2020学年第一学期高二第一次月考数学试题

合集下载

人教版高二上学期数学第一次月考文试题(解析版)

人教版高二上学期数学第一次月考文试题(解析版)
【详解】解:(1)由题意得, ,
因为 ,所以解得 ,
所以 的方程为 ,
(2)由题意可得直线方程为 ,设直线与椭圆交于 ,
将 代入椭圆方程得, ,即 ,
所以 ,
所以
【点睛】此题考查求椭圆的标准方程,考查直线与椭圆的位置关系,考查弦长公式的应用,考查计算能力,属于基础题
22.已知椭圆的焦点是F1(0,-1),F2(0,1),离心率e= .
(1)求椭圆的标准方程;
(2)设P在这个椭圆上且|PF1|-|PF2|=1,求∠F1PF2的余弦值.
【答案】(1) ,(2)
【解析】
【分析】
(1)根据题意可得: ,解得 ,从而可得椭圆的方程;
(2)由椭圆 定义得: ,结合题意可得: ,再根据余弦定理可求得结果
【详解】解:(1)由已知设椭圆方程为 ,
【详解】由不等式 的解集为 ,得 无解,即对 , 恒成立,①当 时,显然满足题意,②当 时,有 ,解得: ,综上,
故答案为:
【点睛】本题结合二次函数得性质,考查命题的真假,属于容易题.
三、解答题(本大题共6小题,满分70分)
17.当c<0时,若ac>bc,则a<b.请写出该命题的逆命题、否命题、逆否命题,并分别判断真假.
考点:本小题主要考查椭圆的标准方程,考查学生的推理能力.
点评:解决本小题时,不要忘记 ,否则就表示圆了.
15.若椭圆 的离心率为 ,则 的短轴长为___________.
【答案】
【解析】
【分析】
判断出椭圆的焦点在 轴上,得出 的值,根据离心率的概念可得 ,解出 的值可得短轴长.
【详解】由椭圆 得焦点在 轴上, , , ,
10.已知△ABC的顶点B、C在椭圆 +y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是( )

2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题(含解析)

2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题(含解析)

