最新全等三角形经典模型总结

合集下载

人教版初中数学《全等三角形》中的经典模型

人教版初中数学《全等三角形》中的经典模型

专题12.4 全等三角形中的经典模型【六大题型】【人教版】【题型1 平移模型】 (1)【题型2 轴对称模型】 (3)【题型3 旋转模型】 (5)【题型4 一线三等角模型】 (8)【题型5 倍长中线模型】 (12)【题型6 截长补短模型】 (14)【常见模型】【例1】(2022•义马市期末)如图,点A,E,F,B在直线l上,AE=BF,AC∥BD,且AC=BD,求证:△ACF≌△BDE.【变式1-1】(2022•曾都区期末)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF.老师说:还添加一个条件就可使△ABC≌△DEF.下面是课堂上三个同学的发言:甲:添加BE=CF,乙:添加AC∥DF,丙:添加∠A=∠D.(1)甲、乙、丙三个同学的说法正确的是;(2)请你从正确的说法中,选取一种给予证明.【变式1-2】(2022春•东坡区校级期末)如图,△ABC中,AB=13cm,BC=11cm,AC=6cm,点E是BC边的中点,点D在AB边上,现将△DBE沿着BA方向向左平移至△ADF 的位置,则四边形DECF的周长为cm.【变式1-3】(2022•富顺县校级月考)如图1,A,B,C,D在同一直线上,AB=CD,DE ∥AF,且DE=AF,求证:△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.【题型2 轴对称模型】【例2】(2022•安丘市期末)如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.【变式2-1】(2022•陇县一模)如图,在△ABC中,已知CD⊥AB于点D,BE⊥AC于点E,∠DCB=∠EBC.求证:AD=AE.【变式2-2】(2022•句容市期末)如图,已知△AOD≌△BOC.求证:AC=BD.【变式2-3】(2022•海珠区校级期中)如图,PB⊥AB,PC⊥AC,PB=PC,D是AP上一点.求证:∠BDP=∠CDP.【题型3 旋转模型】【例3】(2022•环江县期中)如图,AB=AE,AB∥DE,∠1=70°,∠D=110°.求证:△ABC≌△EAD.证明:∵∠1=70°,∴().又∵∠D=110°,∴().∵AB∥DE,∴ ( ). 在△ABC 和△EAD 中, {(ㅤㅤㅤㅤ)(ㅤㅤㅤㅤ)AB =AE, ∴△ABC ≌△EAD (AAS ).【变式3-1】(2022春•济南期末)如图1,△ABE 是等腰三角形,AB =AE ,∠BAE =45°,过点B 作BC ⊥AE 于点C ,在BC 上截取CD =CE ,连接AD 、DE 并延长AD 交BE 于点P ;(1)求证:AD =BE ; (2)试说明AD 平分∠BAE ;(3)如图2,将△CDE 绕着点C 旋转一定的角度,那么AD 与BE 的位置关系是否发生变化,说明理由.【变式3-2】(2022•高港区校级月考)已知,如图,AD 、BF 相交于O 点,点E 、C 在BF 上,且BE =FC ,AC =DE ,AB =DF .求证: (1)AO =DO ; (2)AC ∥DE .【变式3-3】(2022•锦州模拟)如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1),△ABD不动.(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC 的数量关系还成立吗?说明理由.【题型4 一线三等角模型】【例4】(2022春•香坊区期末)已知,在△ABC中,AB=AC,D,A,E三点都在直线m 上,且DE=9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为BD=AE,CE与AD的数量关系为CE=AD;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.【变式4-1】(2022•东至县期末)如图,在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,若DE=10,BD=3,求CE的长.【变式4-2】(2022春•历下区期中)CD是经过∠BCA定点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CF A=∠β.(1)若直线CD经过∠BCA内部,且E、F在射线CD上,①若∠BCA=90°,∠β=90°,例如图1,则BE CF,EF|BE﹣AF|.(填“>”,“<”,“=”);②若0°<∠BCA<180°,且∠β+∠BCA=180°,例如图2,①中的两个结论还成立吗?并说明理由;(2)如图3,若直线CD经过∠BCA外部,且∠β=∠BCA,请直接写出线段EF、BE、AF的数量关系(不需要证明).【变式4-3】(2022•余杭区月考)如图①,点B、C在∠MAN的边AM、AN上,点E,F 在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.应用:如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上.∠1=∠2=∠BAC,若△ABC的面积为15,求△ABE与△CDF的面积之和.【题型5 倍长中线模型】【例5】(2022秋•博兴县期末)如图,BD是△ABC的中线,AB=6,BC=4,求中线BD 的取值范围.【变式5-1】(2022•涪城区校级月考)如图,在△ABC中,D是BC边的中点,E是AD上一点,BE=AC,BE的延长线交AC于F,求证:∠AEF=∠EAF.【变式5-2】(2022•浠水县校级模拟)(1)在△ABC中,AD为△ABC的中线,AB=6,AC=4,则AD的取值范围是;(2)如图,在△ABC中,AD为△ABC的中线,点E在中线AD上,且BE=AC,连接并延长BE交AC于点F.求证:AF=FE.【变式5-3】(2022•丹阳市期中)八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.【探究与发现】(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接BE,写出图中全等的两个三角形【理解与应用】(2)填空:如图2,EP是△DEF的中线,若EF=5,DE=3,设EP=x,则x的取值范围是.(3)已知:如图3,AD是△ABC的中线,∠BAC=∠ACB,点Q在BC的延长线上,QC=BC,求证:AQ=2AD.【例6】(2022秋•西岗区期末)阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,AD平分∠BAC,∠ABC=2∠C.求证:AC=AB+BD;小明通过思考发现,可以通过“截长、补短”两种方法解决问题:方法一:如图2,在AC上截取AE,使得AE=AB,连接DE,可以得到全等三角形,进而解决问题.方法二:如图3,延长AB到点E,使得BE=BD,连接DE,可以得到等腰三角形,进而解决问题.(1)根据阅读材料,任选一种方法证明AC=AB+BD,根据自己的解题经验或参考小明的方法,解决下面的问题;(2)如图4,四边形ABCD中,E是BC上一点,EA=ED,∠DCB=2∠B,∠DAE+∠B=90°,探究DC、CE、BE之间的数量关系,并证明.【变式6-1】(2022•蕲春县期中)已知:如图,在△ABC中,∠ABC=60°,△ABC的角平分线AD、CE交于点O.求证:AC=AE+CD.【变式6-2】(2022•新抚区校级月考)如图,四边形ABCD中,∠A=∠B=90°,E是AB 的中点,DE平分∠ADC.(1)求证:CE平分∠BCD;(2)求证:AD+BC=CD;(3)若AB=12,CD=13,求S△CDE.【变式6-3】(2022•黄石期末)已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD;(2)如图2,若AD=AB,求证:AF=AE+BC.。

