人教必修二数学第三章测试题及答案解析.doc

合集下载

人教版高中数学必修二第三章单元测试(二)及参考答案

人教版高中数学必修二第三章单元测试(二)及参考答案

2018-2019学年必修二第三章训练卷直线与方程(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 经过两点()()1,2,2,1P Q -,那么直线l 的斜率为( )A.3-B.13-C.13D.32.直线l 过点P (-1,2),倾斜角为45°,则直线l 的方程为( ) A.x -y +1=0 B.x -y -1=0 C.x -y -3=0D.x -y +3=03.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为( ) A.-3 B.-6C.32D.234.直线2x a -2y b =1在y 轴上的截距为( ) A.|b |B.-b 2C.b 2D.±b5.已知点A (3,2),B (-2,a ),C (8,12)在同一条直线上,则a 的值是( ) A.0B.-4C.-8D.46.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( ) A.第一象限 B.第二象限C.第三象限D.第四象限7.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0, 则实数m 的值是( ) A.-2B.-7C.3D.18.经过直线l 1:x -3y +4=0和l 2:2x +y =5=0的交点,并且经过原点的直线方程是( ) A.19x -9y =0 B.9x +19y =0 C.3x +19y =0D.19x -3y =09.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A.(0,0)B.(17,27) C.(27,17) D.(17,114) 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A.x +2y -1=0 B.2x +y -1=0 C.2x +y -3=0D.x +2y -3=011.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( ) A.-4B.-2C.0D.212.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3),则点B 的坐标可能是( ) A.(2,0)或(4,6)B.(2,0)或(6,4)C.(4,6)D.(0,2)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为M (1,-1),则直线l 的斜率为_________.14.点A (3,-4)与点B (5,8)关于直线l 对称,则直线l 的方程为_________.15.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为_________.16.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15°;②30°;③45°;④60°;⑤75°,其中正确答案的序号是_________.(写出所有正确答案的序号)三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)此卷只装订不密封班级 姓名 准考证号 考场号 座位号17.(10分)已知直线l 经过点P (-2,5)且斜率为-34,(1)求直线l 的方程;(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程.18.(12分)求经过两直线3x -2y +1=0和x +3y +4=0的交点,且垂直于直线 x +3y +4=0的直线方程.19.(12分)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P , 使|P A |=|PB |,且点P 到直线l 的距离等于2.20.(12分)△ABC中,A(0,1),AB边上的高CD所在直线的方程为x+2y-4=0,AC边上的中线BE所在直线的方程为2x+y-3=0. (1)求直线AB的方程;(2)求直线BC的方程;(3)求△BDE的面积.21.(12分)直线过点P(43,2)且与x轴、y轴的正半轴分别交于A,B两点,O为坐标原点,是否存在这样的直线同时满足下列条件:(1)△AOB的周长为12;(2)△AOB的面积为6.若存在,求直线的方程;若不存在,请说明理由.22.(12分)在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB,AD边分别在x 轴、y轴的正半轴上,A点与坐标原点重合,如图,将矩形折叠,使A点落在线段DC上. (1)若折痕所在直线的斜率为k,试求折痕所在直线的方程;(2)当-2+3≤k≤0时,求折痕长的最大值.2018-2019学年必修二第三章训练卷直线与方程(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】C【解析】根据斜率公式可得,直线l的斜率121213k-==--,故选C.2.【答案】D【解析】由题意k=tan45°=1,∴直线l的方程为y-2=1·(x+1), 即x-y+3=0,故选D.3.【答案】B【解析】由题意得a·(-1)-2×3=0,∴a=-6,故选B.4.【答案】B【解析】令x=0,则y=-b2,故选B.5.【答案】C【解析】根据题意可知k AC=k AB,即12283--=223a---,解得a=-8,故选C.6.【答案】D【解析】Ax+By+C=0可化为y=-ABx-CB,由AB<0,BC<0,得-AB>0,-CB>0,故直线Ax+By+C=0经过第一、二、三象限,不经过第四象限.故选D.7.【答案】C【解析】由已知条件可知线段AB的中点(12m+,0)在直线x+2y-2=0上,把中点坐标代入直线方程,解得m=3,故选C.8.【答案】C【解析】解340250x yx y-+=⎧⎨-+=⎩得19737xy⎧=-⎪⎪⎨⎪=⎪⎩,即直线l1,l2的交点是(-197,37),由两点式可得所求直线的方程是3x+19y=0,故选C. 9.【答案】C【解析】直线方程变形为k(3x+y-1)+(2y-x)=0,则直线通过定点(27,17).故选C.10.【答案】D【解析】将“关于直线对称的两条直线”转化为“关于直线对称的两点”:在直线x-2y+1=0上取一点P(3,2),点P关于直线x=1的对称点P′(-1,2)必在所求直线上,故选D.11.【答案】B【解析】因为l的斜率为tan135°=-1,所以l1的斜率为1,所以k AB=()213a---=1,解得a=0.又l1∥l2,所以-2b=1,解得b=-2,所以a+b=-2,故选B.12.【答案】A【解析】设B(x,y),根据题意可得1AC BCk kBC AC⋅=-⎧⎪⎨=⎪⎩,即3431303yx--⎧⋅=-⎪--解得⎩⎪⎨⎪⎧x=2y=0或⎩⎪⎨⎪⎧x=4y=6,所以B(2,0)或B(4,6).故选A.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】-23【解析】设A(x1,y1),B(x2,y2),则y1+y22=-1,又y1=1,∴y2=-3,代入方程x-y-7=0,得x2=4,即B(4,-3),又x1+x22=1,∴x1=-2,即A(-2,1),∴k AB=()3142----=-23.14.【答案】x+6y-16=0【解析】直线l就是线段AB的垂直平分线,AB的中点为(4,2),k AB=6,所以k l=-16,所以直线l的方程为y-2=-16(x-4),即x+6y-16=0.【解析】依题意,知l 1∥l 2,故点M 所在直线平行于l 1和l 2,可设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式,得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m=-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2. 16.【答案】①⑤【解析】两平行线间的距离为d =|3-1|1+1=2, 由图知直线m 与l 1的夹角为30°,l 1的倾斜角为45°, 所以直线m 的倾斜角等于30°+45°=75°或45°-30°=15°.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)3x +4y -14=0;(2)3x +4y +1=0或3x +4y -29=0. 【解析】(1)直线l 的方程为:y -5=-34(x +2)整理得3x +4y -14=0.(2)设直线m 的方程为3x +4y +n =0, d =3,解得n =1或-29.∴直线m 的方程为3x +4y +1=0或3x +4y -29=0. 18.【答案】3x -y +2=0.【解析】解法一:设所求直线方程为3x -2y +1+λ(x +3y +4)=0, 即(3+λ)x +(3λ-2)y +(1+4λ)=0,由所求直线垂直于直线x +3y +4=0, 得-13·(-3+λ3λ-2)=-1,解得λ=310,故所求直线方程是3x -y +2=0.解法二:设所求直线方程为3x -y +m =0.由⎩⎪⎨⎪⎧ 3x -2y +1=0,x +3y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =-1,即两已知直线的交点为(-1,-1). 又3x -y +m =0过点(-1,-1),故-3+1+m =0,m =2. 故所求直线方程为3x -y +2=0. 19.【答案】P (1,-4)或P (277,-87).① 又点P 到直线l 的距离等于2,所以|4x +3y -2|5=2.②由①②联立方程组,解得P (1,-4)或P (277,-87).解法2:设点P (x ,y ).因为|P A |=|PB |,所以点P 在线段AB 的垂直平分线上.由题意知k AB =-1,线段AB 的中点为(3,-2),所以线段AB 的垂直平分线的方程是y =x -5,所以设点P (x ,x -5).因为点P 到直线l 的距离等于2,所以()|4352|5x x +--=2,解得x =1或x =277,所以P (1,-4)或P (277,-87).20.【答案】(1)2x -y +1=0;(2)2x -y +1=0;(3)110.【解析】(1)由已知得直线AB 的斜率为2,∴AB 边所在的直线方程为y -1=2(x -0),即2x -y +1=0.(2)由⎩⎪⎨⎪⎧2x -y +1=0,2x +y -3=0得⎩⎪⎨⎪⎧x =12,y =2.即直线AB 与直线BE 的交点为B (12,2).设C (m ,n ),则由已知条件得⎩⎪⎨⎪⎧m +2n -4=0,2·m 2+n +12-3=0,解得⎩⎪⎨⎪⎧m =2,n =1,∴C (2,1).∴BC 边所在直线的方程为y -12-1=x -212-2,即2x +3y -7=0.(3)∵E 是线段AC 的中点,∴E (1,1).∴|BE |=52,由⎩⎪⎨⎪⎧2x -y +1=0,x +2y -4=0得⎩⎨⎧x =25,y =95,∴D (25,95),∴D 到BE 的距离为d =|2×25+95-3|22+12=255,∴S △BDE=12·d ·|BE |=110.21.【答案】)存在,3x +4y -12=0. 【解析】设直线方程为x a +yb =1(a >0,b >0),若满足条件(1),则a +b +a 2+b 2=12 ① 又∵直线过点P (43,2),∵43a +2b=1.②由①②可得5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a =4,b =3,或⎩⎨⎧a =125,b =92,∴所求直线的方程为x 4+y 3=1或5x 12+2y9=1,即3x +4y -12=0或15x +8y -36=0,若满足条件(2),则ab =12,③ 由题意得,43a +2b=1,④由③④整理得a 2-6a +8=0,解得⎩⎪⎨⎪⎧ a =4,b =3或⎩⎪⎨⎪⎧a =2,b =6,∴所求直线的方程为x 4+y 3=1或x 2+y6=1,即3x +4y -12=0或3x +y -6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x +4y -12=0. 22.【答案】(1)y =kx +k 22+12;(2)2(6-2).【解析】(1)①当k =0时,A 点与D 点重合,折痕所在的直线方程为y =12.②当k ≠0时,将矩形折叠后A 点落在线段DC 上的点记为G (a,1), ∴A 与G 关于折痕所在的直线对称,有k OG ·k =-1⇒1a·k =-1⇒a =-k ,故G 点坐标为(-k,1),从而折痕所在直线与OG 的交点坐标(即线段OG 的中点)为M (-k 2,12).故折痕所在的直线方程为y -12=k (x +k 2),即y =kx +k 22+12.由①②得折痕所在的直线方程为y =kx +k 22+12.(2)当k =0时,折痕的长为2.当-2+3≤k <0时,折痕所在直线交直线BC 于点E (2,2k +k 22+12),交y 轴于点N (0,k 2+12).则|NE |2=22+[k 2+12-(2k +k 22+12)]2=4+4k 2≤4+4(7-43)=32-16 3.此时,折痕长度的最大值为32-163=2(6-2). 而2(6-2)>2,故折痕长度的最大值为2(6-2).。