2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题一、单选题(本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)1. 如图所示,在三棱台中,截去三棱锥,则剩余部分是()A B C ABC '''-A ABC '-A. 三棱锥B. 四棱锥C. 三棱柱D. 组合体2. 棱长为的正四面体的表面积为( )1B. C. D. 3. 如图,在正四棱台中,分别为棱的中1111ABCD A B C D -,,,E F G H 1111,,,A D B C BC AD 点,则()A. 直线与直线是异面直线B. 直线与直线是异面直线HE GF HE 1BB C. 直线与直线共面D. 直线与直线共面HE 1CC HE BF 4. 底面积是,侧面积是的圆锥的体积是()π3πA. C. 2π35. 已知正方体中,E 为中点,则异面直线与 所成角的余弦值1111ABCD A B C D -11B C 1BA CE 为( )6. 如图,在正四棱台中,,则该正四棱台1111ABCD A B C D-1114,2,AB A B AA ===的体积为()A. B. C. D. 11291409112314037. 我国古代数学专著《九章算术》中有这样一个问题:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”其意思为:“圆木长2丈,圆周长为3尺,葛藤从圆木的底部开始向上生长,绕圆木7周,顶部刚好与圆木平齐,问葛藤长为多少?"若1丈尺,则10=葛藤最少长( )A. 21尺B. 25尺C. 29尺D. 33尺8. 如图所示,在正方体中,E ,F 分别为,AB 上的中点,且1111ABCD A B C D -1AA P 点是正方形内的动点,若平面,则P 点的轨迹长度为EF =11ABB A 1C P ∥1CD EF ()A. B. D. 3ππ二、多选题(本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的部分分,有选错的得0分.)9. 已知,是两个不同的平面,l ,m 是两条不同的直线,有如下四个命题,其中正确的αβ是()A. 若,,则B. 若,,,则αβ⊥l β⊥l α∥m β⊥l m ∥l α⊂αβ⊥C. 若,,,则 D. 若,,则αβ∥m α⊥l β⊂l m⊥m αβ= l α∥l m∥10. 在实践课上,小华将透明塑料制成了一个长方体容器,如图(1),1111ABCD A B C D -,,在容器内灌进一些水,现固定容器底面一边BC2AB BC ==15A A =()14D H DH =于地面上,再将容器倾斜,如图(2),则()A. 有水的部分始终呈三棱柱或四棱柱B. 棱与水面所在平面平行11A D C. 水面EFGH 所在四边形的面积为定值D. 当容器倾斜成如图(3)所示时,EF 的最小值为11. 半正多面体(semiregular solid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),则()A. 平面EABBF ⊥B. 该二十四等边体的体积为203C. 该二十四等边体外接球的表面积为6πD. PN 与平面EBFN 三、填空题(本大题共3小题,每小题5分,共计15分)12. 如下图,三角形A'B'C'是三角形 ABC 的直观图,则三角形 ABC 的面积是_______.13. 圆柱的底面半径为1,侧面积为,则该圆柱外接球的表面积为______.10π14. 球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为,球冠的高是,球冠的表面积公式是.R h 2πS Rh =如图2,已知是以为直径的圆上的两点,,扇形,C D AB ππ,63AOC BOD ∠∠==的面积为,则扇形绕直线旋转一周形成的几何体的表面积为__________.COD πCOD AB四、解答题(本题共5小题,共7分,解答应写出文字说明、证明过程或演算步骤.)15.如图,在正三棱柱中,,,,分别是,,,111ABC A B C -E F G H AB AC 11A B 的中点.11A C(1)求证:,,,四点共面;B C H G (2)求证:平面平面;//BCHG 1A EF 16.如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN ⊥PM ,N 为垂足.(1)若,Q 为PB 的中点,求三棱锥的体积;2PA AM BM ===Q ABM -(2)求证:AN ⊥平面PBM ;(3)若AQ ⊥PB ,垂足为Q ,求证:NQ ⊥PB.17.我国古代数学名著《九章算术》中,称四面都为直角三角形的三棱锥为“鳖臑”.如图,在三棱锥中,平面.A BCD -AB ⊥,BCD BC CD⊥(1)证明:三棱锥为鳖臑;A BCD -(2)若为上一点,点分别为的中点.平面与平面的交线为E AD ,P Q ,BC BE DPQ ACD .l ①证明:直线平面;//PQ ACD ②判断与的位置关系,并证明你的结论.PQ l 18. 一块四棱锥木块如图所示,平面,四边形ABCD 为平行四边形,且SD ⊥ABCD ,.60BAD ∠=︒224AB BC SD ===(1)要经过点B 、D 将木料锯开,使得截面平行于侧棱,在木料表面该怎样画线?并说SA 明理由;(2)计算(1)中所得截面的面积;(3)求直线SC 与(1)中截面所在平面所成角的正弦值.19. 空间的弯曲性是几何研究的重要内容,用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差,其中多面体的面的内角叫做多面体的面角,2π角度用弧度制.例如:正四面体每个顶点均有3个面角,每个面角均为,故其各个顶点的曲π3率均为.如图,在直三棱柱中,点A 的曲率为,M 为的π2π3π3-⨯=111ABC A B C -2π31CC 中点,且.AB AC =(1)判断的形状,并说明理由;ABC V (2)若,求点到平面的距离;124AA AB ==B 1AB M (3)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为D ,棱数为L ,面数为M ,则有.利用此定理2D L M -+=试证明:简单多面体的总曲率(多面体有顶点的曲率之和)是常数.2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题一、单选题(本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)1. 如图所示,在三棱台中,截去三棱锥,则剩余部分是()A B C ABC '''-A ABC '-A. 三棱锥B. 四棱锥C. 三棱柱D. 组合体【正确答案】B【分析】根据图形和棱锥的定义及结构特征,即可得出结论.【详解】三棱台中,沿平面截去三棱锥,A B C ABC '''-A BC 'A ABC '-剩余的部分是以为顶点,四边形为底面的四棱锥.A 'BCCB ''A BCC B '''-故选:B2. 棱长为的正四面体的表面积为( )1B. C. D. 【正确答案】A【分析】利用三角形的面积公式可得出正四面体的表面积.【详解】棱长为的正四面体的表面积为.1221141sin 604122S =⨯⨯⨯=⨯⨯= 故选:A.3. 