全等三角形的10个模型(一)2024

全等三角形的10个模型(一)2024

全等三角形的10个模型(一)引言概述:全等三角形是指两个或多个三角形的对应边和对应角完全相等的情况。

全等三角形在几何学中有广泛的应用,不仅在证明和推导定理时起到重要的作用,还在实际问题的解决中提供了有力的工具。

本文将介绍十个关于全等三角形的模型。

这些模型旨在帮助读者更好地理解和运用全等三角形的性质和应用。

正文:1. 模型一:完全相等的三边- 全等三角形的基本条件就是三边相等。

- 通过边的对应关系确定两个三角形是否全等。

- 证明时可利用边长相等的性质进行推导。

2. 模型二:完全相等的两边和夹角- 如果已知两个三角形的两边和夹角都相等,则这两个三角形全等。

- 通过边角边(SAS)或角边角(ASA)的条件可以判定两个三角形相等。

3. 模型三:完全相等的两角和夹边- 如果已知两个三角形的两角和夹边都相等,则这两个三角形全等。

- 边角边(SAS)或角边角(ASA)的条件可以判定两个三角形相等。

4. 模型四:等腰三角形和全等条件- 等腰三角形是指两边相等或两角相等的三角形。

- 如果两个三角形中有一个是等腰三角形,且两个等腰三角形的两边或两角都相等,则这两个三角形全等。

5. 模型五:直角三角形和全等条件- 直角三角形是指其中一个角为90度的三角形。

- 如果两个三角形中有一个是直角三角形,且两个直角三角形的两边或两个锐角均相等,则这两个三角形全等。

总结:通过十个模型的介绍,我们可以看到全等三角形是几何学中一个重要而广泛应用的概念。

理解全等三角形的性质和应用对于解决几何问题具有重要意义。

在实际问题中,我们常常可以利用全等三角形的模型来推导和证明定理,从而得出更深入的结论。

专题03 全等三角形的六种模型全梳理(解析版)-2024年常考压轴题攻略(8年级上册人教版)

专题03 全等三角形的六种模型全梳理(解析版)-2024年常考压轴题攻略(8年级上册人教版)

