输出的元件,MEMS传感器主要有压力传感器、加速度传感器、角速度传感器、温度传感器、化学传感器等,它们的结构和工作原理各不相同。
以加速度传感器为例,它主要是通过微型悬臂等结构感受加速度的作用,在振动部件上加上感应电极,利用柔性连接器将机械运动转化成电信号输出。
执行器是将电信号转换成物理运动的设备,MEMS执行器主要有微型电机、微泵、微阀门和微喷头等。
以微型电机为例,它主要包括固定部件和旋转部件,其结构具有一定的复杂性。
电机的旋转部件通常采用转子-定子结构,采用MEMS技术可以制造出特殊形状的转子并将其悬挂在薄膜支撑结构上,转子与定子之间通过电容传感器实现控制,电容传感器输出的信号被用于控制电机的转速和方向。
二、MEMS技术的应用领域MEMS技术的应用范围非常广泛,包括空间、军事、医疗、汽车、电子信息等多个领域,在以下几个方面得到了广泛应用。
1.传感器MEMS传感器可以感测体积小、重量轻、功耗低、响应速度快、精度高等诸多优点,使之成为传感器领域的重要技术。
它广泛应用于汽车行业、工业自动化控制、医疗设备等领域,如安全气囊用于汽车碰撞检测、指纹识别传感器、手机加速度传感器等。
mems超声波传感器原理

MEMS超声波传感器原理1. 引言MEMS(Micro-Electro-Mechanical Systems)超声波传感器是一种基于微机电系统技术的传感器,常用于测量距离、检测物体、检测流体等应用。
它利用超声波的特性来实现非接触式的测量和控制,具有高精度、高灵敏度和快速响应等优点。
本文将详细解释MEMS超声波传感器的基本原理。
2. 超声波的基本原理超声波是指频率超过20kHz的机械振动波,它是一种纵波,在介质中传播时,分子之间发生周期性的压缩和稀疏。
超声波具有以下几个特点:•高频:超过人类听觉范围(20Hz-20kHz),通常在40kHz以上。
•短波长:随着频率增加,波长减小,可以实现较高精度的测量。
•直线传播:由于短波长,超声波在空气或液体中以直线方式传播。
3. MEMS超声波传感器结构MEMS超声波传感器通常由以下几个部分组成:•超声波发射器:用于产生超声波信号。
•超声波接收器:用于接收返回的超声波信号。
•控制电路:用于控制发射和接收过程,并处理传感器的输出信号。
4. MEMS超声波传感器工作原理MEMS超声波传感器的工作原理可以分为以下几个步骤:步骤1:发射超声波1.控制电路向超声波发射器提供电压信号,激励超声波发射器产生高频振动。
2.高频振动通过耦合装置传递给传感器的震荡膜或谐振腔。
步骤2:超声波传播1.发射的超声波以直线方式在介质中传播,如空气或液体。
2.当遇到物体或界面时,部分超声波被反射回来。
步骤3:接收反射信号1.反射的超声波进入MEMS超声波传感器的接收装置,如震荡膜或谐振腔。
2.接收装置将机械能转换为电能,并输出相应的电压信号。
步骤4:信号处理1.控制电路接收到传感器输出的电压信号。
2.信号经过放大、滤波和调理等处理,以提高测量精度和减小噪声。
步骤5:测量和控制1.经过信号处理后的信号被用于测量距离、检测物体等应用。
2.控制电路可以根据测量结果进行相应的控制,如报警、反馈控制等。
mems三轴加速度计原理

mems三轴加速度计原理MEMS三轴加速度计原理1. 什么是MEMS三轴加速度计?MEMS(Micro-Electro-Mechanical Systems)三轴加速度计是一种微型化的传感器设备,用于测量物体在三个方向上的加速度。
它的工作原理基于微机电系统技术,通过微型电子组件和微机械结构实现加速度的检测与测量。
该设备通常由微加速度感应器、信号处理电路和数据输出接口组成,能够广泛应用于移动设备、汽车安全系统、运动监测等领域。
2. MEMS三轴加速度计的工作原理微加速度感应器微加速度感应器是MEMS三轴加速度计的核心部件。
它通常由微结构和敏感电路组成。
微结构由多个微机械振动结构组成,其中包括微型质量块和弹簧。
当发生加速度时,微加速度感应器内的质量块会受到惯性力的作用而发生位移,从而引起弹簧的变形。
敏感电路敏感电路是用于检测和测量微加速度感应器产生的位移的电路部分。
它通常由压电传感器和信号放大器组成。