如图,在正四棱台中,分别为棱的中1111ABCD A B C D -,,,E F G H 1111,,,A D B C BC AD 点,则()A. 直线与直线是异面直线B. 直线与直线是异面直线HE GF HE 1BB C. 直线与直线共面D. 直线与直线共面HE 1CC HE BF 【正确答案】C【分析】由正四棱台的结构特征,侧棱的延长线交于同一点,的延长线必过此点,,HE GF 可判断选项中的线线位置关系.【详解】延长,1111,,,AA BB CC DD 由正四棱台的性质可得侧棱的延长线交于同一点,设该交点为.1111,,,AA BB CC DD P分别为棱的中点,,,,E F G H 1111,,,A D B C BC AD 延长,则的延长线必过点,,HE GF ,HE GF P 则直线与直线相交于点;与直线相交于点;与直线相交于点HE GF P 1BB P 1CC P;与直线是异面直线.BF 故选:C.4. 底面积是,侧面积是的圆锥的体积是()π3πA. C. 2π3【正确答案】D【分析】先利用圆锥的侧面积公式求出母线长,进而求出高,再利用圆锥的体积公式求解.【详解】设圆锥的母线长为,高为,半径为, l h r 则且,故2ππS r ==底=π3πS r l ⨯⨯=侧1,3r l ==,h ∴===圆锥的体积为.∴21π13⨯⨯⨯=故选:D .5. 已知正方体中,E 为中点,则异面直线与 所成角的余弦值1111ABCD A B C D -11B C 1BA CE 为( )【正确答案】D【分析】连接,,根据异面直线所成角的定义,转化为求(或其补角),1CD 1D E1D CE ∠然后在中用余弦定理即可解得.1D CE 【详解】连接,,如图:1CD 1D E因为为正方体可得,所以(或其补角)是异面直线1111ABCD A B C D -11//CDBA 1D CE ∠与 所成角,1BA CE 设正方体的棱长为,,a1CD===,1,CE D E ======在中,,1D CE 2221111cos 2CD CE DE D CE CD CE +-∠=⋅⋅==所以异面直线与 .1BA CE故选:D.6. 如图,在正四棱台中,,则该正四棱台1111ABCD A B C D-1114,2,AB A B AA ===的体积为()A. B. C. D. 1129140911231403【正确答案】A【分析】作出截面,过点作,结合等腰梯形的性质得到高,再计算体积即可.1A 1A E AC ⊥【详解】过作出截面如图所示,过点作,垂足为,11,AC A C 1A 1A E AC ⊥E 易知为正四棱台的高,1A E 1111ABCD A B C D - 因为,1124,ABA B ==所以由勾股定理得,11AC A C==又,11CC AA ==则在等腰梯形中,,11ACCA AE =所以,143A E ===所以所求体积为.11111114112((1643339ABCD A B C D V S S A E =⨯++⋅=⨯++⨯=故选.A7. 我国古代数学专著《九章算术》中有这样一个问题:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”其意思为:“圆木长2丈,圆周长为3尺,葛藤从圆木的底部开始向上生长,绕圆木7周,顶部刚好与圆木平齐,问葛藤长为多少?"若1丈尺,则10=葛藤最少长( )A. 21尺B. 25尺C. 29尺D. 33尺【正确答案】C【分析】根据题意知,圆柱的侧面展开图是矩形,且矩形的长为(尺),高为尺,则葛2120藤的最少长度为矩形的对角线长,利用勾股定理可求得结果.【详解】根据题意知,圆柱的侧面展开图是矩形,如下图所示,矩形的高(即圆木长)为尺,矩形的底边长为(尺),207321⨯=(尺).29=故选:C.8. 如图所示,在正方体中,E ,F 分别为,AB 上的中点,且1111ABCD A B C D -1AAP 点是正方形内的动点,若平面,则P 点的轨迹长度为EF =11ABB A 1C P ∥1CD EF ()A. B. D. 3ππ【正确答案】C【分析】取的中点,的中点为,连接,可得四边形11A B H 1B B G 11,,,,GH C H C G EG HF 是平行四边形,可得∥,同理可得∥.可得面面平行,进而得出P 点11EGC D 1C G 1D E 1C H CF 的轨迹.【详解】如图所示,取的中点,的中点为,连接,11A B H 1B B G 11,,,,GH C H C G EG HF则∥,,且∥,,11A B EG 11A B EG =11A B 11C D 1111A B C D =可得∥,且,可知四边形是平行四边形,则∥,EG 11C D 11EG C D =11EGC D 1C G 1D E 且平面,平面,可得∥平面,1C G ⊄1CD EF 1D E ⊄1CD EF 1C G 1CD EF 同理可得:∥平面,1C H 1CD EF 且,平面,可知平面∥平面,111C H C G C = 11,C H C G ⊂1C GH 1C GH 1CD EF 又因为P 点是正方形内的动点,平面,11ABB A 1C P ∥1CD EF 所以点在线段上,M GH由题意可知:,可得,1111,22GH A B EF A B ==GH EF ==所以P 故选:C.二、多选题(本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的部分分,有选错的得0分.)9. 已知,是两个不同的平面,l ,m 是两条不同的直线,有如下四个命题,其中正确的αβ是()A. 若,,则B. 若,,,则αβ⊥l β⊥l α∥m β⊥l m ∥l α⊂αβ⊥C. 若,,,则 D. 若,,则αβ∥m α⊥l β⊂l m ⊥m αβ= l α∥l m∥【正确答案】BC【分析】根据空间中垂直关系的转化可判断ABC 的正误,根据线面平行定义可判断D 的正误.【详解】对于A ,若,,则或,故A 错误;αβ⊥l β⊥l α∥l α⊂对于B ,若,,则,而,故,故B 正确;m β⊥l m ∥l β⊥l α⊂αβ⊥对于C ,若,,则,而,故,故C 正确;αβ∥m α⊥m β⊥l β⊂l m ⊥对于D ,若,,则或异面,故D 错误,m αβ= l α∥l m ∥,l m 故选:BC10. 在实践课上,小华将透明塑料制成了一个长方体容器,如图(1),1111ABCD A B C D -,,在容器内灌进一些水,现固定容器底面一边BC2AB BC ==15A A =()14D H DH =于地面上,再将容器倾斜,如图(2),则()A. 有水的部分始终呈三棱柱或四棱柱B. 棱与水面所在平面平行11A D C. 水面EFGH 所在四边形的面积为定值D. 当容器倾斜成如图(3)所示时,EF的最小值为【正确答案】ABD【分析】由棱柱的概述判断A ;由线面平行判定定理判断B ;计算可判断C ;利用基EFGH S 本不等式可判断D.【详解】由棱柱的定义知,选项A 正确;对于选项B ,由于,,所以,且不在水面所在平面11A D BC ∥BC FG ∥11A D FG ∥11A D 内,所以棱与水面所在平面平行,选项B 正确;11A D 对于选项C ,在图(1)中,,在图(2)中,4EFGH S FG EF BC AB =⋅=⋅=,选项C 错误;4EFGH S FG EF AB BC =⋅>⋅=对于选项D ,,所以.12212V BE BF BC =⨯⨯=⋅⋅⋅△4BE BF ⋅=,当且仅当时,等号成立,22228EF BE BF BE BF =+≥⋅=2BE BF ==所以EF 的最小值为,选项D正确.