专题03全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。

类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。

将分散的条件集中到一个三角形中。

如图1,ABC 中,若86AB AC ==,,求BC 边上的中线小明在组内经过合作交流,得到了如下的解决方法:如图连接BE .请根据小明的方法思考:(1)如图2,由已知和作图能得到ADC EDB ≌△△A .SSS B .SAS C .AAS D .ASA(2)如图2,AD 长的取值范围是.(2)根据全等三角形的性质得到6AC BE ==,由三角形三边关系得到AB BE AE AB BE -<<+,即可求出17AD <<;(3)延长AD 到点M ,使AD DM =,连接BM ,证明ADC MDB △△≌,得到BM AC CAD M =∠=∠,,由AE EF =得到CAD AFE ∠=∠,进而推出BF BM =,即可证明AC BF =.【详解】解:(1)如图2,延长AD 到点E ,使DE AD =,连接BE .∵AD 为BC 的中线,∴BD CD =,又∵AD DE ADC BDE =∠=∠,,∴()SAS ADC EDB ≌△△,故答案为:B ;(2)解:∵ADC EDB ≌△△,∴6AC BE ==,在ABE 中,AB BE AE AB BE -<<+,∴86286AD -<<+,∴17AD <<,故答案为:C ;(3)证明:延长AD 到点M ,使AD DM =,连接BM ,∵AD 是ABC 中线,∴CD BD =,∵在ADC △和MDB △中,DC DB ADC MDB AD HD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ADC MDB ≌△△,∴BM AC CAD M =∠=∠,,∵AE EF =,(1)如图1,求证:12BF AD =;(2)将DCE △绕C 点旋转到如图2所示的位置,连接,AE BD ,过C 点作CM ⊥①探究AE 和BD 的关系,并说明理由;②连接FC ,求证:F ,C ,M 三点共线.【答案】(1)见解析(2)①,AE BD AE BD =⊥,理由见解析②见解析【分析】(1)证明≌ACD BCE V V ,得到AD BE =,再根据点F 为BE 中点,即可得证;则:AGB CBD BHG ∠=∠+∠=∠∵CBD EAC ∠=∠,∴90BHG ACB ∠=∠=︒,∴AE BD ⊥,综上:,AE BD AE BD =⊥;②延长CF 至点P ,使PF CF =∵F 为BE 中点,∴BF FE =,∴()SAS BFP EFC ≌,∴,BP CE BPF ECF =∠=∠,∴CE BP ,∴180CBP BCE ∠+∠=︒,∵360180BCE ACD ACB DCE ∠+∠=︒-∠-∠=︒,∴CBP ACD ∠=∠,又,CE CD BP AC BC ===,∴()SAS PBC DCA ≌,∴BCP CAD ∠=∠,延长FC 交AD 于点N ,则:18090BCP ACN ACB ∠+∠=︒-∠=︒,∴90CAD ACN ∠+∠=︒,∴90ANC ∠=︒,∴CN AD ⊥,∵CM AD ⊥,∴点,M N 重合,即:F ,C ,M 三点共线.【点睛】本题考查全等三角形的判定和性质,等腰三角形判定和性质.熟练掌握手拉手全等模型,倍长中线法构造全等三角形,是解题的关键.【变式训练1】如图,ABC 中,BD DC AC ==,E 是DC 的中点,求证:2AB AE =.【答案】见解析【分析】利用中线加倍证DEF CEA △≌△(SAS ),可得DF AC BD ==,FDE C ∠=∠,由DC AC =,可得ADC CAD ∠=∠进而可证ADF ADB ∠=∠.,再证ADB ADF △≌△(SAS )即可.【详解】证明:延长AE 到F ,使EF AE =,连结DF ,∵E 是DC 中点,∴DE CE =,∴在DEF 和CEA 中,DE CE DEF CEA EF EA =⎧⎪∠=∠⎨⎪=⎩,∴DEF CEA △≌△(SAS ),∴DF AC BD ==,FDE C ∠=∠,∵DC AC =,∴ADC CAD ∠=∠,又∵ADB C CAD ∠=∠+∠,ADF FDE ADC ∠=∠+∠,∴ADF ADB ∠=∠,在ADB 和ADF △中,AD AD ADB ADF DB DF =⎧⎪∠=∠⎨⎪=⎩,∴ADB ADF △≌△(SAS ),∴2AB AF AE ==.【点睛】本题考查中线加倍构图,三角形全等判定与性质,等腰三角形性质,掌握中线加倍构图,三角形全等判定与性质,等腰三角形性质是解题关键.【变式训练2】(1)如图1,已知ABC 中,AD 是中线,求证:2AB AC AD +>;(2)如图2,在ABC 中,D ,E 是BC 的三等分点,求证:AB AC AD AE +>+;(3)如图3,在ABC 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)利用“倍长中线”法,延长AD ,然后通过全等以及三角形的三边关系证明即可;(2)取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,通过“倍长中线”思想全等证明,进而得到AB =CQ ,AD =EQ ,然后结合三角形的三边关系建立不等式证明即可得出结论;(3)同(2)处理方式一样,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,结合“倍长中线”思想证明全等后,结合三角形的三边关系建立不等式证明即可得出结论.【详解】证:(1)如图所示,延长AD 至P 点,使得AD =PD ,连接CP ,∵AD 是△ABC 的中线,∴D 为BC 的中点,BD =CD ,在△ABD 与△PCD 中,BD CD ADB PDC AD PD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△PCD (SAS ),∴AB =CP ,在△APC 中,由三边关系可得AC +PC >AP ,∴2AB AC AD +>;(2)如图所示,取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,∵H 为DE 中点,D 、E 为BC 三等分点,∴DH =EH ,BD =DE =CE ,∴DH =CH ,在△ABH 和△QCH 中,BH CH BHA CHQ AH QH =⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≌△QCH (SAS ),同理可得:△ADH ≌△QEH ,∴AB =CQ ,AD =EQ ,此时,延长AE ,交CQ 于K 点,∵AC +CQ =AC +CK +QK ,AC +CK >AK ,∴AC +CQ >AK +QK ,又∵AK +QK =AE +EK +QK ,EK +QK >QE ,∴AK +QK >AE +QE ,∴AC +CQ >AK +QK >AE +QE ,∵AB =CQ ,AD =EQ ,∴AB AC AD AE +>+;(3)如图所示,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,∵M 为DE 中点,∴DM =EM ,∵BD =CE ,∴BM =CM ,在△ABM 和△NCM 中,BM CM BMA CMN AM NM =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△NCM (SAS ),同理可证△ADM ≌△NEM ,∴AB =NC ,AD =NE ,此时,延长AE ,交CN 于T 点,∵AC +CN =AC +CT +NT ,AC +CT >AT ,∴AC +CN >AT +NT ,又∵AT +NT =AE +ET +NT ,ET +NT >NE ,∴AT +NT >AE +NE ,∴AC +CN >AT +NT >AE +NE ,∵AB =NC ,AD =NE ,∴AB AC AD AE +>+.【点睛】本题考查全等三角形证明问题中辅助线的添加,掌握“倍长中线”的基本思想,以及熟练运用三角形的三边关系是解题关键.【答案】(1)1.5 6.5AE <<;(2)见解析;(3)BE DF EF +=,理由见解析【分析】(1)如图①:将ACD △绕着点D 逆时针旋转180 得到EBD △可得BDE ≅ 得出5BE AC ==,然后根据三角形的三边关系求出AE 的取值范围,进而求得AD 范围;(2)如图②:FDC △绕着点D 旋转180︒得到NDB 可得BND CFD ≅ ,得出BN∴1.5 6.5AD <<;故答案为1.5 6.5AD <<;(2)证明:如图②:FDC △绕着点D 旋转180︒得到NDB∴BND CFD ≅ (SAS ),∴BN CF =,DN DF=∵DE DF⊥∴EN EF =,在BNE 中,由三角形的三边关系得:BE BN EN +>,∴BE CF EF +>;(3)BE DF EF +=,理由如下:如图③,将DCF 绕着点C 按逆时针方向旋转100︒∴△DCF ≌△BCH ,∴100CH CF DCB FCH ∠∠=︒=,=∴HBC D DF BH∠∠==,∵180ABC D ∠+∠︒=∴180HBC ABC ∠+∠︒=,∴点A 、B 、H 三点共线∵100FCH ∠=︒,50FCE ∠=︒,∴50ECH ∠=︒∴FCE ECH ∠∠=,在HCE 和FCE △中,===CF CH ECF ECH CE CE ∠∠⎧⎪⎨⎪⎩,∴HCE FCE ≌ (SAS )∴EH EF =,∵BE BH EH DF BH+==,∴BE DF EF +=.【点睛】本题属于三角形综合题,主要考查对全等三角形的性质和判定、三角形的三边关系定理、旋转的性质等知识点,通过旋转得到构造全等三角形是解答本题的关键.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)(1)求证:CD BC DE=+;(2)若75B∠=︒,求E∠的度数.【答案】(1)见解析(2)105︒【分析】(1)在CD上截取CF∵CA平分BCD∠,∴BCA FCA∠=∠.在BCAV和FCA△中,⎧⎪∠⎨⎪⎩,∠=︒BAC60【答案】(1)5.8;(2)4.3【分析】(1)由已知条件和辅助线的作法,证得△ACD≌△ECD,得到由于∠A=2∠B,推出∠DEC=2∠B,等量代换得到∠B=∠EDB形,得出AC =CE =3.6,DE =BE =2.2,相加可得BC 的长;(2)在BA 边上取点E ,使BE =BC =2,连接DE ,得到△DEB ≌△DBC (SAS ),在DA 边上取点F ,使DF =DB ,连接FE ,得到△BDE ≌△FDE ,即可推出结论.【详解】解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质,熟悉这些定理是解决本题的关键.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。

最新全等三角形的相关模型总结汇总

最新全等三角形的相关模型总结汇总

最新全等三角形的相关模型总结汇总一、角平分线模型应用1.角平分性质模型:辅助线:过点G作___⊥射线AC例题应用:①如图1,在△ABC中,∠C=90,AD平分∠CAB,BC=6cm,BD=4cm,求点D到直线AB的距离。