高中人教版数学A版必修2(课时作业与单元测试卷):第三、四章 滚动检测 Word版含解析

高中人教版数学A版必修2(课时作业与单元测试卷):第三、四章 滚动检测 Word版含解析
A.4 B.3
C.2 D.1
答案:B
解析:由离为d,则由三角形ABC的面积为1可得1= ×2 ×d,解得d= ,即 = ,解得b=3-a或b=1-a,又因为|OC|= = ,所以a2+(3-a)2= 或a2+(1-a)2= ,整理得4a2-12a+9=0或4a2-4a-7=0,解得a= ,a= + ,a= - ,即a有三个不同的解,所以点C的个数为3.
6.若P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程是()
A.x-y-3=0 B.2x+y-3=0
C.x+y-1=0 D.2x-y-5=0
答案:A
解析:圆心为C(1,0),∵AB⊥CP,kCP= =-1,∴kAB=1,且直线AB过点P(2,-1),∴直线方程为x-y-3=0.
答案:3x+y-6=0
解析:设A(m,0),B(0,n).由P(1,3)是AB的中点可得m=2,n=6,即A,B的坐标分别为(2,0),(0,6).
由两点式直接得方程 = ,即3x+y-6=0.
15.已知圆C的方程为x2+y2-2y-3=0,过点P(-1,2)的直线l与圆C交于A,B两点,若使|AB|最小,则直线l的方程是________.
即不论m取什么实数,它恒过两直线2x+y-10=0与x+3y-15=0的交点.两方程联立,解得交点为(3,4).
又有(3-2)2+(4-3)2=2<16,
∴点(3,4)在圆内部,
∴不论m为何实数,直线l与圆恒相交.
(2)解:从(1)的结论和直线l过定点M(3,4)且与过此点的圆C的半径垂直时,l被圆所截的弦长|AB|最短,由垂径定理得
第三、四章滚动检测
班级____姓名____考号____分数____
本试卷满分150分,考试时间120分钟.

2020年人教A版高中数学必修二课时分层训练:第三章 直线与方程 3.1 3.1.1 Word版含

2020年人教A版高中数学必修二课时分层训练:第三章 直线与方程 3.1 3.1.1 Word版含

姓名,年级:时间:第三章3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率课时分层训练错误!1.直线x=1的倾斜角和斜率分别是()A.45°,1B.135°,-1C.90°,不存在D.180°,不存在解析:选C 作出图象,故C正确.2.给出下列说法:①若α是直线l的倾斜角,则0°≤α<180°;②若k是直线的斜率,则k∈R;③任一条直线都有倾斜角,但不一定有斜率;④任一条直线都有斜率,但不一定有倾斜角.其中说法正确的个数是()A.1 B.2C.3 D.4解析:选C 显然①②③正确,④错误.3.已知直线经过点A(-2,0),B(-5,3),则该直线的倾斜角为( )A.150° B.135°C.75° D.45°解析:选B ∵直线经过点A(-2,0),B(-5,3),∴其斜率k AB=错误!=-1。

设其倾斜角为θ(0°≤θ<180°),则tan θ=-1,∴θ=135°。

4.过两点A(4,y),B(2,-3)的直线的倾斜角为45°,则y =( )A.-错误! B.错误!C.-1 D.1解析:选C tan 45°=k AB=y+34-2,即错误!=1,所以y=-1。

5.已知直线l经过点A(1,2),且不经过第四象限,则直线l的斜率k的取值范围是()A.(-1,0]B.[0,1]C.[1,2] D.[0,2]解析:选D 由图可知当直线位于如图阴影部分所示的区域内时,满足题意,所以直线l的斜率满足0≤k≤2。

故选D。

6。

如图,已知直线l 1的倾斜角是150°,l2⊥l1,垂足为B.l1,l2与x轴分别相交于点C,A,l3平分∠BAC,则l3的倾斜角为.解析:因为直线l1的倾斜角为150°,所以∠BCA=30°,所以l3的倾斜角为错误!×(90°-30°)=30°。

2019-2020学年高中人教A版数学必修二习题:第3章 直线与方程 学业分层测评19 Word版含答案

2019-2020学年高中人教A版数学必修二习题:第3章 直线与方程 学业分层测评19 Word版含答案

学业分层测评(十九)(建议用时:45分钟)一、选择题1.直线4x +2y -2=0与直线3x +y -2=0的交点坐标是( )A .(2,2)B .(2,-2)C .(1,-1)D .(1,1) 【解析】 解方程组⎩⎪⎨⎪⎧ 4x +2y -2=0,3x +y -2=0,得⎩⎪⎨⎪⎧ x =1,y =-1,∴交点坐标为(1,-1).【答案】 C2.两直线2x +3y -k =0和x -ky +12=0的交点在y 轴上,那么k 的值为( )A .-24B .6C .±6D .24【解析】 在2x +3y -k =0中,令x =0得y =k 3,将⎝ ⎛⎭⎪⎫0,k 3代入x -ky +12=0,解得k =±6. 【答案】 C3.以A (5,5),B (1,4),C (4,1)为顶点的三角形是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【解析】 ∵|AB |=17,|AC |=17,|BC |=32,∴三角形为等腰三角形.故选B.【答案】 B4.当a 取不同实数时,直线(a -1)x -y +2a +1=0恒过一定点,则这个定点是( )A .(2,3)B .(-2,3) C.⎝ ⎛⎭⎪⎫1,-12 D .(-2,0)【解析】 直线化为a (x +2)-x -y +1=0.由⎩⎪⎨⎪⎧ x +2=0,-x -y +1=0,得⎩⎪⎨⎪⎧ x =-2,y =3,所以直线过定点(-2,3).【答案】 B5.若直线ax +by -11=0与3x +4y -2=0平行,并过直线2x +3y -8=0和x -2y +3=0的交点,则a ,b 的值分别为( )A .-3,-4B .3,4C .4,3D .-4,-3 【解析】 由方程组⎩⎪⎨⎪⎧ 2x +3y -8=0,x -2y +3=0,得交点B (1,2),代入方程ax +by -11=0中,有a +2b -11=0①,又直线ax +by -11=0平行于直线3x +4y -2=0,所以-a b =-34②,11b ≠12③.由①②③,得a =3,b =4.【答案】 B二、填空题6.在直线x -y +4=0上求一点P ,使它到点M (-2,-4),N (4,6)的距离相等,则点P 的坐标为__________.【解析】 设P 点的坐标是(a ,a +4),由题意可知|PM |=|PN |, 即+++4+= -++4-,解得a =-32, 故P 点的坐标是⎝ ⎛⎭⎪⎫-32,52. 【答案】 ⎝ ⎛⎭⎪⎫-32,52 7.点P (-3,4)关于直线4x -y -1=0对称的点的坐标是________.【解析】 设对称点坐标为(a ,b ),则⎩⎪⎨⎪⎧ b -4a +3·4=-1,4×-3+a 2-4+b 2-1=0, 解得⎩⎪⎨⎪⎧ a =5,b =2,即所求对称点的坐标是(5,2).【答案】 (5,2)三、解答题8.设直线l 经过2x -3y +2=0和3x -4y -2=0的交点,且与两坐标轴围成等腰直角三角形,求直线l 的方程.【解】 设所求的直线方程为(2x -3y +2)+λ(3x -4y -2)=0,整理得(2+3λ)x -(4λ+3)y -2λ+2=0,由题意,得2+3λ3+4λ=±1, 解得λ=-1,或λ=-57.所以所求的直线方程为x -y -4=0,或x +y -24=0.9.已知直线l 1:2x +y -6=0和点A (1,-1),过A 点作直线l 与已知直线l 1相交于B 点,且使|AB |=5,求直线l 的方程.【解】 若l 与x 轴垂直,则l 的方程为x =1,由⎩⎪⎨⎪⎧ x =1,2x +y -6=0,得B 点坐标(1,4),此时|AB |=5,∴x =1为所求;当l 不与x 轴垂直时,可设其方程为y +1=k (x -1).解方程组⎩⎪⎨⎪⎧ 2x +y -6=0,y +1=-,得交点B ⎝ ⎛⎭⎪⎫k +7k +2,4k -2k +2(k ≠-2). 由已知⎝ ⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=5, 解得k =-34. ∴y +1=-34(x -1),即3x +4y +1=0. 综上可得,所求直线l 的方程为x =1或3x +4y +1=0.10.已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0,则N 点的坐标是( )A .(2,3)B .(-2,-1)C .(-4,-3)D .(0,1)【解析】 由题意知,直线MN 过点M (0,-1)且与直线x +2y -3=0垂直,其方程为2x -y -1=0.直线MN 与直线x -y +1=0的交点为N ,联立方程组⎩⎪⎨⎪⎧ 2x -y -1=0,x -y +1=0,解得⎩⎪⎨⎪⎧ x =2,y =3,即N 点坐标为(2,3).【答案】 A11.△ABD 和△BCE 是在直线AC 同侧的两个等边三角形,如图3­3­2.试用坐标法证明:|AE |=|CD |.图3­3­2【证明】 如图所示,以B 点为坐标原点,取AC 所在直线为x 轴,建立直角坐标系.设△ABD 和△BCE 的边长分别为a 和c ,则A (-a,0),C (c,0),E ⎝ ⎛⎭⎪⎫c 2,3c 2,D ⎝ ⎛⎭⎪⎫-a 2,3a 2,于是由距离公式,得|AE |=⎣⎢⎡⎦⎥⎤c 2--2+⎝ ⎛⎭⎪⎫32c -02 =a2+ac +c2,同理|CD |=a2+ac +c2,所以|AE |=|CD |.。