故选:ABD .11. 半正多面体(semiregular solid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),则()A. 平面EABBF ⊥B. 该二十四等边体的体积为203C. 该二十四等边体外接球的表面积为6πD. PN 与平面EBFN【正确答案】BD【分析】A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断.【详解】对于A ,假设A 对,即平面,于是,BF ⊥EAB BF AB ⊥,但六边形为正六边形,,矛盾,90ABF ∠=︒ABFPQH 120ABF ∠=︒所以A 错误;对于B ,补齐八个角构成棱长为2的正方体,则该二十四等边体的体积为,3112028111323-⋅⋅⋅⋅⋅=所以B 对;对于C ,取正方形对角线交点,ACPM O即为该二十四等边体外接球的球心,其半径为,其表面积为,所以C 错误;R =24π8πR =对于D ,因为在平面内射影为,PN EBFN NS 所以与平面所成角即为,PN EBFN PNS ∠其正弦值为,所以D 对.PS PN==故选:BD .三、填空题(本大题共3小题,每小题5分,共计15分)12. 如下图,三角形A'B'C'是三角形 ABC 的直观图,则三角形 ABC 的面积是_______.【正确答案】2【分析】画出原图形可得答案.【详解】由直观图画出原图,如图,可得是等腰三角形,且,ABC V 2,2BC OA ==所以三角形的面积.ABC 12222S =⨯⨯=故答案为:2.13. 圆柱的底面半径为1,侧面积为,则该圆柱外接球的表面积为______.10π【正确答案】29π【分析】先利用侧面积求出圆柱的高,再求出球的半径可得表面积.【详解】设圆柱的高为,其外接球的半径为,h R 由圆柱的底面半径为1,侧面积为,得,解得,10π2π10πh =5h =由圆柱和球的对称性可知,球心位于圆柱上下底面中心连线的中点处,因此.R ==24π29πS R ==故29π14. 球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为,球冠的高是,球冠的表面积公式是.R h 2πS Rh =如图2,已知是以为直径的圆上的两点,,扇形,C D AB ππ,63AOC BOD ∠∠==的面积为,则扇形绕直线旋转一周形成的几何体的表面积为__________.COD πCOD AB【正确答案】)61π+【分析】首先求出,再根据扇形面积公式求出圆的半径,过点作交DOC ∠C CE AB ⊥于点,过点作交于点,即可求出,将扇AB E D DF AB ⊥AB F ,,,,,CE OE AE OF BF DF 形绕直线旋转一周形成的几何体为一个半径的球中上下截去两个球缺所剩余部DOC AB R 分再挖去两个圆锥,再根据所给公式分别求出表面积.【详解】因为,所以,设圆的半径为,ππ,63AOC BOD ∠∠==π2DOC ∠=R 又,解得(负值舍去),2COD 1ππ22S R =⨯⨯=扇形2R =过点作交于点,过点作交于点,C CE AB ⊥AB ED DF AB ⊥AB F 则,ππsin1,cos 66CE OC OE OC ====所以,同理可得,2AE R OE =-=-1DF OF ==将扇形绕直线旋转一周形成的几何体为一个半径的球中,上下截去两个球COD AB 2R =缺所剩余部分再挖去两个圆锥,其中上面球缺的高,上面圆锥的底面半径,高为,12h =-11r=1h ='下面球缺的高,下面圆锥的底面半径,21h =2r =21h ='则上面球冠的表面积,(112π2π228πs Rh ==⨯⨯-=-下面球冠的表面积,球的表面积,222π2π214πs Rh ==⨯⨯=24π16πS R ==球上面圆锥的侧面积,下面圆锥的侧面积111ππ122πS rl ==⨯⨯=',222ππ2S r l ==='所以几何体的表面积.())''121116π8π4π2π61πS S S S S S =--++=---++=+球故答案为.)61π+关键点点睛:本题关键是弄清楚经过旋转之后得到的几何体是如何组成,对于表面积要合理转化.四、解答题(本题共5小题,共7分,解答应写出文字说明、证明过程或演算步骤.)15. 如图,在正三棱柱中,,,,分别是,,,111ABC A B C -E F G H AB AC 11A B 的中点.11A C(1)求证:,,,四点共面;B C H G (2)求证:平面平面;//BCHG 1A EF 【正确答案】(1)证明见解析(2)证明见解析【分析】(1)证明出,得到四点共面;//GH BC (2)先得到,,证明出线面平行,面面平行.1//A E BG //GH EF 【小问1详解】∵,分别是,的中点,G H 11A B 11A C ∴是的中位线,∴,GH 111A B C △11//GH B C又在三棱柱中,,∴,111ABC A B C -11//B C BC //GH BC ∴,,,四点共面.B C H G 【小问2详解】∵在三棱柱中,,,111ABC A B C -11//A B AB 11A B AB =∴,,1//A G EB 1111122A G A B AB EB ===∴四边形是平行四边形,∴,1A EBG 1//A E BG ∵平面,平面,∴平面.1A E ⊂1A EF BG ⊂/1A EF //BG 1A EF 又,是,的中点,所以,又.E F AB AC //EF BC //GH BC 所以,//GH EF ∵平面,平面,∴平面.EF ⊂1A EF GH ⊂/1A EF //GH 1A EF 又,平面,BG GH G = ,BG GH ⊂BCHG 所以平面平面.//BCHG 1A EF 16. 如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN ⊥PM ,N 为垂足.(1)若,Q 为PB 的中点,求三棱锥的体积;2PA AM BM ===Q ABM -(2)求证:AN ⊥平面PBM ;(3)若AQ ⊥PB ,垂足为Q ,求证:NQ ⊥PB.【正确答案】(1)23(2)证明见解析 (3)证明见解析【分析】(1)先得到,根据Q 为PB 的中点,故1433P AMB AMB V S PA -=⋅= ;1223Q ABM P AMB V V --==(2)由线线垂直,得到线面垂直,即BM ⊥平面PAM .,故BM ⊥AN ,又AN ⊥PM ,从而得到线面垂直;(3)由(1)知AN ⊥平面PBM ,故AN ⊥PB ,又AQ ⊥PB ,故PB ⊥平面ANQ ,得到答案.【小问1详解】因为AB 为⊙O 的直径,所以⊥,AM BM 又,故,2AM BM ==122AMB S AM BM =⋅= 又PA 垂直于⊙O 所在的平面,,2PA =故,11422333P AMB AMB V S PA -=⋅=⨯⨯= 因为Q 为PB 的中点,所以.11422233Q ABM P AMB V V --==⨯=【小问2详解】∵AB 为⊙O 的直径,∴AM ⊥BM .又PA ⊥平面ABM ,BM 平面ABM ,⊂∴PA ⊥BM .又∵,PA ,AM 平面PAM ,PA AM A = ⊂∴BM ⊥平面PAM .又AN 平面PAM ,∴BM ⊥AN .