压电传感器可以将微加速度感应器的位移转化为电荷信号。
当微加速度感应器发生位移时,压电传感器产生电荷信号,这个信号会被传递到信号放大器。
信号放大器会放大压电传感器产生的微弱电荷信号,使之成为可以被读取和处理的电压信号。
3. MEMS三轴加速度计的工作过程MEMS三轴加速度计的工作过程可以分为三个阶段:感应阶段、转换阶段和读数阶段。
感应阶段在感应阶段,当加速度发生变化时,微加速度感应器内的质量块会受到惯性力作用而发生位移。
这个位移将被压电传感器转化为电荷信号。
转换阶段在转换阶段,压电传感器产生的电荷信号被信号放大器放大为可以进行读数和处理的电压信号。
信号放大器通常采用运算放大器等电路进行放大。
读数阶段在读数阶段,通过数据输出接口可以读取和处理由信号放大器产生的电压信号。
这些信号可以被转换成数字信号,从而得到物体在三个方向上的加速度数值。
MEMS三轴加速度计通过微机电系统技术,利用微加速度感应器和敏感电路实现对物体加速度的检测和测量。
mems微机电系统名词解释

mems微机电系统名词解释MEMS(Micro-Electro-Mechanical Systems,微机电系统)是一种集成微型机械、电子与传感器功能于一身的微型设备。
它结合了传统的机械制造技术、半导体工艺和微纳米技术,将微型机械部件、传感器、电子电路以及微纳加工技术集成在一个晶圆上,以实现微型化、多功能化和集成化的目标。
以下是一些与MEMS相关的名词解释:1. 传感器(Sensor):一种能够感知并转换外部物理量、化学量或生物量的设备,可以将感应到的物理量转化为电信号。
2. 执行器(Actuator):一种能够接收电信号并将其转化为相应的机械运动的设备,用来实现对外界的控制或作用。
3. 微型机械(Micro-Mechanical):指尺寸在微米或纳米级别的机械部件,由微细加工技术制造而成,具有微小、精确和高效的特点。
4. 纳米技术(Nanotechnology):一种研究和应用物质在纳米尺度下的特性、制备和操作的技术,常用于MEMS器件的加工制造。
5. 惯性传感器(Inertial Sensor):一种基于测量物体运动状态和变化的MEMS传感器,如加速度计和陀螺仪。
6. 压力传感器(Pressure Sensor):一种可以测量气体或液体压力的MEMS传感器,常用于汽车、医疗、工业等领域。
7. 加速度计(Accelerometer):一种测量物体在空间中加速度的MEMS传感器,常用于移动设备、运动检测等应用。
8. 微镜(Micro-Mirror):一种利用MEMS技术制造的微型反射镜,通常用于显示、成像和光学通信等应用。
9. 微流体器件(Microfluidic Device):一种用于实现微小流体控制的MEMS器件,常用于生化分析、药物传递和微生物学研究等领域。
10. 无线传感器网络(Wireless Sensor Network):一种由多个分布式的MEMS传感器节点组成的网络系统,可以实现对环境信息的实时采集、处理和通信。
集成电路的微机电系统(MEMS)技术考核试卷

8. MEMS封装的主要目的是为了提供_______保护、电气连接和防止污染。()
9.目前MEMS技术的主要应用领域包括消费电子、_______、医疗和汽车等。()
10.随着技术的不断发展,MEMS技术的未来发展趋势将更加注重_______、_______和_______。()
A.空气bag传感器
B.发动机控制系统
C.轮胎压力监测系统
D. GPS导航系统
19.以下哪种材料最适合用于MEMS的润滑?()
A.石蜡
B.氟化物
C.硅油
D.水
20.关于MEMS技术的未来发展趋势,以下哪个描述是不正确的?()
A.更高的集成度
B.更低的成本
C.更小的尺寸
D.更少的应用领域
二、多选题(本题共20小题,每小题1.5分,共30分,在每小题给出的四个选项中,至少有一项是符合题目要求的)
5. A, B, C, D
6. A, B, D
7. A, B, C, D
8. A, B, C, D
9. A, B, C, D
10. A, B, C, D
11. A, B, C
12. A, B, C
13. A, B, C, D
