大数据本科系列教材PPT课件之《数据挖掘》:第4章 回归

合集下载

数据挖掘-决策树PPT资料48页

数据挖掘-决策树PPT资料48页
info([2,3],[4,0],[3,2])=0.693位 计算信息增益 info([9,5])- info([2,3],[4,0],[3,2]) =
0.247位 选择获得最大信息增益 的属性进行划分
划分过程的终止
当所有叶节点都是纯的。
因训练集包含两个具有相同属性集,但具有不同类 的实例。
ID3代表归纳决策树(induction decision—tree)版本 3,它是一种用来由数据构造决策树的递归过程。
lD3算法的步骤
1. 试探性地选择一个属性放置在根节点,并对该属 性的每个值产生一个分支。
2. 分裂根节点上的数据集,并移到子女节点,产生 一棵局部树(partial tree)。
决策树作用(2)
决策树的主要作用是揭示数据中的结构化信息。 决策树汇总了数据,并揭示了其中隐藏的结构:
规则:
如果血压高,则 采用药物A。
如果血压低,则 采用药物B。
如果血压正常。 年龄小于或等于 40,则采用药物 A,否则采用药 物B。
准确率、支持度、错误率
该例得到的规则和对应的准确率和支持度是:
如果血压高,则采用药物A(准确率100%,支持度 3/12)。
如果血压低,则采用药物B(准确率100%,支持度 3/12)。
如果血压正常并且年龄小于或等于40,则采用药 物A(准确率100%,支持度3/12)。
如果血压正常并且年龄大于40。则采用药物B(准 确率100%,支持度3/12)。
3. 对该划分的质量进行评估。 4. 对其他属性重复该过程。 5. 每个用于划分的属性产生一棵局部树。 6. 根据局部树的质量,选择一棵局部树。 7. 对选定的局部树的每个子女节点重复以上1-6步。 8. 这是一个递归过程。如果一个节点上的所有实例

机器学习入门:回归问题PPT课件

机器学习入门:回归问题PPT课件

.
35
Elastic Net
另一种回归方法叫Elastic Net,它同时采用了L1和L2正则,以综 合Ridge Regression和Lasso Regression两者的优点。
既能稀疏化模型权重,又能保持岭回归的稳定性。
.
36
非线性模型
.
37
回归问题讨论
✓ 回归分析要有实际意义; ✓ 异常值检测。
0-1损失函数(0-1 loss function):
缺点:无法度量损失的“严重程度”。
.
20
损 失 函 数 ( loss function)
平方损失函数(quadratic loss function): 对数损失函数(logarithmic loss function): 指数损失函数(exp-loss function):
.
模型个数:[n(n+1)/2]+1
17
Backward Stepwise Selection
以全模型为起点,逐次迭代,每 次移除一个对模型拟合结果最不利的 变量。
需满足样本量m大于变量个数n (保证全模型被拟合)。而前向逐步 选择即时在m<n的情况下也可以使用, 适应于高维数据。
.
模型个数:[n(n+1)/2]+1
最小二乘算法
.
12
最小二乘算法
.
13
选择“最优回归方程”
回归方程中包含的自变量个数越多,回归平方和就越大,残差平 方和越小,预测值的置信区间也越小。
既要选择对预测影响显著的自变量,又要使回归的损失很小, 这样才有利于预测。
选择“最优回归方程”的方法有: ➢ 最优子选择法(best subset selection) ➢ 逐步选择法(stepwise selection)

数据挖掘及应用数据挖掘概述ppt课件

数据挖掘及应用数据挖掘概述ppt课件

Past KDD (Knowledge Discovery and Data Mining) Meetings
• KDD-2019, 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose,
《数据挖掘技术:市场营销、销售与客户关系管理领域的应用》 数据挖掘指的是一种态度,它表明商业活动应该基于认知,分析获得的决 策比没有任何分析所得的决策好得多,经过测算的结果更有利于商业盈利。
• SAS 软件研究所对数据挖掘所下的定义是:
数据挖掘是按照既定的业务目标, 对大量的企业数据进行探索、揭示隐 藏其中的规律性并进一步将之模型化的先进、有效的方法。
国内数据挖掘研究进展
• 1993年国家自然科学基金首次支持我们对该 领域的研究项目。
• 2019年度的国家社会科学基金在统计学类中
首次对该领域的研究予以支持。
• 全国数据库学术会议(NDBC,National DataBase Academic Conference)
• 重要的杂志有计算机学报、软件学报和计算机 研究与发展等。
• KDD-99, 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 15-18, 2019, San Diego, CA, USA.
• KDD-98, 4th International Conference on Knowledge Discovery and Data Mining, August 27-31, 2019, New York, NY, USA.