⊂又AN ⊥PM ,且,BM ,PM 平面PBM ,BM PM M = ⊂∴AN ⊥平面PBM .【小问3详解】由(1)知AN ⊥平面PBM ,PB ⊂平面PBM ,∴AN ⊥PB .又∵AQ ⊥PB ,AN ∩AQ =A ,AN ,AQ ⊂平面ANQ ,∴PB ⊥平面ANQ .又NQ 平面ANQ ,⊂∴PB ⊥NQ .17. 我国古代数学名著《九章算术》中,称四面都为直角三角形的三棱锥为“鳖臑”.如图,在三棱锥中,平面.A BCD -AB ⊥,BCD BC CD ⊥(1)证明:三棱锥为鳖臑;A BCD -(2)若为上一点,点分别为的中点.平面与平面的交线为E AD ,P Q ,BC BE DPQ ACD .l ①证明:直线平面;//PQ ACD ②判断与的位置关系,并证明你的结论.PQ l 【正确答案】(1)证明见解析;(2)①证明见解析;②平行,证明见解析.【分析】(1)利用线面垂直的性质及判定定理即可求解;(2)①利用三角形的中位线定理及线面平行的判定定理即可求解;②利用①的结论及线面平行的性质定理即可求解.【小问1详解】∵,BC CD ⊥∴为直角三角形,BCD △∵平面,且平面,平面,平面,AB ⊥BCD BD ⊂BCD ⊂BC BCD CD ⊂BCD∴,,,AB BC ⊥AB BD ⊥AB CD ⊥∴和为直角三角形,ABC V ABD △∵,平面,平面,BC AB B ⋂=BC ⊂ABC AB ⊂ABC ∴平面,CD ⊥ABC 又∵平面,AC ⊂ABC ∴,CD AD ⊥∴为直角三角形,ACD ∴三棱锥为鳖曘.A BCD -【小问2详解】①连接,∵点分别为的中点,CE ,P Q ,BC BE ∴,//PQ CE 且平面,平面,PQ ⊄ACD CE ⊂ACD 所以直线平面,//PQ ACD ②平行,证明:平面,平面,平面平面=,//PQ ACD PQ ⊂DPQ DPQ ⋂ACD l 所以.//PQ l 18. 一块四棱锥木块如图所示,平面,四边形ABCD 为平行四边形,且SD ⊥ABCD ,.60BAD ∠=︒224AB BC SD ===(1)要经过点B 、D 将木料锯开,使得截面平行于侧棱,在木料表面该怎样画线?并说SA 明理由;(2)计算(1)中所得截面的面积;(3)求直线SC 与(1)中截面所在平面所成角的正弦值.【正确答案】(1)即为要画的线,理由见解析;,ED EB (2(3【分析】(1)要使截面与平行,考虑构造线线平行,取的中点,取的对SA S C E ABCD 称中心,连接,证明即得截面;O OE //SA OE BDE (2)分别计算的三边,再利用三角形面积公式计算即得;BDE (3)利用等体积求出点到平面的距离,再由线面所成角的定义即可求得.C BDE 【小问1详解】如图,取的中点,连接,则即为要画的线.S C E ,,ED EB ,ED EB理由如下:连接与交于点,连接.BD AC O OE 因四边形ABCD 为平行四边形,则点为的中点,故,O AC //SA OE 又因平面,平面,故有平面;SA ⊄BDE OE ⊂BDE SA ∥BDE 【小问2详解】如图中,过点作于点,连接,E EF DC ⊥FBF 因平面,平面,则,SD ⊥ABCD CD ⊂ABCD SD CD ⊥故,平面,,//EF SD ⊥EF ABCD 112EF SD ==12DE SC ===因,则,12,60,22CFDC DCB BC ==∠== 2BF =因平面,则,故,BF ⊂ABCD EF FB ⊥BE ==又由余弦定理,,故得.22224224cos6012BD =+-⨯⨯=BD =又,O 为BD 中点,则,DE DB =OE BD ⊥于是截面的面积为;12BDE S =⨯= 【小问3详解】过点作平面,交平面于点,连接,C CH ⊥BDE BDE H EH则即直线与截面所成的角.CEH ∠S C BDE 由可得,,E BCD C BED V V --=1133BCD BED S EF S CH ⨯=⨯即得:,则BCD BED S EF CH S ⨯===sin CH CEH EC ∠===即直线SC 与平面BDE 思路点睛:本题主要考查运用线面平行的判定方法解决实际问题和线面所成角的求法,属于较难题.解题的思路在于充分利用平行四边形对角线性质、等腰三角形三线合一,三角形中位线性质等方法寻找线线平行;对于线面所成角问题,除了定义法作图求解外,对于不易找到点在平面的射影时,可考虑运用等体积转化求解.19. 空间的弯曲性是几何研究的重要内容,用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差,其中多面体的面的内角叫做多面体的面角,2π角度用弧度制.例如:正四面体每个顶点均有3个面角,每个面角均为,故其各个顶点的曲π3率均为.如图,在直三棱柱中,点A 的曲率为,M 为的π2π3π3-⨯=111ABC A B C -2π31CC 中点,且.AB AC =(1)判断的形状,并说明理由;ABC V (2)若,求点到平面的距离;124AA AB ==B 1AB M (3)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为D ,棱数为L ,面数为M ,则有.利用此定理2D L M -+=试证明:简单多面体的总曲率(多面体有顶点的曲率之和)是常数.【正确答案】(1)为等边三角形,理由见解析ABC V (2(3)证明见解析【分析】(1)根据线面垂直的性质可得,,即可根据曲率的定义求解,1AA AC ⊥1AA AB ⊥(2)利用等体积法,结合锥体体积公式即可求解,(3)根据则多面体的棱数,顶点数,以及内角之和,即可根据曲率的定义求解.【小问1详解】因为在直三棱柱中,111ABC A B C -平面,平面,1AA ⊥ABC ,AC AB ⊂ABC 所以,,1AA AC ⊥1AA AB ⊥所以点A 的曲率为,得,π2ππ2232BAC -⨯-∠=π3BAC ∠=因为,所以为等边三角形.AB AC =ABC V【小问2详解】取中点D ,连接、,BC AD AM 因为D 为的中点,所以,BC AD BC ⊥因为平面,平面,所以,1BB ⊥ABC AD ⊂ABC 1BB AD ⊥因为,平面,所以平面;1BB BC B = 1,AA AB ⊂11ABB A AD ⊥11BB C C 所以是三棱锥的高.AD 1A BB M -设点到平面的距离为,则有,即.B 1AB M h 11B AB M A BB M V V --=11AB M BB M S h S AD =⋅在中有,同理计算得,11Rt AA B△1AB ==1AM B M BM ===.AD =所以,,112AB M S =⨯=114242BB M S =⨯⨯=所以.h ==【小问3详解】证明:设多面体有M 个面,给组成多面体的多边形编号,分别为号,1,2,,M ⋅⋅⋅设第号多边形有条边,i ()1i M ≤≤i L 则多面体共有条棱,122ML L L L ++⋅⋅⋅+=由题意,多面体共有个顶点,12222ML L L D M L M ++⋅⋅⋅+=-+=-+号多边形的内角之和为,i π2πi L -所以所有多边形的内角之和为,()12π2πM L L L M ++⋅⋅⋅+-所以多面体的总曲率为()122ππ2πM D L L L M ⎡⎤-++⋅⋅⋅+-⎣⎦.()12122π2π2π4π2M M L L L M L L L M ++⋅⋅⋅+⎛⎫⎡⎤=-+-++⋅⋅⋅+-= ⎪⎣⎦⎝⎭所以简单多面体的总曲率为.4π。