人教A高中数学必修二课时分层训练:第三章 直线与方程 33 331 332 含解析

人教A高中数学必修二课时分层训练:第三章 直线与方程 33 331 332 含解析

第三章 3.3 直线的交点坐标与距离公式3.3.1 两条直线的交点坐标3.3.2 两点间的距离课时分层训练‖层级一‖……………………|学业水平达标|1.直线x +2y -2=0与直线2x +y -3=0的交点坐标是( ) A .(4,1) B .(1,4) C.⎝ ⎛⎭⎪⎫43,13 D.⎝ ⎛⎭⎪⎫13,43 解析:选C 由方程组⎩⎪⎨⎪⎧x +2y -2=0,2x +y -3=0,得⎩⎪⎨⎪⎧x =43,y =13.即直线x +2y -2=0与直线2x +y -3=0的交点坐标是⎝ ⎛⎭⎪⎫43,13.2.过点A (4,a )和点B (5,b )的直线与y =x +m 平行,则|AB |的值为( ) A .6 B. 2 C .2D .不能确定解析:选B 由k AB =1,得b -a1=1, ∴b -a =1. ∴|AB |=(5-4)2+(b -a )2=1+1= 2.3.方程(a -1)x -y +2a +1=0(a ∈R )所表示的直线( ) A .恒过定点(-2,3) B .恒过定点(2,3) C .恒过点(-2,3)和点(2,3)D .都是平行直线解析:选A (a -1)x -y +2a +1=0可化为-x -y +1+a (x +2)=0, 由⎩⎪⎨⎪⎧ -x -y +1=0,x +2=0,得⎩⎪⎨⎪⎧x =-2,y =3.4.点P (a ,b )关于直线l :x +y +1=0的对称的点仍在l 上,则a +b 等于( ) A .1 B .-1 C .2D .0解析:选B ∵点P (a ,b )关于l :x +y +1=0对称的点仍在l 上,∴点P (a ,b )在直线l 上,∴a +b +1=0,即a +b =-1.5.到A (1,3),B (-5,1)两点的距离相等的动点P 的轨迹方程是( ) A .3x -y -8=0 B .3x +y +4=0 C .3x -y +6=0D .3x +y +2=0解析:选B 解法一:设P (x ,y ), 则(x -1)2+(y -3)2=(x +5)2+(y -1)2,即3x +y +4=0.解法二:到A 、B 两点距离相等的点P 的轨迹就是线段AB 的垂直平分线,AB 中点为M (-2,2),k AB =13,∴k l =-3,l :y -2=-3(x +2),即3x +y +4=0.6.点P (2,5)关于直线x +y =1的对称点的坐标是 . 解析:设对称点坐标是(a ,b ),则⎩⎪⎨⎪⎧b -5a -2·(-1)=-1,a +22+b +52=1.解得a =-4,b=-1,即所求对称点坐标是(-4,-1).答案:(-4,-1)7.经过两直线2x -3y -3=0和x +y +2=0的交点且与直线3x +y -1=0垂直的直线l 的方程为 .解析:由方程组⎩⎪⎨⎪⎧2x -3y -3=0,x +y +2=0,得⎩⎪⎨⎪⎧x =-35,y =-75.又所求直线与直线3x +y -1=0垂直,故k =13, ∴直线方程为y +75=13⎝ ⎛⎭⎪⎫x +35,即5x -15y -18=0. 答案:5x -15y -18=08.在直线x -y +4=0上求一点P ,使它到点M (-2,-4),N (4,6)的距离相等,则点P 的坐标为 .解析:设P 点的坐标是(a ,a +4), 由题意可知|PM |=|PN |, 即(a +2)2+(a +4+4)2=(a -4)2+(a +4-6)2,解得a =-32,故P 点的坐标是⎝ ⎛⎭⎪⎫-32,52.答案:⎝ ⎛⎭⎪⎫-32,529.光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.解:作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.10.已知两条直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试分别确定m ,n 的值,满足下列条件:(1)l 1与l 2相交于一点P (m,1); (2)l 1∥l 2且l 1过点(3,-1); (3)l 1⊥l 2且l 1在y 轴上的截距为-1.解:(1)把P (m,1)的坐标分别代入l 1,l 2的方程得m 2+8+n =0,2m +m -1=0,解得m =13,n =-739.(2)显然m ≠0.∵l 1∥l 2且l 1过点(3,-1), ∴⎩⎪⎨⎪⎧-m 8=-2m ,3m -8+n =0,解得⎩⎨⎧ m =4,n =-4或⎩⎨⎧m =-4,n =20.(3)由l 1⊥l 2且l 1在y 轴上的截距为-1.当m =0时,l 1的方程为8y +n =0,l 2的方程为2x -1=0.∴-8+n =0,解得n =8.∴m =0,n =8.而m ≠0时,直线l 1与l 2不垂直. 综上可知,m =0,n =8.‖层级二‖………………|应试能力达标|1.直线l :x +2y -1=0关于点(1,-1)对称的直线l ′的方程为( ) A .2x -y -5=0 B .x +2y -3=0 C .x +2y +3=0D .2x -y -1=0解析:选C 由题意得l ′∥l ,故设l ′:x +2y +c =0,在l 上取点A (1,0),则点A (1,0)关于点(1,-1)的对称点是A ′(1,-2),所以1+2×(-2)+c =0,即c =3,故直线l ′的方程为x +2y +3=0,故选C.2.已知平面上两点A (x ,2-x ),B ⎝ ⎛⎭⎪⎫22,0,则|AB |的最小值为( )A .3 B.13 C .2D.12解析:选D ∵|AB |=⎝⎛⎭⎪⎫x -222+(2-x )2=2⎝⎛⎭⎪⎫x -3242+14≥12,当且仅当x =324时等号成立,∴|AB |min =12.3.无论k 为何值,直线(k +2)x +(1-k )y -4k -5=0都过一个定点,则该定点为( )A .(1,3)B .(-1,3)C .(3,1)D .(3,-1)解析:选D 直线方程可化为(2x +y -5)+k (x -y -4)=0,此直线过直线2x +y -5=0和直线x -y -4=0的交点.由⎩⎪⎨⎪⎧ 2x +y -5=0,x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =-1.因此所求定点为(3,-1).故选D.4.已知点A (3,-1),B (5,-2),点P 在直线x +y =0上,若使|P A |+|PB |取最小值,则P 点坐标是( )A .(1,-1)B .(-1,1) C.⎝ ⎛⎭⎪⎫135,-135 D .(-2,2)解析:选C 点A (3,-1)关于直线x +y =0的对称点为A ′(1,-3),直线A ′B 的方程为y =14x -134,与x +y =0联立方程组解得⎩⎪⎨⎪⎧x =135,y =-135,所以点P ⎝ ⎛⎭⎪⎫135,-135. 5.若两直线(m +2)x -y -m =0,x +y =0与x 轴围成三角形,则实数m 的取值范围是 .解析:当直线(m +2)x -y -m =0,x +y =0及x 轴两两不平行,且不共点时,必围成三角形.当m =-2时,(m +2)x -y -m =0与x 轴平行;当m =-3时,(m +2)x -y -m =0与x +y =0平行;当m =0时,三条直线都过原点,所以m 的取值范围为{m |m ≠-3,且m ≠-2,且m ≠0}.答案:{m |m ≠-3,且m ≠-2,且m ≠0}6.已知A (2,1),B (1,2),若直线y =ax 与线段AB 相交,则实数a 的取值范围是 .解析:如图,直线y =ax 的斜率为a 且经过原点O ,∵直线y =ax 与线段AB 相交,∴实数a 的最小值为OA 的斜率,最大值为OB 的斜率,OA 的斜率为12,OB 的斜率为2,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤12,2.答案:⎣⎢⎡⎦⎥⎤12,27.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则实数k 的取值范围是 .解析:解法一:由题意知直线l 过定点P (0,-3), 直线2x +3y -6=0与x ,y 轴的交点分别为A (3,0),B (0,2),如图所示,要使两直线的交点在第一象限, 则直线l 在直线AP 与BP 之间, 而k AP =-3-00-3=33,∴k >33. 解法二:解方程组⎩⎪⎨⎪⎧y =kx -3,2x +3y -6=0,得⎩⎪⎨⎪⎧x =33+63k +2,y =6k -233k +2.由题意知x =33+63k +2>0且y =6k -233k +2>0.由33+63k +2>0可得3k +2>0,∴6k -23>0,解得k >33. 答案:⎝ ⎛⎭⎪⎫33,+∞8.已知△ABC 的一个顶点A (2,-4),且∠B ,∠C 的角平分线所在直线的方程依次是x +y -2=0,x -3y -6=0,求△ABC 的三边所在直线的方程.解:如图,BE ,CF 分别为∠ABC ,∠ACB 的角平分线,由角平分线的性质,知点A 关于直线BE ,CF 的对称点A ′,A ″均在直线BC 上.∵直线BE 的方程为x +y -2=0, ∴A ′(6,0).∵直线CF 的方程为x -3y -6=0,∴A ″⎝ ⎛⎭⎪⎫25,45.∴直线A ′A ″的方程是y =0-456-25(x -6),即x +7y -6=0,这也是BC 所在直线的方程. 由⎩⎨⎧ x +7y -6=0,x +y -2=0,得B ⎝ ⎛⎭⎪⎫43,23,由⎩⎨⎧x +7y -6=0,x -3y -6=0,得C (6,0), ∴AB 所在直线的方程是7x +y -10=0,AC 所在直线方程是x -y -6=0.。