②如图2,已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC。

提示:①作DE⊥AB交AB于点E;②由∠1=∠2,得PM=PN;由∠3=∠4,得PN=PQ,故PM=PQ,即PA平分∠BAC。

2.模型巩固:练一:如图3,在四边形ABCD中,BC>AB,AD=CD,BD平分∠BAC,求证:∠A+∠C=180°。

练二:已知如图4,四边形ABCD中,∠B+∠D=180°,BC=CD,求证:AC平分∠BAD。

练三:如图5,Rt△ABC中,∠ACB=90,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F。

1) 求证:CE=CF。

2) 将图5中的△ADE沿AB向右平移到△ADE的位置,使点E落在BC边上,其他条件不变,如图6所示,猜想:BE与CF有怎样的数量关系?请证明你的结论。

练四:如图7,∠A=90°,AD∥BC,P是AB的中点,PD平分∠ADC,求证:CP平分∠DCB。

练五:如图8,AB>AC,∠A的平分线与BC的垂直平分线相交于D,自D作DE⊥AB,DF⊥AC,垂足分别为E,F,求证:BE=CF。

练六:如图9所示,在△ABC中,BC边的垂直平分线DF交△BAC的外角平分线AD于点D,F为垂足,DE⊥___于E,并且AB>AC,求证:BE-AC=AE。

练七:如图10,D、E、F分别是△ABC的三边上的点,CE=BF,且△DCE的面积与△DBF的面积相等,求证:AD平分∠BAC。

2.角平分线+垂线,等腰三角形比呈现辅助线:延长ED交射线OB于F;过点E作EF∥射线OB例题应用:如图1所示,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F,求证:BE=(AC-AB)/2.证明:延长BE交AC于点F。

数学全等三角形五大模型及必要步骤

数学全等三角形五大模型及必要步骤

数学全等三角形五大模型及必要步骤
一、等积变换模型
1、等底等高的两个三角形面积相等.
2、两个三角形高相等,面积比等于它们的底之比.
3、两个三角形底相等,面积比等于它的的高之比.
二、共角定理模型
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.
共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比.
三、蝴蝶定理模型
(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的.)四、相似三角形模型
相似三角形:是形状相同,但大小不同的三角形叫相似三角形.
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比.
相似三角形的面积比等于它们相似比的平方.
五、燕尾定理模型
不多说了,应该知道吧。

专题 全等三角形六种基本模型(学生版)

专题  全等三角形六种基本模型(学生版)

专题全等三角形六种基本模型通用的解题思路:模型一:一线三等角模型一线三等角指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。

或叫“K字模型”。

三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。

一般类型:基本类型:同侧“一线三等角”异侧“一线三等角”模型二:手拉手模型--旋转型全等一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;题型三:倍长中线模型构造全等三角形倍长中线是指加倍延长中线,使所延长部分与中线相等,往往需要连接相应的顶点,则对应角对应边都对应相等。

常用于构造全等三角形。

中线倍长法多用于构造全等三角形和证明边之间的关系(通常用“SAS”证明) (注:一般都是原题已经有中线时用)。

三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等在△ABC中AD是BC边中线延长AD到E,使DE=AD,连接BE作CF⊥AD于F,作BE⊥AD的延长线于E连接BE延长MD到N,使DN=MD,连接CD题型四:平行线+线段中点构造全等模型题型五:等腰三角形中的半角模型过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

全等三角形的九大经典模型(解析版)

全等三角形的九大经典模型(解析版)