数据挖掘课件第四章

数据挖掘课件第四章

root edu
Jan
Mar
Tor
Van
Price
485
Quant-Info
Q.I.
1200
1280
Sum: 1765
2500
Cnt: 2
520
bins

hhd Jan Tor Q.I.
bus Feb
Mon Q.I.
11
H-Cubing: 用city属性计算方体
Header Table HTor
Attr. Val. Edu Hhd Bus … Jan Feb …
2024/3/11
26
高维 OLAP产生的动机
现在的数据立方体计算的方法面临的挑战: 维灾难问题 冰山立方体和立方体压缩只是延迟了不可避免的数据 爆炸 完全物化:对磁盘的访问仍然是严重超负荷的。
Apriori 剪枝 共享维采用自底向上方式增长
C/C
D
AC/AC AD/A BC/BC BD/B CD
ABC/ABC ABD/AB
ACD/A
BCD
2024/3/11
ABCD/all
15
共享维的冰山剪枝
共享维的反单调性 如果度量是反单调的,若共享维的聚集值不 满足冰山条件,则眼该共享维向下的所有单 元也不可能满足冰山条件
直观的:如果我们在计算实际的立方体之前 计 算共享维,那么我们就可以用共享维来进行 Apriori剪枝
问题: 当多维同时聚集是如何剪枝?
2024/3/11
16
Cell Trees
使用类似于H-tree的树结 构来代替立方体
合并公共前缀以节省存储 空间
将计数值存在结点中 一条从跟到树叶节点的路
当前的树派生,并与整个的遍历次序有关 例:在基本星树中,当DFS到达a1结点则

《数据挖掘》PPT课件

《数据挖掘》PPT课件
➢ 数据挖掘应用系统开发 ➢ 数据挖掘技术的新应用 ➢ 数据挖掘软件发展
2020/12/9
数据库研究所
9
高级数据挖掘
课程的教学目的
➢ 让学生掌握数据挖掘的基本概念、算法和高级技术; ➢ 将这些概念、算法和技术应用于实际问题。
复旦大学计算机科学技术学 院基本情况
➢ 主要研究方向
▪ 媒体计算 ▪ 数据库与数据科学 ▪ 网络与信息安全 ▪ 智能信息处理 ▪ 人机接口和服务计算 ▪ 理论计算机科学 ▪ 软件工程与系统软件
2020/12/9
数据库研究所
6
复旦大学数据挖掘课程的设置
总体目标
➢ 掌握大规模数据挖掘与分析的基本流程 ➢ 掌握数据挖掘的基本算法 ➢ 掌握对实际数据集进行挖掘的系统能力
数据仓库与数据挖掘
数据库系统
2020/12/9
数据库研究所
8
数据仓库与数据挖掘
课程的教学目的
➢ 掌握数据仓库数据挖掘原理、技术和方法,掌握建立数据挖掘应用 系统的方法,了解相关前沿的研究。
教学内容
➢ 数据挖掘、数据仓库的基本概念
▪ 数据仓库设计和应用 ▪ 数据挖掘的基本技术
• 关联分析、分类分析、聚类分析、异常分析和演化分析等;联机分析处理OLAP技术;
➢ involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems.
➢ The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.

数据挖掘ppt课件(2024)

数据挖掘ppt课件(2024)

医疗数据类型及特点
电子病历、医学影像、基因测序等 。
数据预处理与特征提取
针对不同类型的医疗数据进行预处 理和特征提取,如文本处理、图像 识别、基因表达谱分析等。
2024/1/29
模型评估与应用
通过准确率、灵敏度、特异度等指 标评估模型性能,将模型应用于实 际医疗场景中,提高医生诊断效率 和准确性。
疾病预测与辅助诊断模型构建
贝叶斯分类器应用案例
03
如垃圾邮件识别、新闻分类、情感分析等。
17
神经网络在分类预测中应用
1 2
神经网络基本概念
模拟人脑神经元连接方式的计算模型,通过训练 学习输入与输出之间的映射关系。
神经网络在分类预测中的应用
通过构建多层感知机、卷积神经网络等模型,对 输入数据进行自动特征提取和分类预测。
3
神经网络应用案例
5
数据挖掘与机器学习关系
机器学习是数据挖掘的重 要工具之一。
2024/1/29
数据挖掘包括数据预处理 、特征提取、模型构建等 步骤,其中模型构建可以 使用机器学习算法。
机器学习算法如决策树、 神经网络、支持向量机等 在数据挖掘中有广泛应用 。
6
2024/1/29
02
数据预处理技术
7
数据清洗与去重
推荐模型构建
利用机器学习、深度学习等技 术构建推荐模型,如逻辑回归 、神经网络等。
模型评估与优化
通过准确率、召回率、F1值等 指标评估模型性能,采用交叉 验证、网格搜索等方法优化模
型参数。
32
金融欺诈检测模型构建与优化
金融欺诈类型及特点
信用卡欺诈、贷款欺诈、洗钱等。
2024/1/29
数据来源与处理