最新人教版高中数学必修2第三章《两条平行直线间的距离》

最新人教版高中数学必修2第三章《两条平行直线间的距离》

3.3.4 两条平行直线间的距离1.掌握两条平行直线间距离的定义.2.会求两条平行直线间的距离.两条平行直线间的距离(1)定义:夹在两条平行直线间__________的长叫做这两条平行直线间的距离.(2)求法:转化为求__________的距离,即在其中任意一条直线上任取一点,这点到另一条直线的距离就是这两条平行直线间的距离.【做一做】 两条平行直线x +y +2=0与x +y -3=0的距离等于( ) A.52 2 B.22 C .5 2 D. 2答案:(1)公垂线段 (2)点到直线【做一做】 A两条平行直线间的距离公式剖析:对于直线l 1:A 1x +B 1y +C 1=0,直线l 2:A 2x +B 2y +C 2=0.当直线l 1∥l 2时,它们的方程可以化为以下形式:直线l 1:A x +B y +D 1=0,直线l 2:A x +B y +D 2=0. 在直线l 1上任取一点P(x 0,y 0),则有l 1:A x 0+B y 0+D 1=0,即A x 0+B y 0=-D 1.所以点P 到直线l 2的距离d =|Ax 0+By 0+D 2|A 2+B 2=|-D 1+D 2|A 2+B 2=|D 1-D 2|A 2+B 2, 即直线l 1,l 2的距离d =|D 1-D 2|A 2+B 2.(1)使用两条平行直线间的距离公式的前提条件:①把直线方程化为直线的一般式方程;②两条直线方程中x ,y 系数必须分别相等.(2)求两条平行直线间的距离通常转化为其中一条直线上任意一点到另一条直线的距离,且两条平行线间距离与其中一条直线上点的选取无关.(3)当两条直线都与x 轴(或y 轴)垂直时,可利用数形结合方法来解决.①两条直线都与x 轴垂直时,l 1:x =x 1,l 2:x =x 2,则两条平行直线间的距离d =|x 2-x 1|;②两条直线都与y 轴垂直时,l 1:y =y 1,l 2:y =y 2,则两条平行直线间的距离d =|y 2-y 1|.题型一:求两条平行线间的距离【例1】 求两条平行线l 1:3x +4y -5=0和l 2:6x +8y -9=0间的距离.反思:求两条平行直线间距离有两种思路:①利用“化归”思想将两条平行直线间的距离转化为求其中一条直线上任意一点到另一条直线的距离.由于这种求法与点的选择无关,因此,选点时,常选取一个特殊点,如直线与坐标轴的交点等,以便于运算,如本题解法一.②利用两条平行直线间的距离公式d =|C 1-C 2|A 2+B 2,如本题解法二. 题型二:两条平行直线间距离公式的应用【例2】 平行于直线x -3y =0,且与其距离为3的直线l 的方程是__________. 反思:求平行于直线A x +B y +C =0的直线方程时,常设为A x +B y +m =0(m ≠C),利用待定系数法来解决.有关平行直线间距离问题,常利用两条平行直线间的距离公式列出方程来解决.题型三:易错辨析易错点 利用两条平行直线间的距离公式求距离时,常忽略方程的系数【例3】 求两条平行直线l 1:3x +4y +2=0,l 2:12x +16y -8=0之间的距离.错解:d =|2-(-8)|32+42=105=2. 错因分析:错解中,没有把l 2的方程化为3x +4y +m =0的形式,导致出错.反思:使用两条平行线间的距离公式求距离时,应把直线方程化为一般式,同时要使两个直线方程中x ,y 的系数对应相等.答案:【例1】 解:解法一:在直线l 1:3x +4y -5=0上任取一点,不妨取点P (0,54), 则点P 到直线l 2:6x +8y -9=0的距离即为两条平行直线间的距离.因此d =|0×6+8×54-9|62+82=110. 解法二:把l 2:6x +8y -9=0化为3x +4y -92=0, 由两条平行直线间的距离公式,得d =|-5-(-92)|32+42=110. 【例2】 x -3y +6=0或x -3y -6=0【例3】 正解:l 2:12x +16y -8=0可化为3x +4y -2=0,根据两条平行线间的距离公式,可得d =|2-(-2)|32+42=45.1.直线46x y -=1与y =32x +1之间的距离为( )A.13B.13C.2D.242.平行直线x-y=0与x-y+m=0,则实数m=__________.3.直线l与两条平行直线l1:x-3y+1=0,直线l2:x-3y+5=0的距离相等,则直线l的方程是__________.4.两条平行线3x+4y+5=0与6x+a y+30=0间的距离为d,则a+d=__________.5.求与直线l:5x-12y+6=0平行且到l的距离为2的直线方程.答案:1.B 2.±2 3.x-3y+3=0 4.105.解:设所求直线的方程为5x-12y+m=0(m≠6),由两条直线的距离为2=2.则m=32或m=-20,故所求直线方程为5x-12y+32=0或5x-12y-20=0.。

人教版高中数学必修二第三章直线与圆课后提升作业二十一 3.2.3 含解析

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课后提升作业二十一直线的一般式方程(30分钟60分)一、选择题(每小题5分,共40分)1.直线2x+ay+3=0的倾斜角为120°,则a的值是( )A. B.- C.2 D.-2【解析】选A.因为直线的倾斜角为120°,所以直线的斜率k=-,即-=-,所以a=.【补偿训练】平面直角坐标系中,直线x+y+2=0的斜率为( ) A. B.- C. D.-【解析】选B.将直线化为斜截式y=-x-.故斜率为-.2.(2016·海淀高一检测)已知直线l经过点P(2,1),且与直线2x-y+2=0平行,那么直线l的方程是( )A.2x-y-3=0B.x+2y-4=0C.2x-y-4=0D.x-2y-4=0【解析】选A.由题意可设所求的方程为2x-y+c=0,代入已知点 (2,1),可得4-1+c=0,即c=-3,故所求直线的方程为2x-y-3=0.3.直线3x+4y+5=0的斜率和它在y轴上的截距分别为( )A.,B.-,-C.-,-D.,【解析】选C.根据斜率公式k=-=-,令x=0,则y=-,即在y轴上的截距为-.4.若三直线l1:2x+3y+8=0,l2:x-y-1=0,l3:x+ky+k+=0能围成三角形,则k不等于( )A. B.-2C.,-1D.,-1,-【解析】选 D.由得交点P(-1,-2),若P在直线x+ky+k+=0上,则k=-,此时三条直线交于一点;k=时,直线l1与l3平行;k=-1时,直线l2与l3平行,综上知,要使三条直线能围成三角形,应有k≠-,和-1.5.(2016·杭州高一检测)已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是( )A.1B.-1C.-2或-1D.-2或1【解析】选D.当截距都为0时,-2-a=0即a=-2;当截距都不为0即a ≠-2时,直线方程可变形为:+=1,由已知有=a+2,得a=1.6.(2016·北京高一检测)已知直线ax+by+c=0的图象如图,则( )A.若c>0,则a>0,b>0B.若c>0,则a<0,b>0C.若c<0,则a>0,b<0D.若c<0,则a>0,b>0【解析】选D.由ax+by+c=0,得斜率k=-,直线在x,y轴上的截距分别为-,-.如题图,k<0,即-<0,所以ab>0,因为->0,->0,所以ac<0,bc<0.若c<0,则a>0,b>0;若c>0,则a<0,b<0.7.(2016·威海高一检测)直线l过点(-1,2)且与直线2x-3y+4=0垂直,则l的方程是( )A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+5=0D.2x-3y+8=0【解析】选A.由直线l与直线2x-3y+4=0垂直,可知直线l的斜率是-,由点斜式可得直线l的方程为y-2=-(x+1),即3x+2y-1=0.【补偿训练】过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0【解析】选A.设所求直线的方程为x-2y+m=0,把点(1,0)代入,得m=-1,故选A.8.已知m≠0,直线ax+3my+2a=0在y轴上的截距为2,则直线的斜率为( )A.1B.-C.-D.2【解析】选A.令x=0,得y=-,因为直线在y轴上的截距为2,所以-=2,所以a=-3m,原直线化为-3mx+3my-6m=0,所以k=1.【延伸探究】把题中的“在y轴上的截距为2”改为“在两坐标轴上的截距之和为2”,则直线的斜率为( )A.1B.-C.-D.2【解析】选D.令x=0,得y=-,令y=0,得x=-2,因为在两坐标轴上的截距之和为2,所以-+(-2)=2,所以a=-6m,原直线化为-6mx+3my-12m=0,所以k=2.二、填空题(每小题5分,共10分)9.(2016·广州高一检测)垂直于直线3x-4y-7=0,且与两坐标轴围成的三角形的面积为6的直线在x轴上的截距是________.【解析】设直线方程是4x+3y+d=0,分别令x=0和y=0,得直线在两坐标轴上的截距分别是-,-.所以6=××=.所以d=±12,则直线在x轴上的截距为3或-3.答案:3或-310.若方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则实数m的取值范围是______________.【解题指南】求x,y的系数不同时为0的m值即可,即先求出x与y 的系数均为零时m的值,再取补集即可.【解析】由得m=1,故要使方程表示一条直线,需2m2+m-3与m2-m不同时为0,故m≠1.答案:m≠1三、解答题11.(10分)求与直线3x-4y+7=0平行,且在两坐标轴上截距之和为1的直线l的方程.【解析】方法一:由题意知:可设l的方程为3x-4y+m=0,则l在x轴,y轴上的截距分别为-,.由-+=1知,m=-12.所以直线l的方程为:3x-4y-12=0.方法二:设直线方程为+=1,由题意得解得所以直线l的方程为:+=1.即3x-4y-12=0.【补偿训练】(2016·大连高一检测)已知直线2x+(t-2)y+3-2t=0,分别根据下列条件,求t的值.(1)过点(1,1).(2)直线在y轴上的截距为-3.【解析】(1)因为直线2x+(t-2)y+3-2t=0过点(1,1),所以2+(t-2)+3-2t=0,即t=3.(2)令x=0,得y==-3,解得t=.关闭Word文档返回原板块附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。

高中数学必修2第三章知识点+习题+答案

高中数学必修2第三章知识点+习题+答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章直线与方程直线的倾斜角和斜率倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围: 0°≤α<180°.当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即直线的点斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(bb kx y +=直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠ ),(1212112121y y x x x x x x y y y y ≠≠--=--2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。

高中数学人教版必修二第三章《直线与方程》达标训练(含答案解析)

高中数学人教版必修二第三章《直线与方程》达标训练(含答案解析)一、选择题1.(2020·淄博高一检测)下列说法正确的是()A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示B.经过任意两个不同点P(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示C.不经过原点的直线都可以用方程xa+yb=1表示D.经过定点A(0,b)的直线都可以用方程y=kx+b表示2.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是() A.3x-y-8=0 B.3x+y+4=0C.3x-y+6=0 D.3x+y+2=03.若直线ax+by+c=0经过第一、二、三象限,则() A.ab>0,bc>0 B.ab>0,bc>0C.ab<0,bc>0 D.ab<0,bc<04.已知直线l 1:(k -3)x +(3-k )y +1=0与直线l 2:2(k -3)x -2y +3=0垂直,则k 的值是( )A .2B .3C .2或3D .2或-35.两条直线l 1:x a -y b =1和l 2:x b -ya=1在同一直角坐标系中的图象可以是( )二、填空题6.过点P (1,2)且在两坐标轴上截距和为0的直线方程为________.7.垂直于直线3x-4y-7=0,且与两坐标轴围成的三角形的面积为6的直线在x 轴上的截距是________.三、解答题8.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.9.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.10.(2020·潍坊高一检测)已知两直线的方程分别为l 1:x +ay +b =0,l 2:x +cy +d =0,它们在坐标系中的位置如图3-2-3所示,则( )图3-2-3A .b >0,d <0,a <cB .b >0,d <0,a >cC .b <0,d >0,a >cD .b <0,d >0,a <c11.直线过点P ⎝ ⎛⎭⎪⎫43,2且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件:(1)△AOB 的周长为12; (2)△AOB 的面积为6.若存在,求出直线的方程;若不存在,请说明理由.∴所求直线的方程为x4+y3=1或x2+y6=1,即3x+4y-12=0或3x+y-6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x+4y-12=0.。