全等三角形的九大经典模型【题型1平移模型】【题型2轴对称模型】【题型3旋转模型】【题型4一线三等角模型】【题型5倍长中线模型】【题型6截长补短模型】【题型7手拉手模型】【题型8角平分线模型】【题型9半角全等模型】【知识点1平移模型】【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.【常见模型】【题型1平移模型】1(2023春·陕西咸阳·八年级统考期末)如图,将△ABC沿BC方向平移得到△DEF,使点B的对应点E恰好落在边BC的中点上,点C的对应点F在BC的延长线上,连接AD,AC、DE交于点O.下列结论一定正确的是()A.∠B=∠FB.AC⊥DEC.BC=DFD.AC、DE互相平分【答案】D【分析】根据平移的性质得到∠B=∠DEF,BE=CF=CE=AD,AD∥BC,DF=AC,由于只有当∠BAC=90°时,AC⊥DE;只有当BC=2AC时,DF=AC=BE,则可对A、B、C选项的进行判断;AC交DE于O点,如图,证明△AOD≌△COE得到OD=OE,OA=OC,则可对D选项进行判断.【详解】解:∵△ABC沿BC方向平移得到△DEF,使点B的对应点E恰好落在边BC的中点上,∴∠B=∠DEF,BE=CF=CE=AD,AD∥BC,DF=AC,只有当∠BAC=90°时,AC⊥DE;只有当BC=2AC时,DF=AC=BE,所以A、B、C选项的结论不一定正确;∵AD∥BC,∴∠OAD=∠OCE,∠ODA=∠OEC,而AD=CE,∴△AOD≌△COE(ASA),∴OD=OE,OA=OC即AC、DE互相平分,所以D选项的结论正确.故选:D.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.1.(2023·浙江·八年级假期作业)如图,△ABC的边AC与△CDE的边CE在一条直线上,且点C为AE的中点,AB=CD,BC=DE.(1)求证:△ABC≌△CDE;(2)将△ABC沿射线AC方向平移得到△A B C ,边B C 与边CD的交点为F,连接EF,若EF将CDE 分为面积相等的两部分,且AB=4,则CF=【答案】(1)见解析(2)2【分析】(1)首先由点C为AE的中点得出AC=CE,再根据SSS证明△ABC≌△CDE即可;(2)根据平移的性质得A B =CD=AB=4,再由EF将CDE分为面积相等的两部分得CF=DF=12CD =2【解析】(1)证明:∵点C为AE的中点,∴AC=CE在△ABC和△CDE中,AB=CD BC=DE AC=CE∴△ABC≌△CDE(2)解:将△ABC沿射线AC方向平移得到ΔA B C ,且AB=4,∴A B =CD =AB =4,∵边B C 与边CD 的交点为F ,连接EF ,EF 将CDE 分为面积相等的两部分,如图∴CF =DF =12CD =2,故答案为:2【点睛】本题主要考查了全等三角形的判定以及平移的性质,根据SSS 证明△ABC ≌△CDE 是解答本题的关键.2.(2023春·重庆·八年级校考期中)如图,将△ABC 沿射线BC 方向平移得到△DCE ,连接BD 交AC于点F .(1)求证:△AFB ≌△CFD ;(2)若AB =9,BC =7,求BF 的取值范围.【答案】(1)见解析(2)1<BF <8【分析】(1)根据∠A =∠FCD ,∠AFC =∠CFD ,即可证明;(2)在△BCD 中,利用三边关系求出BD 的取值范围即可解决问题.(1)证明:∵AB ∥CD ,∴∠A =∠FCD ,在△AFB 和△CFD 中,∠A =∠FCD ∠AFB =∠CFD AB =CD∴△AFB ≌△CFD .(2)【解析】解:∵△AFB ≌△CFD ,∴BF =FD ,在△BCD 中,BC =7,CD =9,∴2<BD <16,∴2<2BF <16,∴1<BF <8.【点睛】本题考查平移变换、全等三角形的判定和性质、三角形的三边关系等知识,解题的关键是正确寻找三角形全等的条件解决问题,属于中考常考题型.3.(2023春·八年级课时练习)已知△ABC ,AB =AC ,∠ABC =∠ACB ,将△ABC 沿BC 方向平移得到△DEF .如图,连接BD 、AF ,则BD AF (填“>”“<”或“=”),并证明.【答案】【答案】BD =AF ,证明见解析【分析】由△ABC 沿BC 方向平移得到△DEF ,得到AC =DF ,∠DFB =∠ACB =∠ABF ,即可证明;【解析】【详解】解:BD =AF .证明:由△ABC 沿BC 方向平移得到△DEF ,AB =AC ,得AC =DF =AB ,,∠DFB =∠ACB =∠ABF .在△ABF 和△DFB 中,{AB =DF∠ABF =∠DFB BF =FB,∴△ABF ≌△DFB (SAS ),∴BD =AF .故答案是=.【点睛】本题主要考查了全等三角形的判定和性质,准确分析证明是解题的关键.【知识点2轴对称模型】【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.【常见模型】【题型2轴对称模型】1(2023春·河北邯郸·八年级校考期末)如图,在长方形ABCD 中,点M 为CD 中点,将△MBC 沿BM 翻折至△MBE ,若∠AME =α,∠ABE =β,则α与β之间的数量关系为()A.α+3β=180°B.β-α=20°C.α+β=80°D.3β-2α=90°【答案】D【分析】直接利用平行线的性质结合翻折变换的性质得出△ADM≌△BCM(SAS),进而利用直角三角形的性质得出答案.【详解】∵M为CD中点,∴DM=CM,在△ADM和△BCM中∵AD=BC ∠D=∠C DM=CM ,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,AM=BM∴∠MAB=∠MBA∵将点C绕着BM翻折到点E处,∴∠EBM=∠CBM,∠BME=∠BMC=∠AMD ∴∠DME=∠AMB∴∠EBM=∠CBM=12(90°-β)∴∠MBA=12(90°-β)+β=12(90°+β)∴∠MAB=∠MBA=12(90°+β)∴∠DME=∠AMB=180°-∠MAB-∠MBA=90°-β∵长方形ABCD中,∴CD∥AB∴∠DMA=∠MAB=12(90°+β)∴∠DME+∠AME=∠ABE+∠MBE∵∠AME=α,∠ABE=β,∴90°-β+α=β+12(90°-β)∴3β-2α=90°故选D.【点睛】本题考查的知识点是平行线的性质,解题关键是利用全等三角形对应角相等即可求解.1.(2023·全国·八年级专题练习)如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=12∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.【答案】DE +BF =EF ,见解析【解析】试题分析:通过延长CF ,将DE 和BF 放在一起,便于寻找等量关系,通过两次三角形全等证明,得出结论.猜想:DE +BF =EF .证明:延长CF ,作∠4=∠1,如图:∵将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF =∠DAB ,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠FAE ,在△AGB 和△AED 中,∠4=∠1AB =AD ∠ABG =∠ADE,∴△AGB ≌△AED (ASA ),∴AG =AE ,BG =DE ,在△AGF 和△AEF 中,AG =AE ∠GAF =∠EAF AF =AF,∴△AGF ≌△AEF (SAS ),∴GF =EF ,∴DE +BF =EF .2.