广东省江门市第二中学2020-2021学年高二上学期第一次月考数学试题含答案

广东省江门市第二中学2020-2021学年高二上学期第一次月考数学试题含答案

2020-2021学年第一学期第一次考试高二数学试卷注意事项:1.答卷前,考生务必将自己的姓名、班级及学号填涂在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,用黑色字迹钢笔或签字笔将答案写在答题卡上。

写在本试卷上无效。

3.本试卷共6页,22小题,满分150分。

测试用时120分钟。

不能使用计算器。

一、单选题(本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线√3x +y −2=0的倾斜角为( ) A .30∘B .150∘C .120∘D .60∘2.下列说法正确的是( ) A .a//b ,b ⊂α⇒a//α B .a ⊥b ,b ⊂α⇒a ⊥α C .a ⊥α,b ⊥α⇒a//bD .α⊥β,a ⊂β⇒a ⊥α3.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为( ) A .13 B .17 C .19 D .21 4.过点(1,-3)且平行于直线x +2y -3=0的直线方程为( ) A .x −2y −7=0B .2x +y +1=0C .2x −y −5=0D .x +2y +5=05.设直线0x y a -+=与圆x 2+y 2+2x −4y +2=0相交于A ,B 两点,若|AB|=2,则a =( )A.-1或1 B.1或5 C.-1或3 D.3或56.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:根据表提供的数据,求得y关于x的线性回归方程为ŷ=6.5x+15.5,由于表中有一个数据模糊看不清,请你推断出该数据的值为()A.45 B.50 C.55 D.607.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从中任取一卦,恰有两个阳爻的概率为()A.18B.14C.38D.128.一直三棱柱的每条棱长都是2,且每个顶点都在球O的表面上,则球O的表面积为()A.283πB.√223πC.73πD.√7π二、多选题(本题共4小题,每小题5分,共20分。

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。

福建省龙岩市武平县第一中学2020-2021学年高二上学期月考数学试题(解析版)

福建省龙岩市武平县第一中学2020-2021学年高二上学期月考数学试题(解析版)

公式可得所求事件的概率为 P B
A
P AB P A
.
【详解】记事件 A :甲获得冠军,事件 B :比赛进行三局,
事件 AB : 甲获得冠军,且比赛进行了三局,则第三局甲胜,前三局甲胜了两局,
由独立事件的概率乘法公式得
P
AB
C21
3 4
1 4
3 4
9 32

对于事件 A ,甲获得冠军,包含两种情况:前两局甲胜和事件 AB ,
5
3
4
不能破译出密码”发生的概率为 4 2 3 2 ,所以此密码被破译的概率为1 2 3 ,故 B 不正确;
534 5
55
对于 C,设“从甲袋中取到白球”为事件 A,则 P( A)
8
2
,设“从乙袋中取到白球”为事件 B,则
12 3
P(B) 6 1 ,故取到同色球的概率为 2 1 1 1 1 ,故 C 正确;
故选 A.
【点睛】本题考查了排列问题,不相邻一般采用插空法,同时要注意特殊优先原则.
3.
若二项式
x
2 x
n
的展开式中各项的系数和为
243,则该展开式中含
x
项的系数为(

A. 1
B. 5
C. 10
D. 20
【答案】C
【解析】
【分析】

x
2 xn Fra bibliotek令x
1
,结合展开式中各项的系数和为
243 列方程,由此求得
C62C
C2 2
42
A33

将三组书本分给甲、乙、丙三人的方法数: A33 ,
所以总的分法数为:
C62C24C22 A33

高二数学第一次月考试题

高二数学第一次月考试题

高二数学第一次月考试题高二数学第一次月考试题第一部分:选择题(每小题5分,共计50分)1.设函数f(x) = 2x + 3,g(x) = x^2 - 4x + 1,则f(g(2))的值为() A.-3 B. 3 C. 7 D. 112.已知函数f(x) = x^2 - 2x - 3,则方程f(x) = 0的根为() A. 1和-3B. 3和-1C. 1和3D. -1和33.若两个正整数x和y满足x^2 - y^2 = 48,则x - y的值为() A. 4 B.6 C. 8 D. 124.已知函数f(x) = 2x + 5,g(x) = 3x - 1,则f(g(x))的值为() A. 6x+ 14 B. 6x - 4 C. 6x + 4 D. 6x - 145.若函数f(x) = x^2 + kx + 8与函数g(x) = 2x^2 - 3x - 4相等,则k的值为() A. -4 B. -2 C. 2 D. 46.若两个正整数x和y满足x + y = 7,x - y = 3,则x的值为() A. 5B. 4C. 3D. 27.已知函数f(x) = x^2 - 2x - 3,g(x) = x + 1,则f(g(2))的值为() A.6 B. 3 C. 0 D. -38.若函数f(x) = x^2 - 5x + 6与函数g(x) = x - 2相等,则x的值为()A. 6B. 4C. 2D. 19.若两个正整数x和y满足x^2 + y^2 = 34,x - y = 2,则x + y的值为() A. 8 B. 9 C. 10 D. 1110.设函数f(x) = 2x + 3,g(x) = x^2 - 2x + 1,则f(g(1))的值为() A.-1 B. 1 C. 3 D. 5第二部分:填空题(每小题5分,共计50分)1.函数f(x) = x^2 - 4x - 3的图像开口向上,顶点的坐标为()。