人教版高中数学必修第二册第三单元《立体几何初步》测试(含答案解析)

一、选择题1.已知空间中不同直线m 、n 和不同平面α、β,下面四个结论:①若m 、n 互为异面直线,//m α,//n α,//m β,βn//,则//αβ;②若m n ⊥,m α⊥,βn//,则αβ⊥;③若n α⊥,//m α,则n m ⊥;④若αβ⊥,m α⊥,//n m ,则βn//.其中正确的是( )A .①②B .②③C .③④D .①③ 2.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( )A .803πB .32πC .42πD .48π3.如图,P 是正方体1111ABCD A B C D -中1BC 上的动点,下列命题:①1AP B C ⊥;②BP 与1CD 所成的角是60°;③1P AD C V -为定值;④1//B P 平面1D AC ;⑤二面角PAB C 的平面角为45°. 其中正确命题的个数有( ) A .2个 B .3个 C .4个 D .5个4.如图所示,AB 是⊙O 的直径,VA 垂直于⊙O 所在的平面,点C 是圆周上不同于A ,B 的任意一点,M ,N 分别为VA ,VC 的中点,则下列结论正确的是( )A .MN //ABB .MN 与BC 所成的角为45° C .OC ⊥平面VACD .平面VAC ⊥平面VBC5.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .[3,17]B .[2,3]C .[6,22]D .[17,5] 6.已知某正三棱锥侧棱与底面所成角的余弦值为219,球1O 为该三棱锥的内切球.若球2O 与球1O 相切,且与该三棱锥的三个侧面也相切,则球2O 与球1O 的表面积之比为( )A .49B .19C .925D .1257.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC 2aD .22a 8.菱形ABCD 的边长为3,60B ∠=,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )A .15πB .12πC .8πD .6π9.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm 10.α,β是两个平面,m ,n 是两条直线,有下列四个命题;①如果m n ⊥,m α⊥,//n β,那么αβ⊥.②如果m α⊥,//n α,那么m n ⊥.③如果//αβ,m α⊂,那么//m β.④如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题的个数为( )A .1B .2C .3D .411.如图为水平放置的ΔOAB 的直观图,则原三角形的面积为( )A .3B .32C .6D .1212.已知,a b 是两条直线,,αβ是两个平面,则a b ⊥的一个充分条件是( ) A .a α⊥,b β//,αβ⊥B .a α⊥,b β⊥,//αβC .a α⊂,b β⊥,//αβD .a α⊂,b β//,αβ⊥13.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .61cmC 61cmD .234cm14.用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,则圆台的母线长是( )A .9cmB .10cmC .12cmD .15cm二、解答题15.如图三棱柱111ABC A B C -中,11,,60CA CB AB AA BAA ∠︒===,(1)证明1AB A C ⊥;(2)若16AC =,2AB CB ==,求三棱柱111ABC A B C -的体积S . 16.如图,圆柱的轴截面ABCD 是正方形,点E 是底面圆周上异于,A B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 17.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.18.如图,在斜三棱柱111ABC A B C -中,点O .E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,AO ⊥平111A B C .已知90BCA ∠=︒,12AA AC BC ===.(1)求证://EF 平面11BB C C ;(2)求11A C 与平面11AA B 所成角的正弦值.19.如图,在四棱锥P ABCD -中,四边形ABCD 为菱形,60BAD ∠=︒,PAD ∆为正三角形,平面PAD ⊥平面ABCD ,且E ,F 分别为AD ,PC 的中点.(1)求证://DF 平面PEB ;(2)求直线EF 与平面PDC 所成角的正弦值.20.如图,在空间几何体A -BCDE 中,底面BCDE 是梯形,且CD //BE ,CD =2BE =4,∠CDE =60°,△ADE 是边长为2的等边三角形.(1)若F 为AC 的中点,求证:BF //平面ADE ;(2)若AC =4,求证:平面ADE ⊥平面BCDE .21.如图,在平行四边形ABCD 中,4AB =,60DAB ∠=︒.点G ,H 分别在边CD ,CB 上,点G 与点C ,D 不重合,GH AC ⊥,GH 与AC 相交于点O ,沿GH 将CGH 翻折到EGH 的位置,使二面角E GH B --为90°,F 是AE 的中点.(1)请在下面两个条件:①AB AD =,②AB BD ⊥中选择一个填在横线处,使命题P :若________,则BD ⊥平面EOA 成立,并证明.(2)在(1)的前提下,当EB 取最小值时,求直线BF 与平面EBD 所成角的正弦值. 22.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD //BC //FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(I )证明:平面AMD ⊥平面CDE ;(II )求二面角A ﹣CD ﹣E 的余弦值.23.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AB =,1AD =,60DAB ∠=︒,PD BD =,且PD ⊥平面ABCD .(1)证明:平面PBC ⊥平面PBD ;(2)若Q 为PC 的中点,求三棱锥D PBQ -的体积.24.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PB PA ⊥,PB PA =,90DAB ABC ∠=∠=,435AB BC CD ===,,,M 是PA 的中点.(1)求证:BM //平面PCD ;(2)求三棱锥B CDM -的体积.25.如图,在棱长为1的正方体1111ABCD A B C D -中,点O 是BD 中点.(1)求证:平面11BDD B ⊥平面1C OC ;(2)求二面角1C BD C --的正切值.26.如图,四棱锥P ABCD -中,底面ABCD 是菱形,,60,PA PD BAD E =∠=是AD 的中点,点Q 在侧棱PC 上.(1)求证:AD ⊥平面PBE ;(2)若Q 是PC 的中点,求证://PA 平面BDQ ;(3)若2P BCDE Q ABCD V V --=,试求CP CQ的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由线面和面面平行和垂直的判定定理和性质定理即可得解.【详解】解:对于①,由面面平行的判定定理可得,若m 、n 互为异面直线,//m α,//n β,则//αβ或相交,又因为//m β,//n α,则//αβ,故①正确;对于②,若m n ⊥,m α⊥,//n β,则//αβ或α,β相交,故②错误, 对于③,若n α⊥,//m α,则n m ⊥;故③正确,对于④,若αβ⊥,m α⊥,//n m ,则//n β或n β⊂,故④错误,综上可得:正确的是①③,故选:D .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.2.D解析:D【分析】分析:首先求得外接球半径,然后求解其表面积即可.详解:由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为R ,由题意可得:()22222444R =++,据此可得:212R =,外接球的表面积为:2441248S R πππ==⨯=.本题选择D 选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 3.C解析:C【详解】①在正方体中,1111,,AB B C BC B C AB BC B ⊥⊥=,所以1B C ⊥平面11,ABC D AP ⊂平面11ABC D ,从而1AP B C ⊥正确;②由于11//CD A B ,并且11,BC A B 的夹角是60°,故1BP CD 与所成的角是60°正确;③虽然点P 变化,但P 到1AD 的距离始终不变,故1P AD C V -为定值正确;④若1//B P 平面1D AC ,而1//BC 平面1D AC ,1111,,B P BC P B P BC =⊂平面11BB C C ,所以平面1//D AC 平面11BB C C ,这与平面1D AC 与平面11BB C C 相交矛盾,所以不正确;⑤P 点变化,但二面角PAB C 都是面11ABC D 与面ABCD 所成的角, 故二面角PAB C 的平面角为45°正确;故选:C. 4.D解析:D【分析】由中位线性质,平移异面直线即可判断MN 不与AB 平行,根据异面直线平面角知MN 与BC 所成的角为90°,应用反证知OC 不与平面VAC 垂直,由面面垂直的判定知面VAC ⊥面VBC ,即可知正确选项.【详解】M ,N 分别为VA ,VC 的中点,在△VAC 中有//MN AC ,在面ABC 中AB AC A =,MN 不与AB 平行;AC BC C =,知:MN 与BC 所成的角为90BCA ∠=︒;因为OC ⋂面VAC C =,OC 与平面内交线,AC VC 都不垂直,OC 不与平面VAC 垂直; 由VA ⊥面ABC ,BC ⊂面ABC 即VA BC ⊥,而90BCA ∠=︒知AC BC ⊥,AC VA A ⋂=有BC ⊥面VAC ,又BC ⊂面VBC ,所以面VAC ⊥面VBC ; 故选:D【点睛】本题考查了异面直线的位置关系、夹角,以及线面垂直的性质,面面垂直判定的应用,属于基础题.5.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】 如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN .在1H C G 中,2212222C G =+=2212222C H =+=22GH =, 所以1H C G 为等边三角形,取GH 的中点O ,1226C O ==故线段1C P 长度的取值范围是6,22].故选:C .【点睛】本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.6.C解析:C【分析】先证明PO ⊥平面ABC ,接着求出19cos 19PAO =∠,再得到214r PO =和114R PO =,从而得到35rR=,最后求出球2O与球1O的表面积之比即可.【详解】如图,取ABC的外心O,连接PO,AO,则PO必过1O,2O,且PO⊥平面ABC,可知PAO∠为侧棱与底面所成的角,即219cos19PAO=∠.