14. A, B, D
15. B, D
16. A, B, C
17. A, B, C
10.低成本、低功耗、多功能(Low cost, Low power consumption, Multi-function)
四、判断题
1. ×
2. ×
3. √
4. √
5. √
6. √
mems激光雷达原理

mems激光雷达原理
MEMS激光雷达(Micro-Electro-Mechanical Systems LiDAR)原理是利用微机电系统技术将激光雷达的光源、接收器和扫描器等组件集成在一个芯片上,实现小型化和低成本化,具有高分辨率、高精度和高可靠性的特点。
激光雷达使用激光束对目标物体进行扫描,其原理是利用发射激光器发出的激光束照射到目标物体上,部分激光会被物体反射回来,通过接收器接收并进行记录。
MEMS激光雷达采用微机电系统平台,通过微型梁、微型镜等微结构来实现扫描系统。
微型梁和微型镜可以通过电机或电磁场控制来改变方向,从而组成不同方向的扫描组件。
当激光照射到垂直方向时,微型梁和微型镜会反射并扫描激光束,使激光束扫描一定范围内的物体,接收器接收到反射回来的激光信号并进行处理,最终生成三维图像。
MEMS激光雷达的原理是利用微型梁、微型镜等微结构扫描激光束,实现目标物体的三维测量和图像重建。
由于其用途广泛、高效且具有低成本的特点,成为激光雷达研究中的热点和关注焦点。
mems 定位简介

MEMS辅助定位技术MEMS是微机电系统(Micro-Electro-Mechanical Systems)的英文缩写。
MEMS是美国的叫法,在日本被称为微机械,在欧洲被称为微系统,它是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。
MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的,目前MEMS加工技术还被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。
智能手机中常用到的MEMS辅助定位器件在当前市面上销售的智能手机中,大多数都内置了GPS接收器和低成本的MEMS运动传感器,例如,加速度计、陀螺仪和/或磁力计。
在没有GPS卫星信号的建筑物内或GPS信号很弱的高楼林立的大都市内,个人导航或航位推测对于导航变得非常重要。
鉴于GPS接收器在户内户外测量高度都不够精确,在智能手机内集成MEMS运动传感器可以辅助GPS测量高度。
个人导航系统(PNS)与个人航位推测(PDR)系统相似。
从基本原理看,当无法获得GPS卫星信号时,PNS或PDR可以在智能手机的电子地图上继续提供方位和前进信息,引导用户到达兴趣点,获得位置关联服务(LBS)。
前进信息可以来自磁力计或陀螺仪或两者的模组。
PNS是利用惯性导航原理(INS)对加速度计的测量值进行双重积分求解决方位信息,而PDR是计步器和步长估算器根据典型计步器原理计算加速度计提供的测量数据而获得的方位信息。
在一定时间内获得前进方向和行进路程的信息后,导航系统在智能手机的电子地图上更新行人在户内的方位。
惯性导航系统惯性导航系统是一种利用安装在运载体上的陀螺仪和加速度计来测定运载体位置的一个系统。
通过陀螺仪和加速度计的测量数据,可以确定运载体在惯性参考坐标系中的运动,同时也能够计算出运载体在惯性参考坐标系中的位置。
不同于其他类型的导航系统,惯性导航系统是完全自主的,它既不向外部发射信号,也不从外部接收信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MEMS是微机电系统(Micro-Electro-Mechanical Systems)的英文缩写。
MEMS 是美国的叫法,在日本被称为微机械,在欧洲被称为微系统,它是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。
MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的,目前MEMS加工技术还被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。