【精品高二数学试卷】2019-2020天津高二(上)第一次月考+答案

【精品高二数学试卷】2019-2020天津高二(上)第一次月考+答案

2019-2020学年天津高二(上)第一次月考数学试卷一、选择:5×10=50分。

1.(5分)已知数列√2,√5,2√2,√11,⋯则2√5是这个数列的( ) A .第6 项B .第7项C .第19项D .第11项2.(5分)在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 6+a 10=( ) A .12B .16C .20D .243.(5分)数列{a n }中,a 1=12,a n =1−1a n−1(n ≥2),则a 2019的值为( )A .﹣1B .−12C .12D .24.(5分)不等式x−1x>2的解集为( )A .(﹣1,+∞)B .(﹣∞,﹣1)C .(﹣1,0)D .(﹣∞,﹣1)∪(0,+∞)5.(5分)不等式ax 2+bx +2>0的解集是(−12,13),则a +b 的值是( ) A .10B .﹣10C .14D .﹣146.(5分)等比数列{a n }中,a 1+a 3=10,a 4+a 6=54,则数列{a n }的通项公式为( ) A .a n =24﹣nB .a n =2n ﹣4C .a n =2n ﹣3D .a n =23﹣n7.(5分)已知数列{a n }的递增的等比数列,a 1+a 4=9,a 2•a 3=8,则数列的前2019项和S 2019=( ) A .22019B .22018﹣1C .22019﹣1D .22020﹣18.(5分)设等比数列{a n }的前n 项和为S n ,且S 3=2,S 6=6,则a 13+a 14+a 15的值是( ) A .18B .28C .32D .1449.(5分)已知等差数列{a n }中,S n 是它的前n 项和,若S 16>0,S 17<0,则当S n 最大时n 的值为( ) A .8B .9C .10D .1610.(5分)已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n ﹣4=130,则n =( ) A .12B .14C .16D .18二、填空题:(5×5=25分)11.(5分)等差数列{a n }中,前4项和S 4=22,a 2=4,则前10项和S 10= . 12.(5分)已知数列{a n }中,a 1=1,a n +1=a n +n +1,则数列{a n }的通项公式是 .13.(5分)在数列{x n }中,2x n=1x n−1+1x n+1(n ≥2),且x 2=23,x 4=25,则x 10= .14.(5分)数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为 .15.(5分)已知数列{a n }的前n 项和S n =﹣n 2+20n ,则数列{na n }中数值最大的项是第 项.三、解答题(25分).16.(8分)已知数列{a n }中,a 1=1,a n +1=a na n +3(n ∈N *) (1)求证:{1a n+12}是等比数列;(2)求{a n }的通项公式a n .17.(17分)已知数列{a n }的前n 项和为S n ,且a n =2﹣2S n (n ∈N *),数列{b n }是等差数列,且b 5=14,b 7=20.(1)求数列{a n }和{b n }的通项公式. (2)求数列{1b n b n+1}的前n 项和T n .(3)设c n =a n ⋅b n2,求数列{c n }的前n 项和M n .2019-2020学年天津高二(上)第一次月考数学试卷参考答案与试题解析一、选择:5&#215;10=50分。

山西省高二上学期数学第一次月考试卷

山西省高二上学期数学第一次月考试卷

山西省高二上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)直线3x+ y﹣1=0的倾斜角为()A . 60°B . 30°C . 120°D . 150°【考点】2. (2分)以双曲线的离心率为半径,右焦点为圆心的圆与双曲线的渐近线相切,则的值为()【考点】3. (2分) (2019高二上·丽水期中) 经过点(1,-3),倾斜角是150°的直线方程是()A .B .C .D .【考点】4. (2分) (2020高二上·夏津月考) 在三棱锥中,底面ABC,,,,则点C到平面PAB的距离是A .B .C .D .【考点】5. (2分) (2020高二上·鱼台月考) 已知三棱锥的各棱长均为1,且是的中点,则()A .B .C .D .【考点】6. (2分) (2020高一下·苍南月考) 在中,内角为钝角,,,,则()A . 2B . 3C . 5D . 10【考点】7. (2分) (2017高一上·福州期末) 已知直线l1:2x﹣y+1=0,直线l2与l1关于直线y=﹣x对称,则直线l2的方程为()A . x﹣2y+1=0B . x+2y+1=0C . x﹣2y﹣1=0D . x+2y﹣1=0【考点】8. (2分)已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥α,则α∥β;③若m∥α,n∥β,m∥n,则α∥β;④若m、n是异面直线,m⊥α,m∥β,n⊥β,n∥α,则α⊥β其中真命题是()A . ①和②B . ①和③C . ③和④D . ①和④【考点】二、多选题 (共4题;共12分)9. (3分) (2020高一下·无锡期中) 若直线过点,且在两坐标轴上截距的绝对值相等,则直线l方程可能为()A .B .C .D .【考点】10. (3分) (2020高一下·烟台期末) 如图,在四棱锥中,底面为菱形,,侧面为正三角形,且平面平面,则下列说法正确的是()A . 在棱上存在点M,使平面B . 异面直线与所成的角为90°C . 二面角的大小为45°D . 平面【考点】11. (3分) (2020高一下·如东期末) 如图,在三棱锥中,、、分别为棱、、的中点,平面,,,,则()A . 三棱锥的体积为B . 平面截三棱锥所得的截面面积为C . 点与点到平面的距离相等D . 直线与直线垂直【考点】12. (3分) (2020高二上·郓城月考) 已知直线:和直线:,下列说法正确的是()A . 始终过定点B . 若,则或-3C . 若,则或2D . 当时,始终不过第三象限【考点】三、填空题 (共4题;共4分)13. (1分) (2019高二上·晋江月考) 若,且共面,则________【考点】14. (1分) (2020高二上·柯桥期末) 已知直线l的斜率为1,过点,则l的方程为________,过点且与l平行的直线方程为________.【考点】15. (1分) (2018高一上·广东期末) 直线与直线平行,则________.【考点】16. (1分) (2019高一上·延边月考) 已知一个圆锥的底面积和侧面积分别为和,则该圆锥的体积为________【考点】四、解答题 (共6题;共57分)17. (10分) (2017高三上·宿迁期中) 设△ABC的内角A,B,C所对边分别为a,b,c.向量 =(a,b), =(sinB,﹣cosA),且⊥ .(1)求A的大小;(2)若| |= ,求cosC的值.【考点】18. (15分) (2019高二上·三明月考) 已知空间三点.(1)求向量与的夹角;(2)若,求实数的值.【考点】19. (10分) (2019高一上·海口月考)(1)把36写成两个正数的积,当这两个正数取什么值时,它们的和最小?(2)把18写成两个正数的和,当这两个正数取什么值时,它们的积最大?【考点】20. (10分) (2017高一下·盐城期中) 求经过A(﹣2,3),B(4,﹣1)的两点式方程,并把它化成点斜式、斜截式、截距式和一般式.【考点】21. (10分)如图,已知正三棱柱ABC﹣A'B'C'棱长均为2,E为AB中点.点D在侧棱BB'上.(Ⅰ)求AD+DC'的最小值;(Ⅱ)当AD+DC'取最小值时,在CC'上找一点F,使得EF∥面ADC'.【考点】22. (2分) (2017高一上·淄博期末) 如图,在多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AD=AC,AB= DE,F是CD的中点.(1)求证:AF∥平面BCE;(2)求证:平面BCE⊥平面CDE.【考点】参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、多选题 (共4题;共12分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:三、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:四、解答题 (共6题;共57分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:第21 页共21 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020学年第一学期高二级月考
数学试题
注意事项:
1.本试题共4页,四大题,18小题,满分130分(含附加题10分),考试时间90分钟,答案必须填写在答题卡上,在试题上作答无效,考试结束后,只交答题卡。