取AB的中点M,连接PM,MC.设圆1O,2O的半径分别为R,r,令2OA=,则19PA=,23AB=,3AM=,1OM=,所以214r OMPO PM==,即24PO r=,从而145PO r r R r R=++=+,所以1154R RPO r R==+,则35rR=,所以球2O与球1O的表面积之比为925.故选:C.【点睛】本题考查三棱锥内切球的应用,考查空间想象能力,逻辑推理能力,是中档题.7.D解析:D【分析】解:设G,H,I分别为CD、1CC、11C D边上的中点,证明平面1//A BGE平面1B HI,得到1//B F面1A BE,则F落在线段HI上,求出1122HI CD==【详解】解:设G,H,I分别为CD、1CC、11C D边上的中点,1//A B EG,则1A BEG四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,11222HI CD a ∴==, 即F 在侧面11CDD C 上的轨迹的长度是22a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题. 8.A解析:A【分析】首先根据已知条件找到四面体外接球的球心,再求出半径,即可得到球体的表面积.【详解】如图所示,1O ,2O 分别为ABC 和DAC △的外接圆圆心,因为菱形ABCD ,60B ∠=,所以ABC 和DAC △为等边三角形.设E 为AC 的中点,连接DE ,BE ,则DE AC ⊥,BE AC ⊥,又因为平面ACD ⊥平面ABC AC =,所以DE ⊥平面ABC .分别过1O ,2O 作垂直平面ABC 和平面ACD 的直线,则交点O 为四面体ABCD 外接球的球心.因为2233332⎛⎫==-= ⎪⎝⎭EB DE ,四边形12OO EO 为矩形, 所以123==O B DO ,1213===O E O E OO . 所以外接圆半径为()223153=22⎛⎫+⎪ ⎪⎝⎭,表面积为15π. 故选:A【点睛】 本题主要考查四面体外接球的表面积,根据题意确定外接球的球心为解题关键,属于中档题.9.B解析:B【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.10.C解析:C【分析】对①,运用长方体模型,找出符合条件的直线和平面,即可判断;对②,运用线面平行的性质定理和线面垂直的性质定理,即可判断;对③,运用面面平行的性质定理,即可判断;对④,由平行的传递性及线面角的定义,即可判断④.【详解】对于命题①,可运用长方体举反例证明其错误:如图,不妨设AA '为直线m ,CD 为直线n ,ABCD 所在的平面为α,ABC D ''所在的平面为β,显然这些直线和平面满足题目条件,但αβ⊥不成立;命题②正确,证明如下:设过直线n 的某平面与平面α相交于直线l ,则//l n ,由m α⊥知m l ⊥,从而m n ⊥,结论正确;由平面与平面平行的定义知命题如果//αβ,m α⊂,那么//m β.③正确;由平行的传递性及线面角的定义知命题:如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等,④正确.故选:C .【点睛】本题考查命题的真假判断,考查空间线面、面面平行和垂直的位置关系,注意运用判定定理和性质定理,考查推理能力,属于中档题.11.C解析:C【分析】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),还原三角形的图象,求得面积.【详解】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),如图所示:故原三角形面积为:13462S =⨯⨯= 故选:C【点睛】 本题考查了还原直观图为直角坐标系的图像问题,考查了学生概念理解,直观想象,数学运算的能力,属于基础题.12.C解析:C【分析】在A 中,a 与b 可以成任意角;在B 中a 与b 是平行的;在C 中,可得b α⊥,从而得到a b ⊥;在D 中,可得a 与b 可以成任意角,从而得到正确结果.【详解】由a ,b 是两条不同的直线,,αβ是两个不同的平面,在A 中,a α⊥,b β//,αβ⊥,因为b 的方向不确定,则a 与b 可以成任意角,故A 错误;在B 中,a α⊥,b β⊥,//αβ,根据对应的性质可知,可知a 与b 是平行的,故B 错误;在C 中,由a α⊂,b β⊥,//αβ,可知b α⊥,由线面垂直的性质可知a b ⊥,故C 正确;在D 中,a α⊂,b β//,αβ⊥,可得a 与b 可以成任意角,故D 错误.故选:C.【点睛】该题考查线线垂直的充分条件的判断,考查空间中线线、线面、面面间的位置关系等基础知识,在解题的过程中,注意结合图形去判断,属于中档题目.13.A解析:A【分析】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,计算得到答案.【详解】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,易知5BC =,'12A C =,故'13A B =.故选:A .【点睛】本题考查了立体几何中的最短距离问题,意在考查学生的计算能力和空间想象能力. 14.A解析:A【分析】计算得到12:1:4r r =,根据相似得到3134l =+,计算得到答案. 【详解】圆台上、下底面的面积之比为1:16,则12:1:4r r =.设圆台母线长为l ,根据相似得到:3134l =+,故9l =. 故选:A .【点睛】本题考查了圆台的母线长,意在考查学生的计算能力和空间想象能力. 二、解答题15.(1)证明见解析;(2)3.【分析】(1)取AB 中点E ,连接11,,CE A B A E ,根据已知条件,利用等腰三角形的性质得到1A E AB ⊥,,CE AB ⊥利用线面垂直的判定定理证得AB ⊥面1,CEA 即可得到1AB A C ⊥ ;(2) 在1CEA 中可以证明1A E CE ⊥,结合1A E AB ⊥,利用线面垂直判定定理得到1A E ⊥平面ABC ,作为三棱柱的高,进而计算体积.【详解】(1)取AB 中点E ,连接11,,CE A B A E ,11,60AB AA BAA ∠︒==,1BAA ∴是等边三角形,1A E AB ∴⊥,CA CB =,,CE AB ∴⊥1,CE A E E ⋂=AB ∴⊥面1,CEA1AB A C ∴⊥.(2)由于CAB ∆为等边三角形,CE ∴11222S AB CE ⨯⨯⨯=底面积==1CEA 中,CE 1EA 1AC =1A E CE ∴⊥,结合1A E AB ⊥,又,,AB CE E AB CE ⋂=⊂平面ABC ,1A E ∴⊥平面ABC ,1h A E ∴=3V Sh ==.【点睛】本题考查线面垂直的判定与证明,考查棱柱的体积计算,属基础题,为证明线线垂直,常常先证线面垂直,为证明线面垂直,又常常需要先证明线线垂直,这是线面垂直关系常用的证明与判定方式,要熟练掌握.16.(1)详见解析;(2【分析】(1)要证明线线垂直,需证明线面垂直,根据题中所给的垂直关系,证明AF ⊥平面DEB ;(2)首先确定点E 的位置,再根据等体积转化求点到平面的距离.【详解】(1)由圆柱性质可知,DA ⊥平面ABE ,EB ⊂平面AEB ,DA EB ∴⊥, AB 是圆柱底面的直径,点E 在圆周上,AE EB ∴⊥,又AE DA A ⋂=,BE ∴⊥平面DAE ,AF ⊂平面DAE ,EB AF ∴⊥,又AF DE ⊥,且EB DE E =,AF ∴⊥平面DEB ,DB ⊂平面DEB ,AF DB ∴⊥;(2)13D AEB AEB V S DA -=⨯⨯,3DA =, 当D AEB V -最大时,即AEB S 最大,即AEB △是等腰直角三角形时,2DA AB ==∵,BE ∴=DE ==,并且点E 到平面ABCD 的距离就是点E 到直线AB 的距离112AB =, 设点C 到平面EBD 的距离为h ,则1111262213232C DBE E CBD V V h --==⨯⨯⨯⨯=⨯⨯⨯⨯, 解得:233h = 【点睛】方法点睛:本题重点考查垂直关系,不管证明面面垂直还是证明线面垂直,关键都需转化为证明线线垂直,一般证明线线垂直的方法包含1.矩形,直角三角形等,2.等腰三角形,底边中线,高重合,3.菱形对角线互相垂直,4.线面垂直,线线垂直.17.(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点.连结PO ,又因为P 是1DD 的中点,所以1//PO BD .又因为PO ⊂平面PAC ,1BD ⊄平面PAC所以直线1//BD 平面PAC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==212AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30.【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m n m n α=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.18.(1)证明见解析;(2)217. 【分析】(1)由题意可得11//OE B C ,1//OF C C ,利用面面平行的判定定理可得平面//OEF 平面11BB C C ,由面面平行的性质定理即可证明. (2)利用等体法111112A A B C C AA B V V --=,求出点1C 到平面11AA B 的距离2217d =,由11sin d A C θ=即可求解. 【详解】证明:(1)∵O ,E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,∴11//OE B C ,1//OF C C ,1111B C C C C ⋂=,//OE ∴平面11B C C ,//OF ∴平面11B C C ,又OE OF O ⋂=,∴平面//OEF 平面11BB C C ,∵EF ⊂平面OEF ,∴//EF 平面11BB C C .(2)解:设点1C 到平面11AA B 的距离为d ,∵111112A A B C C AA B V V --=, ∴111111111323AA B AC B C AO S d ⨯⨯⨯⨯=⨯⨯,AO ==1OB ==1AB ==,∵11AA B中,111A B AB ==,12AA =,∴11AA B S =∴11122323d ⨯⨯⨯=,解得7d =, 设11A C 与平面11AA B 所成角为θ,∴11A C 与平面11AA B所成角的正弦值为:11sin 7d AC θ==. 【点睛】方法点睛:证明线面平行的常用方法:(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理.(3)利用面面平行的性质.19.(1)证明见解析;(2. 【分析】(1)取PB 中点G ,推出//FG BC ,证明四边形DEGF 是平行四边形,得到//DF EG ,然后证明//DF 平面PEB .(2)以E 为原点,EA ,EB ,EP 分别为x ,y ,z 轴建立空间直角坐标系,求出平面PDC 的法向量,求出EF ,利用空间向量的数量积求解EF 与平面PDC 所成角的正弦值.【详解】(1)证明:取PB 中点G ,因为F 是PC 中点,//FG BC ∴,且12FG BC =, E 是AD 的中点,则//DE BC ,且12DE BC =, //FG DE ∴,且FG DE =,∴四边形DEGF 是平行四边形,//DF EG ∴,又DF ⊂/平面PEB ,EG ⊂平面PEB ,//DF ∴平面PEB .