(2023春·山东青岛·八年级统考期中)如图,在Rt ΔABC 中,∠C =90°,将ΔABC 沿AB 向下翻折后,再绕点A 按顺时针旋转α度(α<∠ABC ).得到Rt ΔADE ,其中斜边AE 交BC 于点F ,直角边DE 分别AB 、BC 于点G ,H1 请根据题意用实线补全图形;(不得用铅笔作图).2 求证:ΔAFB ≅ΔAGE【答案】(1)作图见详解;(2)证明见详解.【分析】(1)根据题意画出图形,注意折叠与旋转中的对应关系;(2)由题意易得△ABC ≌△AED ,即可得AB =AE ,∠ABC =∠E ,然后利用ASA 的判定方法,即可证得△AFB ≌△AGE .【解析】解:(1)画图,如下图;证明:由题意得:△ABC ≌△AED .∴AB =AE ,∠ABC =∠E .在△AFB 和△AGE 中,∠ABC =∠EAB =AE∠α=∠α∴△AFB ≌△AGE (ASA ).【点睛】本题考查折叠与旋转的性质以及全等三角形的判定与性质,注意掌握数形结合思想的应用以及注意折叠与旋转中的对应关系.3.(2023春·山西临汾·八年级统考期末)阅读材料,并回答下列问题如图1,以AB 为轴,把△ABC 翻折180°,可以变换到△ABD 的位置;如图2,把△ABC 沿射线AC 平移,可以变换到△DEF 的位置.像这样,其中的一个三角形是另一个三角形经翻折、平移等方法变换成的,这种只改变位置,不改变形状大小的图形变换,叫三角形的全等变换.班里学习小组针对三角形的全等变换进行了探究和讨论(1)请你写出一种全等变换的方法(除翻折、平移外),.(2)如图2,前进小组把△ABC 沿射线AC 平移到△DEF ,若平移的距离为2,且AC =5,则DC =.(3)如图3,圆梦小组展开了探索活动,把△ABC 纸片沿DE 折叠,使点A 落在四边形BCDE 内部点A ′的位置,且得出一个结论:2∠A ′=∠1+∠2.请你对这个结论给出证明.(4)如图4,奋进小组则提出,如果把△ABC 纸片沿DE 折叠,使点A 落在四边形BCDE 外部点A ′的位置,此时∠A ′与∠1、∠2之间结论还成立吗?若成立,请给出证明,若不成立,写出正确结论并证明.【答案】(1)旋转;(2)3;(3)见解析;(4)不成立,正确结论:∠2-∠1=2∠A ',见解析【分析】(1)由题意根据三种全等变换翻折、平移、旋转的定义进行判断即可;(2)根据平移的距离的定义可知AD=2,则DC=AC-AD进行求解即可;(3)根据轴对称及三角形内角和定理进行分析即可得出结论;(4)由题意根据轴对称及三角形内角和定理,进行分析即可得出结论.【解析】解:(1)除翻折、平移外全等变换的方法还有旋转;故答案为:旋转.(2)∵AD=2,AC=5,∴DC=AC-AD=5-2=3;故答案为:3.(3)∵把△ADE沿DE翻折,得到△A'DE,∴△ADE≌△A'DE,∴∠ADE=∠A'DE,∠AED=∠A'ED,在△DEA'中,∠A'=180°-(∠A'DE+∠A'ED);由平角定义知,∠2=180°-∠A'DA=180°-2∠A'DE,∠1=180°-∠A'EA=180°-2∠A'ED,∴∠1+∠2=180°-2∠A'DE+180°-2∠A'ED=2(180°-∠A'ED-∠A'DE),∴2∠A′=∠1+∠2.(4)∠2-∠1=2∠A',理由如下:∵把△ADE沿DE翻折,得到△A'DE,∴△ADE≌△A'DE,∴∠ADE=∠A'DE,∠AED=∠A'ED,在△DEA'中,∠A'=180°-(∠A'DE+∠A'ED),由平角定义知,∠2=180°-∠A'DA=180°-2∠A'DE,∠1=2∠A'ED-180°,∴∠2-∠1=(180°-2∠A'DE)-(2∠A'ED-180°)=180°-(∠A'DE+∠A'ED),∴∠2-∠1=2∠A'.【点睛】本题是三角形综合题,综合考查平移的性质,折叠的性质,三角形内角和定理,全等三角形的性质等知识,灵活运用这些性质进行推理是解答本题的关键.【知识点3旋转模型】【模型解读】将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形,识别旋转型三角形时,涉及对顶角相等、等角加(减)公共角的条件.【常见模型】【题型3旋转模型】1(2023春·全国·八年级期末)(1)问题引入:如图1,点F是正方形ABCD边CD上一点,连接AF,将△ADF绕点A顺时针旋转90°与△ABG重合(D与B重合,F与G重合,此时点G,B,C在一条直线上),∠GAF的平分线交BC于点E,连接EF,判断线段EF与GE之间有怎样的数量关系,并说明理由.(2)知识迁移:如图2,在四边形ABCD中,∠ADC+∠B=180°,AB=AD,E,F分别是边BC,CD延长线上的点,连接AE,AF,且∠BAD=2∠EAF,试写出线段BE,EF,DF之间的数量关系,并说明理由.(3)实践创新:如图3,在四边形ABCD中,∠ABC=90°,AC平分∠DAB,点E在AB上,连接DE,CE,且∠DAB=∠DCE=60°,若DE=a,AD=b,AE=c,求BE的长.(用含a,b,c的式子表示)【答案】(1)EF=GE,理由见详解;(2)BE-DF=EF,理由见详解;(3)BE=a+b-c2,理由见详解【分析】(1)根据SAS直接可证△GAE≌△FAE即得GE=EF;(2)在BE上取BG=DF,连接AG,由∠ADC+∠B=180°,∠ADF+∠ADC=180°,得∠B=∠ADF,从而SAS证△ABG≌△ADF,再通过SAS证△GAE≌△FAE,得GE=EF,从而解决问题;(3)作CF⊥AD,交AD的延长线于F,取FG=BE,连接CG,由(2)同理可两次全等证明出DE=GD即可.【详解】解:(1)EF=GE,理由如下:∵△ADF绕点A顺时针旋转90°与△ABG重合,∴AG=AF,∵AE平分∠GAF,∴∠GAE=∠FAE,在△GAE和△FAE中,AG=AF∠GAE=∠FAE AE=AE,∴△GAE≌△FAE(SAS),∴GE=EF;(2)BE-DF=EF,理由如下:如图2,在BE上取BG=DF,连接AG,∵∠ADC+∠B=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF,在△ABG和△ADF中,BG=DF∠B=∠ADF AB=AD,∴△ABG≌△ADF(SAS),∴∠BAG=∠FAD,AG=AF,∵∠BAD=2∠EAF,∴∠GAF=2∠EAF,∴∠GAE=∠EAF,在△GAE和△FAE中,AG=AF∠GAE=∠FAE AE=AE,∴△GAE≌△FAE(SAS),∴GE=EF,∴BE-DF=EF;(3)如图,作CF⊥AD,交AD的延长线于F,取FG=BE,连接CG,∵AC平分∠BAD,CF⊥AF,CB⊥AB,∴CF=CB,∠EBC=∠GFC,∵BE=GF,∴△CBE≌△CFG(SAS),∴∠BCE=∠FCG,CG=CE,∵∠DAB=60°,∴∠FCB=120°,∵∠DCE=60°,∴∠DCF+∠BCE=60°,∴∠DCG=60°,又∵CG=CE,∴△ECD≌△GCD(SAS),∴GD=DE,∵Rt△ACF≌Rt△ACB(HL),∴AF=AB,∴b+a-BE=c+BE,∴BE=a+b-c2.【点睛】本题主要考查了全等的判定与性质,结合问题引入,构造出全等三角形是解题的关键.1.(2023春·八年级课时练习)如图,等边△ABC中,∠AOB=115°,∠BOC=125°,则以线段OA,OB,OC为边构成的三角形的各角的度数分别为.【答案】55°,60°,65°.【分析】通过旋转△AOB至△CDB,可得△BOD是等边三角形,将OA,OB,OC放在一个三角形中,进而求出各角大小。