MEMS主要包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。
MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。
MEMS技术正发展成为一个巨大的产业,就象近20年来微电子产业和计算机产业给人类带来的巨大变化一样,MEMS也正在孕育一场深刻的技术变革并对人类社会产生新一轮的影响。
目前MEMS市场的主导产品为压力传感器、加速度计、微陀螺仪、墨水喷咀和硬盘驱动头等。
大多数工业观察家预测,未来5年MEMS器件的销售额将呈迅速增长之势,年平均增加率约为18%,因此对对机械电子工程、精密机械及仪器、半导体物理等学科的发展提供了极好的机遇和严峻的挑战。
MEMS是一种全新的必须同时考虑多种物理场混合作用的研发领域,相对于传统的机械,它们的尺寸更小,最大的不超过一个厘米,甚至仅仅为几个微米,其厚度就更加微小。
采用以硅为主的材料,电气性能优良,硅材料的强度、硬度和杨氏模量与铁相当,密度与铝类似,热传导率接近钼和钨。
采用与集成电路(IC)类似的生成技术,可大量利用IC生产中的成熟技术、工艺,进行大批量、低成本生产,使性价比相对于传统“机械”制造技术大幅度提高。
完整的MEMS是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。
其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。
沿着系统及产品小型化、智能化、集成化的发展方向,可以预见:MEMS会给人类社会带来另一次技术革命,它将对21世纪的科学技术、生产方式和人类生产质量产生深远影响,是关系到国家科技发展、国防安全和经济繁荣的一项关键技术。
制造商正在不断完善手持式装置,提供体积更小而功能更多的产品。
但矛盾之处在于,随着技术的改进,价格往往也会出现飙升,所以这就导致一个问题:制造商不得不面对相互矛盾的要求——在让产品功能超群的同时降低其成本。
解决这一难题的方法之一是采用微机电系统,更流行的说法是MEMS,它使得制造商能将一件产品的所有功能集成到单个芯片上。
MEMS对消费电子产品的终极影响不仅包括成本的降低、而且也包括在不牺牲性能的情况下实现尺寸
和重量的减小。
事实上,大多数消费类电子产品所用MEMS元件的性能比已经出现的同类技术大有提高。
手持式设备制造商正在逐渐意识到MEMS的价值以及这种技术所带来的好处——大批量、低成本、小尺寸,而且开始转向成功的MEMS公司,其所实现的成本削减幅度之大,将影响整个消费类电子世界,而不仅是高端装置。
MEMS
在整个20世纪90年代都由汽车工业主导;在过去几年中,由于iPhone和Wii 的出现,使全世界的工程师都看到运动传感器带来的创新,使 MEMS在消费电子产业出现爆炸式的增长,成为改变终端产品用户体验以及实现产品差异化的核心要素。
国内MEMS芯片(Die)供应商主要有:上海微系统所、沈阳仪表所、电子部13研究所、北京微电子所等,目前形成生产的主要是MEMS压力传感器芯片(Die)。
MEMS第一轮商业化浪潮始于20世纪70年代末80年代初,当时用大型蚀刻硅片结构和背蚀刻膜片制作压力传感器。
由于薄硅片振动膜在压力下变形,会影响其表面的压敏电阻曲线,这种变化可以把压力转换成电信号。
后来的电路则包括电容感应移动质量加速计,用于触发汽车安全气囊和定位陀螺仪。
第二轮商业化出现于20世纪90年代,主要围绕着PC和信息技术的兴起。
TI公司根据静电驱动斜微镜阵列推出了投影仪,而热式喷墨打印头现在仍然大行其道。
第三轮商业化可以说出现于世纪之交,微光学器件通过全光开关及相关器件而成为光纤通讯的补充。
尽管该市场现在萧条,但微光学器件从长期看来将是MEMS一个增长强劲的领域。
目前MEMS产业呈现的新趋势是产品应用的扩展,其开始向工业、医疗、测试仪器等新领域扩张。
推动第四轮商业化的其它应用包括一些面向射频无源元件、在硅片上制作的音频、生物和神经元探针,以及所谓的'片上实验室'生化药品开发系统和微型药品输送系统的静态和移动器件。