(2)因为E 是正三角形PAD 边为AD 的中点,则PE AD ⊥. 因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,PE ⊂平面PAD ,PE ∴⊥平面ABCD ,四边形ABCD 为菱形,60BAD ∠=︒,∴正三角形BAD 中,BE AD ⊥,以E 为原点,EA ,EB ,EP 分别为x ,y ,z 轴建立空间直角坐标系, 不妨设菱形ABCD 的边长为2,则1AE ED ==,2PA =,3PE =,223BE AB AE =-=则点33(0,0,0),(1,0,0),(3,0),3),(E D C P F ---, ∴(1DC =-30),(1DP =,03),设平面PDC 的法向量为(n x =,y ,)z ,则·0·0n DC n DP ⎧=⎨=⎩,即3030x z x ⎧=⎪⎨-+=⎪⎩,解得33x x z⎧=⎪⎨=⎪⎩,不妨令1z =,得(3n =-,1-,1); 又33(1,2EF =-, 设EF 与平面PDC 所成角为θ,∴36sin |cos |555?2EF n θ=<>=⋅=,.所以EF 与平面PDC 6. 【点睛】对于线面角可以转化为直线的方向向量与平面的法向量的夹角运算,对于证明线线关系,线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明.20.(1)证明见解析;(2)证明见解析. 【分析】(1)取DA 的中点G ,连接FG ,GE ,推导出四边形BFGE 为平行四边形,从而BF //EG ,由此能证明BF //平面ADE.(2)取DE 的中点H ,连AH ,CH ,推导出AH ⊥DE ,AH ⊥HC ,从而AH ⊥平面BCDE ,由此能证明平面ADE ⊥BCDE . 【详解】(1)如图所示,取DA 的中点G ,连接FG ,GE.∵F 为AC 的中点, ∴GF //DC ,且GF =12DC .又DC //BE ,CD =2BE =4, ∴EB //GF ,且EB =GF ∴四边形BFGE 是平行四边形, ∴BF //EG .∵EG ⊂平面ADE ,BF ⊄平面ADE , ∴BF //平面ADE .(2)取DE 的中点H ,连接AH ,CH . ∵△ADE 是边长为2的等边三角形, ∴AH ⊥DE ,且AH 3.在△DHC 中,DH =1,DC =4,∠HDC =60°根据余弦定理可得HC 2=DH 2+DC 2-2DH ·DCcos 60°=12+42-2×1×4×12=13,即HC 13 在△AHC 中,AH 3HC 13AC =4. 所以AC 2=AH 2+HC 2,即AH ⊥HC .因为AH DE ⊥,AH HC ⊥,DE HC H ⋂=AH ∴⊥平面BCDE ∵AH ⊂平面ADE ,∴平面ADE ⊥平面BCDE . 【点睛】方法点睛:要证线面平行,一般需要证明(1)线线平行(2)面面平行两种方法,在平行的证明中,线线平行一般需要考虑中位线、平行四边形,平行线分线段成比例的逆定理.21.(1)答案见解析;(2)11. 【分析】(1)选择①,结合直二面角的定义,证明BD ⊥平面EOA 内的两条相交直线,EO AO ;(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =CO x =,可得EB 关于x 的函数,求出EB 取得最小值时x 的值,连结EM ,作QF EM ⊥于F ,连结BF ,求出sin QBF ∠的值,即可得答案; 【详解】解:(1)命题P :若AB AD =,则BD ⊥平面EOA . ∵AC GH ⊥,∴AO GH ⊥,EO GH ⊥, 又二面角E GH B --的大小为90°, ∴90AOE ∠=︒,即EO AO ⊥, ∴EO ⊥平面ABCD , ∴EO BD ⊥,又AB BC =,∴AO BD ⊥,AO EO O =,∴BD ⊥平面EOA .(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =设CO x =,OM x =,222216OB OM MB x =+=-+,2222216EB EO OB x =+=-+,当x =min EB =连结EM ,作QF EM ⊥于F ,连结BF , 由(1)知BD ⊥平面EOA , ∴BD QF ⊥,∴QF ⊥平面EBD , ∴QBF ∠即为QB 与平面EBD 所成角,在Rt EMB 中,EB =2BM =,EM =AE =,由()2222(2)2QB AE AB BE QB +=+⇒=,2QF =∴sin QF QBF QB ∠==,即QB 与平面EBD .【点睛】求线面角首先要根据一作、二证、三求找出线面角,然后利用三角函数的知识,求出角的三角函数值即可. 22.(I)证明见解析;(II)3 . 【分析】(I )取AD 的中点P ,连结EP PC ,,MP ,利用平行四边形及线面垂直的性质定理证明,,PE PC AD 相互垂直,从而可证明EC 与,MP MD 垂直,然后可得线面垂直,面面垂直;(II )取Q CD 为的中点,连结,PQ EQ ,可得EQP ∠为二面角A CD E --的平面角,在Rt EPQ △中求得其余弦值.【详解】(Ⅰ)证明:取AD 的中点P ,连结EP PC ,.则EF AP =,∵//FE AP =,∴四边形FAPE 是平行四边形, ∴//FA EP =,同理,//AB PC =.又∵FA ⊥平面ABCD ,∴EP ⊥平面ABCD ,而PC AD ,都在平面ABCD 内,∴.EP PC EP AD ⊥⊥, 由AB AD ⊥,可得PC AD ⊥, 设FA a =,则2.EP PC PD a CD DE EC a ======,所以△ECD 为正三角形.∵DC DE =且M 为CE 的中点,∴DM CE ⊥.连结MP ,则.MP CE ⊥PM ∩MD =M ,而PM ,MD 在平面AMD 内 , ∴CE ⊥平面AMD而CE ⊂平面CDE ,所以平面AMD ⊥CDE . (Ⅱ)解:取Q CD 为的中点,连结,PQ EQ , ∵CE DE =,∴.EQ CD ⊥ ∵PC PD =,∴PQ CD ⊥∴EQP ∠为二面角A CD E --的平面角.由(Ⅰ)可得, EP PQ EQ a PQ ==⊥,,.于是在Rt EPQ △中,cos 3PQ EQP EQ ∠==.∴二面角A CD E --. 【点睛】方法点睛:本题考查证明面面垂直,考查求二面角.求二面角的几何方法:一作二证三计算,一作:作出二面角的平面角;二证:证明所作的角是二面角的平面角;三计算:在三角形中求出这个角(这个角的余弦值). 23.(1)证明见解析;(2)14【分析】(1)由余弦定理可得23BD =,证得AD BD ⊥,则BC BD ⊥由PD ⊥底面ABCD ,BC ⊂平面ABCD ,证得PD BC ⊥,得证.(2)Q 为PC 的中点,利用等积法12D PBQ D BCQ Q BCD P BCD V V V V ----=== ,即可求出结果. 【详解】(1) 在ABD △中,由余弦定理得2222cos 3BD BA AD BA AD DAB =+-⋅∠=, ∵222AD BD AB +=,∴AD BD ⊥,∵//AD BC ,∴BC BD ⊥.又∵PD ⊥底面ABCD ,BC ⊂平面ABCD ∴PD BC ⊥.∵PD BD D ⋂=,∴BC ⊥平面PBD .(2)因为Q 为PC 的中点,所以三棱锥D PBQ -的体积A PBQ V -, 与三棱锥D QBC -的体积相等,即11111232412D PBQ D BCQ Q BCD P BCD V V V V ----=⨯⨯====. 所以三棱锥A PBQ -的体积14D PBQ V -=.【点睛】本题主要考查了线面垂直的证明,在含有长度时需要解三角形来证垂直,并且不要忘记线面垂直的性质运用,在求三棱锥的体积时注意等体积法的使用 24.(1)证明见解析;(2)2. 【分析】(1)取PD 中点N ,证明BMNC 为平行四边形,得到//BM NC ,从而得到//BM 平面PCD .(2)对三棱锥B CDM -进行等体积转化,转化为求P BCD -的体积的一半.取AB 中点O ,连PO ,可证PO 为三棱锥P BCD -的高并求出其长度,求出BCD △的面积,得到三棱锥P BCD -的体积,即可求出三棱锥B CDM -的体积. 【详解】证明:(1)取PD 中点N ,连接MN ,NC , MN 为PAD △的中位线,//MN AD ∴,且12MN AD =, 又//BC AD ,且12BC AD =,//MN BC ∴,且MN BC =, 则BMNC 为平行四边形,//BM NC ∴,又NC ⊂平面PCD ,MB ⊂/平面PCD , //BM ∴平面PCD .(2)取AB 中点O ,连PO ,,PB PA PO AB =∴⊥,又平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PO ⊂平面PAB ,PO ∴⊥平面ABCD . PO ∴为三棱锥P BCD -的高, PA PB =,4AB =,PB PA ⊥, PAB ∴为等腰直角三角形,2PO =, 90DAB ABC ,//AD BC ,1134622BCDSBC AB =⨯⨯=⨯⨯=, M 是PA 的中点,∴三棱锥B CDM -的体积为:11162223126P B CDM M BCD BCD BCDV V V SPO ---==⨯=⨯=⨯⨯=.【点睛】本题考查通过线线平行证明线面平行,通过面面垂直证明线面垂直,变换顶点和底面进行等体积转化,求三棱锥的体积,属于中档题. 25.(1)证明见解析;(22. 【分析】(1)在正方体1111ABCD A B C D -中,易证1,C O BD CO BD ⊥⊥,由线面垂直的判定定理得到BD ⊥平面1C OC ,然后再利用面面垂直的判定定理证明.(2)由(1)知BD ⊥平面1C OC ,且平面1C BD ⋂平面CBD BD =,得到1C OC ∠是二面角1C BD C --的平面角 ,然后在1Rt C OC ∆中求解. 【详解】(1)∵在正方体1111ABCD A B C D -中, 点O 是BD 中点 , 又11BC DC = , BC DC = ,∴ 1,C O BD CO BD ⊥⊥11,C O CO O C O =⊂平面1,C OC CO ⊂平面1C OC ,BD ∴⊥平面1C OC ,又∵BD ⊂平面11BDD B , ∴平面11BDD B ⊥平面1C OC .… (2)由(1)知:平面1C BD ⋂平面CBD BD =,11,C O BD C O ⊥⊂半平面1;,C BD CO BD CO ⊥⊂ 半平面;CBD所以1C OC ∠是二面角1C BD C --的平面角 则在正方体1111ABCD A B C D -中121,C C OC == ∴在1Rt C OC ∆中,11tan 2C CC OC OC∠== 故二面角1C BD C --2 . 【点睛】本题主要考查线面垂直,面面垂直的判定定理以及二面角的求法,还考查了逻辑推理和运算求解的能力,属于中档题.26.(1)证明见解析;(2)证明见解析;(3)8 3 .【分析】(1)由线面垂直判定定理,要证线面垂直,需证AD垂直平面PBE内两条相交直线,由,E是AD的中点,易得AD垂直于,再由底面是菱形,得三角形为正三角形,所以AD垂直于PA,(2)由线面平行判定定理,要证线面平行,需证PC平行于平面内一条直线,根据1h是的中点,联想到取AC中点O所以OQ为△PAC中位线.所以OQ // PA注意在写定理条件时,不能省,要全面.