2.作答前,认真浏览试卷,请务必规范、完整填写答题卡的卷头。

3.考生作答时,请使用0.5mm黑色签字笔在答题卡对应题号的答题区域内作答。

第Ⅰ卷选择题(共50分)
一、选择题(本大题共10小题,共50分)
1.在△ABC中,已知A=75°,B=45°,b=4,则c=()
A. √6
B. 2
C. 4√3
D. 2√6
2.若a>b,c>d,则下列不等关系中不一定成立的是()
A. a−b>c−d
B. a+c>b+d
C. a−c>b−c
D. a−c<a−d
3.已知△ABC中,AB=2,BC=3,AC=√10,则cosB=()
A. √10
8B. √10
4
C. 1
4
D. 1
2
4.正项等比数列{a n}的前n项和为S n,若a1=3,S3=21,则公比q=()
A.1
B. 2
C. 3
D. 4
5.已知x>0,y>0,且1
x
+4
y
=1,则x+y的最小值为()
A.6
B. 8
C. 9
D. 12
6.已知数列{a n}是首项a1=4,公比q≠1的等比数列,且4a1,a5,−2a3成
等差数列,则公比q等于()
A. 1
2
B. −1
C. 2
D. −2
7.任取实数x∈[−2,8],则所取x满足不等式x2−5x+6≤0的概率为()
A. 1
8B. 1
9
C. 1
10
D. 1
11
8.我国古代数学名著《九章算术》里有一道关于玉石的问题:“今有玉方
一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(176两).问玉、石重各几何?”如图所示的程序框图反映了对此题的一
个求解算法,运行该程序框图,则输出的x,y分别为()
A. 98,78
B. 96,80
C. 94,74
D. 92,72
9.设等差数列{a n}前n项和为S n,等差数列{b n}前n项和为T n,若S n
T n
=20n−1
2n−1

则a3
b3
=()
A. 59
5
B. 11
C. 12
D. 13
10.在△ABC中,若AB=√37,BC=4,C=2π
3
,则△ABC的面积S=()
A.3√3
B. 3√2
C. 6
D. 4
第Ⅱ卷非选择题(共80分)
二、填空题(本大题共2小题,共10分)
11.若变量x,y满足约束条件{x+y⩾−1
2x−y≤1
y⩽1
,则z=3x−y的最小值为
__________.
12.已知数列{a n}满足a1=1,log2a n+1=log2a n+1,若a m=32,则
m=________.
三、解答题(本大题共5小题,共60分)
13.(10分)解下列不等式:
>1
(1)3x2−7x+2>0 (2)2x+4
x−3
14.(12分)设S n为等差数列{a n}的前n项和.已知a3=5,S7=49.
(1)求数列{a n}的通项公式;
(2)设b n=1
,求数列{b n}的前n项和T n.
a n a n+1
15.(12分)△ABC的内角A,B,C的对边分别为a,b,c,sin2B+sin2C−
sin2A=sinBsinC.
(1)求A;
(2)若a=4,△ABC的面积为4√3,求b,c.
16.(12分)在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12nmile的水面上,有蓝方一艘小艇正以每小时10nmile的速度沿南偏东75°方向前进,若红方侦察艇以每小时14nmile的速度沿北偏东45°+α方向拦截蓝方的小艇,若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.
17.(14分)已知正项数列{a n}的前n项和为S n,对任意n∈N∗,点(a n,S n)都在函数f(x)=2x−2的图象上.
(1)求数列{a n}的通项公式;
(2)若数列b n=(2n−1)a n,求数列{b n}的前n项和T n.
四、附加题(本大题共1小题,共10分)
18.“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿
在一块成凸四边形ABCD的麦田里成为守望者,如图所示,为了分割麦田,他将BD连接,设ΔABD中边BD所对的角为A,ΔBCD中边BD所对的角为C,经测量已知AB=BC=CD=2,AD=2√3.
霍尔顿发现无论BD多长,√3cosA−cosC为一个定值,请你验证霍尔顿的结论,并求出这个定值.。

相关文档
最新文档