数据挖掘ppt课件

数据挖掘ppt课件

2021精选ppt
12
实例——科学数据库
Internet已经成为最大的信息源,但缺乏集中统一 的管理机制, 信息发布具有自由性和任意性, 难于控 制和管理 • 分散、无序、无政府、变动、数量、包罗万象 • 真伪并存, 资源信息和非资源信息难于驾御 • 非规范、非结构 • 检索查全和查准提出新的挑战 • 多媒体、多语种、多类型信息的整合提出新的挑 战 • 跨国界数据传递和流动, 带来政治、文化新问题 • 集成多种(正式和非正式等)交流方式
2021精选ppt
5
中医临床数据——结构化数据采集
2021精选ppt
6
中医临床数据——非结构化数据采集
2021精选ppt
7
中医临床数据
2021精选ppt
8
中医临床数据——全文数据库
2021精选ppt
9
中医临床数据——结构化数据库
2021精选ppt
10
数据及数据分类
1)按照数据所属行业类别分类 科学数据,科学研究过程中产生的数据
12, M, 0, 5, 5, 0, 0, 0, ACUTE, 38.5, 2, 1, 0,15, -,-, 10700,4,0,normal, abnormal, +, 1080, 680, 400, 71, 59, F,-,ABPC+CZX,, 70, negative, n, n, n, BACTERIA, BACTERIA
15, M, 0, 3, 2, 3, 0, 0, ACUTE, 39.3, 3, 1, 0,15, -, -, 6000, 0,0, normal, abnormal, +, 1124, 622, 502, 47, 63, F, -,FMOX+AMK, , 48, negative, n, n, n, BACTE(E), BACTERIA

大数据挖掘工具培训课件(ppt 36张)

大数据挖掘工具培训课件(ppt 36张)
3 of 44
4.1 Mahout
Mahout在各平台支持的机器学习算法
算法 聚类算法 Canopy 单机 — deprecated MapReduce — deprecated Spark — —
《大数据》配套PPT课件
H2O — —
k-means 模糊k-means 流k-means 谱聚类 分类算法 逻辑回归 朴素贝叶斯 随机森林 隐马尔可夫模型 多层感知器 协同过滤算法 基于用户的协同过滤 基于物品的协同过滤 基于ALS的矩阵分解 基于ALS的矩阵分解(隐式 反馈) 加权矩阵分解 降维算法 奇异值分解 Lanczos
《大数据》配套PPT课件
调用Mahout API运行k-means聚类算法,指定Hadoop配置信息、输入数据、 初始聚类中心,迭代2次得到聚类结果
8 of 44
4.1 Mahout
基于多维输入数据运行k-means算法 60维数据样本
《大数据》配套PPT课件
600条60维趋势数据(600行60列)
2008年之前
发 展 历 史
Apache Lucene开源搜索引擎的子项目 实现Lucene框架中的聚类以及分类算法
吸纳协调过滤项目Taste成为独立子项目
2010年以后
成为Apache顶级项目 实现聚类、分类和协同过滤等机器学习算法 既可以单机运行也可在Hadoop平台上运行
驱象人
目标:机器学习平台,提供类似R的DSL以支持线性代数运算(如分布式向量计 算)、大数据统计等基本功能
MLlib
运行在Spark平台上专为在集群上并行运行而设计
内存中更快地实现多次迭代,适用于大规模数据集
离散型 分类 逻辑回归 支持向量机(SVM) 朴素贝叶斯 决策树 随机森林 梯度提升决策树 (GBT) 聚类 k-means 高斯混合 快速迭代聚类(PIC) 隐含狄利克雷分布(LDA) 二分k-means 流k-means
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档