例如,线面垂直判定定理中有五个条件,线线垂直两个,相交一个,线在面内两个;线面平行判定定理中有三个条件,平行一个,线在面内一个,线在面外一个,(3)研究体积问题关键在于确定高,由于两个底面共面,所以求的值就转化为求对应高的长度比.【详解】(1)因为E是AD的中点,PA=PD,所以AD⊥PE.因为底面ABCD是菱形,∠BAD=,所以AB=BD,又因为E是AD的中点,所以AD⊥BE.因为PE∩BE=E,所以AD⊥平面PBE.(2)连接AC交BD于点O,连结OQ.因为O是AC中点,Q是PC的中点,所以OQ为△PAC中位线.所以OQ//PA.因为PA 平面BDQ,OQ平面BDQ.所以PA//平面BDQ.(3)设四棱锥P-BCDE,Q-ABCD的高分别为2h,1h,所以V P-BCDE=13S BCDE2h,V Q-ABCD=13S ABCD1h.因为V P-BCDE=2V Q-ABCD,且底面积S BCDE=S ABCD.所以,因为,所以.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章直线与方程一、选择题1.下列直线中与直线 x - 2y + 1= 0 平行的一条是 ( ) .A . 2x - y + 1=0B . 2x - 4y + 2= 0C . 2 + 4 + 1=0D . 2 - 4 + 1= 0x yx y2.已知两点 A (2 , m ) 与点 B ( m , 1) 之间的距离等于 13 ,则实数 m =( ) .A .- 1B . 4C .- 1 或 4D .- 4 或 13.过点 ( - 2, ) 和 ( , 4) 的直线的斜率为 1,则实数 a 的值为 ( ).Ma N aA . 1B . 2C . 1 或 4D . 1 或 2 4.如果 AB > 0, BC > 0,那么直线 Ax ― By ―C = 0 不经过的象限是 ( ) .A .第一象限B .第二象限C .第三象限D .第四象限5.已知等边△ ABC 的两个顶点 A (0 , 0) ,B (4 , 0) ,且第三个顶点在第四象限,则BC 边所在的直线方程是 ( ).A . y =- 3 xB . y =- 3 ( x - 4)C . y = 3 ( x -4)D. y = 3 ( x +4)2l 的倾斜角互为补角的一 6.直线 l : mx - my - 1=0 经过点 P (2 , 1) ,则倾斜角与直线 条直线方程是 ( ).A . x ―y ― 1= 0B . 2x ― y ― 3=0C . x +y - 3= 0 D. x + 2y - 4=07.点 (1 , 2) 关于x 轴和 y 轴的对称的点依次是 ( ) .PA . (2 , 1) , ( -1,- 2)B . ( -1, 2) , (1 ,- 2)C . (1 ,- 2) ,( - 1, 2)D . ( -1,- 2) , (2 , 1)8.已知两条平行直线l 1 : 3 x + 4y + 5= 0,l 2 : 6 x + by + c = 0 间的距离为 3,则 b +c= ( ) .A .- 12B . 48C . 36D .- 12 或 489.过点 P (1 ,2) ,且与原点距离最大的直线方程是 ( ).A . x +2y - 5=0B . 2x + y - 4= 0C . +3 y - 7=0D . 3 + - 5= 0xx y 10. a , b 满足 a + 2b = 1,则直线 ax + 3y + b = 0 必过定点 () .A . - 1 ,1B . 1 ,-1C . 1 ,1D . 1 ,-16 2262662二、填空题11.已知直线AB与直线AC有相同的斜率,且A(1,0), B(2, a), C( a,1),则实数 a 的值是 ____________.12.已知直线x- 2y+ 2k= 0 与两坐标轴所围成的三角形的面积不大于1,则实数k的取值范围是 ____________ .13.已知点 (a ,2)(a> 0) 到直线-+ 3=0 的距离为1,则a的值为 ________.x y14.已知直线ax+y+a+ 2= 0 恒经过一个定点,则过这一定点和原点的直线方程是____________________ .15.已知实数x,y满足 5x+ 12y= 60,则 x2 + y2的最小值等于 ____________ .三、解答题16.求斜率为3,且与坐标轴所围成的三角形的周长是12 的直线方程.417.过点P(1 ,2) 的直线l被两平行线l 1: 4x+3y+1=0与 l 2: 4x+3y+6=0截得的线段长 | AB| = 2 ,求直线l 的方程.2 218.已知方程 ( m― 2m― 3) x+ (2 m+m- 1) y+ 6- 2m= 0( m∈ R) .(1)求该方程表示一条直线的条件;(2)当 m为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;(3)已知方程表示的直线 l 在 x 轴上的截距为-3,求实数 m的值;(4)若方程表示的直线 l 的倾斜角是45°,求实数 m的值.19.△ABC中,已知C(2 ,5) ,角A的平分线所在的直线方程是y=x,BC边上高线所在的直线方程是y=2x-1,试求顶点B的坐标.参考答案一、选择题1. D解析 :利用 A B - AB =0 来判断,排除 A ,C ,而 B 中直线与已知直线重合.1 22 12. C解析 :因为 | AB | = ( 2 - m)2 +( m - 1)2= 2. 13 ,所以 2m - 6m +5= 13 解得 =- 1 或 = 4.mm3. A4 - a解析 :依条件有= 1,由此解得 a = 1.4. B解析 :因为 B ≠ 0,所以直线方程为 y = A x - C,依条件 A> 0, C > 0.即直线的斜B B B B率为正值,纵截距为负值,所以直线不过第二象限.5. C解析 :因为△ ABC 是等边三角形,所以 BC 边所在的直线过点B ,且倾斜角为 π,3所以 BC 边所在的直线方程为 y = 3 ( x -4) .6. C解析 :由点 P 在 l 上得 2 ― 2― 1= 0,所以 =1.即 l 的方程为 x ― ― 1=0.m m m y所以所求直线的斜率为- 1,显然 x + y - 3= 0 满足要求. 7. C解析 :因为点 ( x ,y ) 关于 x 轴和 y 轴的对称点依次是 ( x ,- y ) 和( - x , y ) ,所以 (1 , 2) 关于x 轴和 y 轴的对称的点依次是 (1 ,- 2) 和 ( -1, 2) .P8. D解析 :将 l 1 : 3 x +4y + 5=0 改写为 6x + 8y + 10= 0,因为两条直线平行,所以b = 8.由10- c 或 c = 40. 所以 b + c =- 12 或 48.=3,解得 c =- 2062 + 829. A解析 :设原点为 O ,依条件只需求经过点P 且与直线 OP 垂直的直线方程,因为 kO P =2,所以所求直线的斜率为- 1,且过点 .2所以满足条件的直线方程为 y - 2=- 1( x - 1) ,即 x + 2y - 5= 0.210. B解析 :方法 1:因为 a + 2b =1,所以 a = 1- 2b .所以直线 ax +3y + b = 0 化为 (1 -2b ) x + 3y + b = 0.整理得 (1 - 2x ) b + ( x + 3y ) = 0.所以当 x = 1 , y =- 1时上式恒成立.2 6所以直线 ax +3y + b = 0 过定点1 ,- 1 .2 6方法 2:由 a + 2 =1 得 -1+ 2 = 0.进一步变形为 a × 1+ 3× - 1.2 06 这说明直线方程 ax + 3y + b = 0 当 x = 1 , y =- 1时恒成立.2 6 所以直线 ax +3y + b = 0 过定点1 ,- 1 .2 6二、填空题11.1 5.2解析: 由已知得 a-0 =1-,所以 a 2― a ― 1=0. 解得 a =15 .2 - 1 a - 1212.- 1≤ k ≤ 1 且 k ≠ 0.解析: 依条件得 1· |2 k | · | k | ≤ 1,其中 k ≠ 0( 否则三角形不存在 ) .2解得- 1≤ k ≤ 1 且 k ≠ 0.13. 2 - 1.a - 2 + 3解析: 依条件有 = 1.解得 a = 2 - 1, a =- 2 - 1( 舍去 ) .12 + 1214. y = 2x .解析: 已知直线变形为 y +2=- a ( x + 1) ,所以直线恒过点 ( ― 1,― 2) .故所求的直线方程是y +2= 2( x + 1) ,即 y = 2x .15.60. 13解析:因为实数 x, y 满足5x+12y=60,所以x2+ y2 表示原点到直线5x+ 12y= 60 上点的距离.所以x2+ y2 的最小值表示原点到直线5x+ 12y= 60 的距离.容易计算 d=60 = 60 .即所求x 2+ y 2 的最小值为60.25+ 144 13 13 三、解答题16.解:设所求直线的方程为y=3x+ b,4令 x=0,得 y=b,所以直线与y 轴的交点为(0,b);令 y=0,得 x=-4b,所以直线与x 轴的交点为-4b,0 .3 34 2 4 2由已知,得 | b| +- b +=12 ,解得=± .b +- b3 3故所求的直线方程是y=3x±3,即3x-4y±12=0.417.解:当直线l的方程为x=1时,可验证不符合题意,故设l 的方程为 y-2= k( x - 1) ,由y= kx+ 2 - k 解得A 3k- 7 ,- 5k + 8 ;4 x + 3 y+ 1= 0 3k+ 4 3k+ 4由y= kx+ 2 - k 解得 B 3k- 12 , 8 - 10k .4 x + 3 y+ 6= 0 3k + 4 3k + 425k 2因为 | AB| = 2 ,所以 5 += 2 .3k+ 4 3k+ 4整理得 7k2- 48k- 7= 0.解得k1= 7 或k2=-1.7故所求的直线方程为x+7y-15=0或7x― y―5=0.18.解: (1) 当x,y的系数不同时为零时,方程表示一条直线,2令 m―2m―3=0,解得 m=-1, m=3;2 1令 2m+m- 1= 0,解得m=- 1,m=.2所以方程表示一条直线的条件是m∈R,且 m≠-1.(2)由(1) 易知,当m=1时,方程表示的直线的斜率不存在,2此时的方程为x=4,它表示一条垂直于x 轴的直线.3(3) 依题意,有2m - 6=- 3,所以 3 2- 4 - 15= 0.m 2 - 2m - 3m m所以 m = 3,或 m =- 5,由 (1) 知所求 m =- 5.3 3 (4) 因为直线 l 的倾斜角是 45o ,所以斜率为 1.故由- m 2- 2m - 3 = 1,解得= 4或 =- 1( 舍去 ) .2m 2 + m -1m 3m所以直线 l 的倾斜角为 45°时, m = 4.3y = 2x - 1 19.解 :依条件,由解得 A (1 , 1) .y = x因为角 A 的平分线所在的直线方程是y = x ,所以点 C (2 , 5) 关于 y = x 的对称点 C' (5 ,2) 在 AB 边所在的直线上.2 -1AB 边所在的直线方程为 y - 1=( x - 1) ,整理得x - 4y + 3=0.又 BC 边上高线所在的直线方程是y = 2x -1,所以BC边所在的直线的斜率为-1 .( 第 19 题 )2BC 边所在的直线的方程是y =―1( x - 2) + 5,整理得x + 2y - 12=0.2联立 x - 4y + 3= 0 与 x +2y - 12= 0,解得 B 7, 5.2。

相关文档
最新文档