全等三角形经典模型总结

全等三角形经典模型总结

全等三角形相关模型总结一、角平分线模型(一)角平分线的性质模型辅助线:过点G作GE⊥射线ACA、例题1、如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB的距离是cm.2、如图,已知,∠1=∠2,∠3=∠4,求证:AP平分∠BAC.B、模型巩固1、如图,在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.(二)角平分线+垂线,等腰三角形必呈现A、例题辅助线:延长ED交射线OB于F 辅助线:过点E作EF∥射线OB 例1、如图,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F .求证:1()2BE AC AB=-.例2、如图,在△ABC中,∠BAC的角平分线AD交BC于点D,且AB=AD,作CM⊥AD交AD的延长线于M. 求证:1()2AM AB AC=+.(三)角分线,分两边,对称全等要记全两个图形飞辅助线都是在射线ON上取点B,使OB=OA,从而使△OAC≌△OBC .A、例题1、如图,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ .2、如图,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.B、模型巩固1、在△ABC中,AB>AC,AD是∠BAC的平分线,P是线段AD上任意一点(不与A重合).求证:AB-AC>PB-PC .2、如图,△ABC中,AB=AC,∠A=100°,∠B的平分线交AC于D,求证:AD+BD=BC .3、如图,△ABC中,BC=AC,∠C=90°,∠A的平分线交BC于D,求证:AC+CD=AB .二、等腰直角三角形模型(一)旋转中心为直角顶点,在斜边上任取一点的旋转全等:操作过程:(1)将△ABD逆时针旋转90°,得△ACM ≌△ABD,从而推出△ADM为等腰直角三角形.(2)辅助线作法:过点C作MC⊥BC,使CM=BD,连结AM.(二)旋转中心为斜边中点,动点在两直角边上滚动的旋转全等:操作过程:连结AD.(1)使BF=AE(或AF=CE),导出△BDF ≌△ADE.(2)使∠EDF+∠BAC=180°,导出△BDF ≌△ADE.A、例题1、如图,在等腰直角△ABC中,∠BAC=90°,点M、N在斜边BC上滑动,且∠MAN=45°,试探究BM、MN、CN之间的数量关系.2、两个全等的含有30°,60°角的直角三角板ADE和ABC,按如图所示放置,E、A、C 三点在一条直线上,连接BD,取BD的中点M,连接ME、MC.试判断△EMC的形状,并证明你的结论.B、模型巩固1、已知,如图所示,Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点,若M、N分别在线段AC、AB上移动,且在移动中保持AN=CM.(1)试判断△OMN的形状,并证明你的结论.(2)当M、N分别在线段AC、AB上移动时,四边形AMON的面积如何变化?2、在正方形ABCD中,BE=3,EF=5,DF=4,求∠BAE+∠DCF为多少度.(三)构造等腰直角三角形(1)利用以上(一)和(二)都可以构造等腰直角三角形(略);(2)利用平移、对称和弦图也可以构造等腰直角三角形.(四)将等腰直角三角形补全为正方形,如下图:A、例题应用1、如图,在等腰直角△ABC中,AC=BC,∠ACB=90°,P为三角形ABC内部一点,满足PB=PC,AP=AC,求证:∠BCP=15°.三、三垂直模型(弦图模型)A、例题已知:如图所示,在△ABC中,AB=AC,∠BAC=90°,D为AC中点,AF⊥BD于点E,交BC于F,连接DF .求证:∠ADB=∠CDF .变式1、已知:如图所示,在△ABC中,AB=AC,AM=CN,AF⊥BM于E,交BC于F,连接NF .求证:(1)∠AMB=∠CNF;(2)BM=AF+FN .变式2、在变式1的基础上,其他条件不变,只是将BM和FN分别延长交于点P,求证:(1)PM=PN;(2)PB=PF+AF .四、手拉手模型1、△ABE和△ACF均为等边三角形结论:(1)△ABF≌△AEC .(2)∠BOE=∠BAE=60°.(3)OA平分∠EOF .(四点共圆证)拓展:△ABC和△CDE均为等边三角形结论:(1)AD=BE;(2)∠ACB=∠AOB;(3)△PCQ为等边三角形;(4)PQ∥AE;(5)AP=BQ;(6)CO平分∠AOE;(四点共圆证)(7)OA=OB+OC;(8)OE=OC+OD .((7),(8)需构造等边三角形证明)例、如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费尔马点.若点M为△ABC的费尔马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:如图②,分别以△ABC 的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M 即为△ABC的费尔马点.试说明这种作法的依据.2、△ABD和△ACE均为等腰直角三角形结论:(1)BE=CD;(2)BE⊥CD .3、四边形ABEF 和四边形ACHD 均为正方形结论:(1)BD =CF ;(2)BD ⊥CF .变式1、四边形ABEF 和四边形ACHD 均为正方形,AS ⊥BC 交FD 于T ,求证:(1)T 为FD 中点;(2)ABC ADF S S V V .变式2、四边形ABEF和四边形ACHD均为正方形,T为FD中点,TA交BC于S,求证:AS⊥BC .4、如图,以△ABC的边AB、AC为边构造正多边形时,总有:360 12180n︒∠=∠=︒-五、半角模型 条件:1,+=1802αββθβ=︒且,两边相等 . 思路:1、旋转辅助线:①延长CD 到E ,使ED=BM ,连AE 或延长CB 到F ,使FB=DN ,连AF②将△ADN 绕点A 顺时针旋转90°得△ABF ,注意:旋转需证F 、B 、M 三点共线结论:(1)MN =BM +DN ;(2)=2CMN C AB V ;(3)AM 、AN 分别平分∠BMN 、∠MND .2、翻折(对称)辅助线:①作AP⊥MN交MN于点P②将△ADN、△ABM分别沿AN、AM翻折,但一定要证明M、P、N三点共线 .A、例题例1、在正方形ABCD中,若M、N分别在边BC、CD上移动,且满足MN=BM+DN,求证:(1)∠MAN=45°;(2)=2CMN C AB V ;(3)AM 、AN 分别平分∠BMN 和∠DNM .变式:在正方形ABCD 中,已知∠MAN =45°,若M 、N 分别在边CB 、DC 的延长线上移动,AH ⊥MN ,垂足为H ,(1)试探究线段MN 、BM 、DN 之间的数量关系;(2)求证:AB =AH例2、在四边形ABCD中,∠B+∠D=180°,AB=AD,若E、F分别为边BC、CD上的点,且满足EF=BE+DF,求证:12EAF BAD ∠=∠.变式:在四边形ABCD中,∠B=90°,∠D=90°,AB=AD,若E、F分别为边BC、CD上的点,且12EAF BAD∠=∠,求证:EF=BE+DF .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形相關模型總結
一、角平分線模型
(一)角平分線の性質模型
輔助線:過點G作GE⊥射線AC
A、例題
1、如圖,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那麼點D到直線AB の距離是cm.
2、如圖,已知,∠1=∠2,∠3=∠4,求證:AP平分∠BAC.
B、模型鞏固
1、如圖,在四邊形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.
(二)角平分線+垂線,等腰三角形必呈現
A、例題
輔助線:延長ED交射線OB於F 輔助線:過點E作EF∥射線OB 例1、如圖,在△ABC中,∠ABC=3∠C,AD是∠BACの平分線,BE⊥AD於F .
求證:
1
()
2
BE AC AB
=-.
例2、如圖,在△ABC中,∠BACの角平分線AD交BC於點D,且AB=AD,作CM⊥AD交
ADの延長線於M. 求證:
1
()
2
AM AB AC
=+.
(三)角分線,分兩邊,對稱全等要記全
兩個圖形飛輔助線都是在射線ON上取點B,使OB=OA,從而使△OAC≌△OBC .
A、例題
1、如圖,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC於P,BQ平分∠ABC 交AC於Q,求證:AB+BP=BQ+AQ .
2、如圖,在△ABC中,AD是∠BACの外角平分線,P是AD上異於點Aの任意一點,試比較PB+PC與AB+ACの大小,並說明理由.
B、模型鞏固
1、在△ABC中,AB>AC,AD是∠BACの平分線,P是線段AD上任意一點(不與A重合). 求證:AB-AC>PB-PC .
2、如圖,△ABC中,AB=AC,∠A=100°,∠Bの平分線交AC於D,
求證:AD+BD=BC .
3、如圖,△ABC中,BC=AC,∠C=90°,∠Aの平分線交BC於D,
求證:AC+CD=AB .
二、等腰直角三角形模型
(一)旋轉中心為直角頂點,在斜邊上任取一點の旋轉全等:
操作過程:
(1)將△ABD逆時針旋轉90°,得△ACM ≌△ABD,從而推出△ADM為等腰直角三角形. (2)輔助線作法:過點C作MC⊥BC,使CM=BD,連結AM.
(二)旋轉中心為斜邊中點,動點在兩直角邊上滾動の旋轉全等:
操作過程:連結AD.
(1)使BF=AE(或AF=CE),導出△BDF ≌△ADE.
(2)使∠EDF+∠BAC=180°,導出△BDF ≌△ADE.
A、例題
1、如圖,在等腰直角△ABC中,∠BAC=90°,點M、N在斜邊BC上滑動,且∠MAN=45°,試探究BM、MN、CN之間の數量關係.
2、兩個全等の含有30°,60°角の直角三角板ADE和ABC,按如圖所示放置,E、A、C三點在一條直線上,連接BD,取BDの中點M,連接ME、MC.
試判斷△EMCの形狀,並證明你の結論.
B、模型鞏固
1、已知,如圖所示,Rt△ABC中,AB=AC,∠BAC=90°,O為BC中點,若M、N分別線上段AC、AB上移動,且在移動中保持AN=CM.
(1)試判斷△OMNの形狀,並證明你の結論.
(2)當M、N分別線上段AC、AB上移動時,四邊形AMONの面積如何變化?
2、在正方形ABCD中,BE=3,EF=5,DF=4,求∠BAE+∠DCF為多少度.
(三)構造等腰直角三角形
(1)利用以上(一)和(二)都可以構造等腰直角三角形(略);
(2)利用平移、對稱和絃圖也可以構造等腰直角三角形.
(四)將等腰直角三角形補全為正方形,如下圖:
A、例題應用
1、如圖,在等腰直角△ABC中,AC=BC,∠ACB=90°,P為三角形ABC內部一點,滿足PB=PC,AP=AC,求證:∠BCP=15°.
三、三垂直模型(弦圖模型)
A、例題
已知:如圖所示,在△ABC中,AB=AC,∠BAC=90°,D為AC中點,AF⊥BD於點E,交BC於F,連接DF .
求證:∠ADB=∠CDF .
變式1、已知:如圖所示,在△ABC中,AB=AC,AM=CN,AF⊥BM於E,交BC於F,連接NF .
求證:(1)∠AMB=∠CNF;(2)BM=AF+FN .
變式2、在變式1の基礎上,其他條件不變,只是將
BM和FN分別延長交於點P,
求證:(1)PM=PN;(2)PB=PF+AF .
四、手拉手模型
1、△ABE和△ACF均為等邊三角形
結論:(1)△ABF≌△AEC .
(2)∠BOE=∠BAE=60°.
(3)OA平分∠EOF .(四點共圓證)拓展:△ABC和△CDE均為等邊三角形
結論:(1)AD=BE;
(2)∠ACB=∠AOB;
(3)△PCQ為等邊三角形;
(4)PQ∥AE;
(5)AP=BQ;
(6)CO平分∠AOE;(四點共圓證)
(7)OA=OB+OC;
(8)OE=OC+OD .
((7),(8)需構造等邊三角形證明)
例、如圖①,點M為銳角三角形ABC內任意一點,連接AM、BM、CM.以AB為一邊向外作等邊三角形△ABE,將BM繞點B逆時針旋轉60°得到BN,連接EN.
(1)求證:△AMB≌△ENB;
(2)若AM+BM+CMの值最小,則稱點M為△ABCの費爾馬點.若點M為△ABCの費爾馬點,試求此時∠AMB、∠BMC、∠CMAの度數;
(3)小翔受以上啟發,得到一個作銳角三角形費爾馬點の簡便方法:如圖②,分別以△ABC のAB、AC為一邊向外作等邊△ABE和等邊△ACF,連接CE、BF,設交點為M,則點M 即為△ABCの費爾馬點.試說明這種作法の依據.
2、△ABD和△ACE均為等腰直角三角形
結論:(1)BE=CD;(2)BE⊥CD .
3、四邊形ABEF和四邊形ACHD均為正方形
結論:(1)BD=CF;(2)BD⊥CF .
變式1、四邊形ABEF 和四邊形ACHD 均為正方形,AS
⊥BC 交FD 於T ,
求證:(1)T 為FD 中點;(2)ABC ADF S S .
變式2、四邊形ABEF和四邊形ACHD均為正方形,T為FD中點,TA交BC於S,求證:AS⊥BC .
4、如圖,以△ABCの邊AB、AC為邊構造正多邊形時,總有:
360 12180
n
︒∠=∠=︒-
五、半角模型
條件:
1
,+=180
2
αββθβ
=︒
且,兩邊相等.
思路:1、旋轉
輔助線:①延長CD到E,使ED=BM,連AE或延長CB
到F,使FB=DN,連AF
②將△ADN繞點A順時針旋轉90°得△ABF,注意:旋轉需證F、B、M三點共線
結論:(1)MN=BM+DN;
C AB;
(2)=2
CMN
(3)AM、AN分別平分∠BMN、∠MND .
2、翻折(對稱)
輔助線:①作AP⊥MN交MN於點P
②將△ADN、△ABM分別沿AN、AM翻折,但一定要證明M、P、N三點共線 .
A、例題
例1、在正方形ABCD中,若M、N分別在邊BC、CD上移動,且滿足MN=BM+DN,求證:(1)∠MAN=45°;
C AB;
(2)=2
CMN
(3)AM、AN分別平分∠BMN和∠DNM .
變式:在正方形ABCD中,已知∠MAN=45°,若M、N分別在邊CB、DCの延長線上移動,AH⊥MN,垂足為H,
(1)試探究線段MN、BM、DN之間の數量關係;
(2)求證:AB=AH
例2、在四邊形ABCD中,∠B+∠D=180°,AB=AD,若E、F分別為邊BC、CD上の點,
且滿足EF=BE+DF,求證:
1
2
EAF BAD ∠=∠.
變式:在四邊形ABCD中,∠B=90°,∠D=90°,AB=AD,若E、F分別為邊BC、CD上
の點,且
1
2
EAF BAD
∠=∠,求證:EF=BE+DF .。

相关文档
最新文档