吸收塔高计算
化工原理吸收塔的计算

(1)传质单元数(以NOG为例)
•定义:N OG
N OG
Y1
dY Y Y
*
Y2
气相总传质单元数
气相组成变化 平均传质推动力
Y1
dY Y Y
*
Y1 Y2 (Y Y ) m
*
Y2
• 传质单元数的意义: 反映了取得一定吸收效果的难易程度。
第四节
吸收塔的计算
吸收塔的计算内容:
• 设计型:流向、流程、吸收剂用量、吸收剂
浓度、塔高、塔径。
• 操作型:核算、操作条件与吸收结果的关系。
• 计算依据:物料恒算、相平衡、吸收速率方程。
一、物料衡算与操作线方程
虚框范围内,对溶质作物料衡算:
LX GY2 LX 2 GY L G Y Y Y2 X X2 L G X (Y2 L G
* mG Y1 Y2 mG ln 1 * mG L Y2 Y2 L 1 L
S
mG L
—解吸因数(脱吸因数)
影响NOG的因素:
L、G、m、X2、Y1、Y2
(1) L、G、m
L , G , m m不变, L G 推动力Ym N OG m 平衡线斜率 远离操作线 推动力Ym N OG L mG N OG
当所要求的(Y1-Y2)为一定值时,平均吸收推动力(YY*)m越大,NOG就越小,所需的填料层高度就越小。
(2)传质单元高度
•定义: H OG
G K ya
气相总传质单元高度,m。
•传质单元高度的意义:
完成一个传质单元分离效果所需的填料层高度,
第3章吸收5节填料吸收塔的计算

当气速增大到 C点时,液体充满了整个空隙,气体 的压强降几乎是垂直上升。同时填料层顶部开始出 现泡沫层,进而充满整个塔,气体以气泡状通过液 体,这种现象称为液泛现象。把开始出现此现象的 点称为泛点。
泛点对应的气速称为液泛速度。要使塔的操作正常及 压强降不致过大,气速必须低于液泛速度,但要高于 载点气速。由于,从低持液量到载点的转变不十分明 显,无法目测,即载点及载点气速难以明确定出。而 液泛现象十分明显,可以目测,即液泛点及液泛气速 可明确定出。液泛速度较易确定,通常以液泛速度v f 为基础来确定操作的空塔气速 v 。 影响液泛速度 的因素很多——填料的形状、大 小,气、液相的物理性质,气、液相的相对流量等 常用的液泛速度关联式如下:
§5 填料吸收塔的计算
本节重点讨论气液逆流操作时填料 塔的有关计算。
、
Y 具体内容主要包括对于给定的生产任务( Y1 、 2
V 、 X 2 已知),计算吸收剂用量 L 、塔底完成 液浓度 X 1 、塔高、塔径。
5.1 吸收塔的物料衡算
在进行物料衡算时,以不变的惰性组分 流量和吸收剂流量作为计算基准,并用摩尔 比表示气相和液相的组成将很方便。
L 1.2 LM 1.2 0.74625 50 44. (Y1 Y2 ) 50 (0.0134 6.7 10 ) X1 0.0149 L 44.775
Y mX 1 0.75 0.0149 0.0112
N OG 只与体系的相平衡及气体进出口的浓度有关,它反
映了吸收过程的难易程度。分离要求高或吸收剂性 能差,过程的平均推动力小,则表明吸收过程难度 大,相应传质单元数就多。
H OG 与设备的型式及操作条件有关,是吸收设备效能 高低的反映。吸收过程的传质阻力大,填料层的 有效比表面积小,则一个传质单元所相当的填料 层高度就大。
脱硫吸收塔的直径和喷淋塔高度设计

吸收塔的直径和喷淋塔高度设计脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。
但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。
而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。
通常烟气中的二氧化硫浓度比较低。
吸收区高度的理论计算式为h=H0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。
)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。
根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。
第9章第三节 吸收塔的计算

L xb?
1
0
操作型定性分析举例
10
(1)吸收剂入塔浓度变大
解法一:快速分析
化
xa变大时,传质推动力变小,不利于吸收, ya 变大
工 原
解法二:作图+排除法
理 -
a.假设 ya 不变
Y
yb
B
- 2
L/G不变 yb 不变、xa变大
原
E
0
作图知,NOG
1 0
Kya 不变, HOG
G K ya
不变。
与h0不变矛盾
七、解吸(脱吸)
30
当 A 1时,
NT NOG
1
NT NOG
化 工 原
当
A
1
时,
(A 1) (Aln A)
ln
1 A1
1
NT NOG
理 -
七、解吸(脱吸)
- 2
解吸过程:溶质从吸收液中分离出的操作
0 解吸目的:获得所需较纯的溶质;
1
溶剂再生循环使用。
0 解吸条件:pA pA*或 y y* 或 x x* 或cA cA*
1 1 S
ln1
S
yb ya
m xa m xa
S
2
0 1
1
1 0.67
ln1
0.67
0.02 0.36 0.0002 0.0002 0.36 0.0002
0.67
11.98
0
设计型举例
7
or yb ya L xb xa G
xb
化 工 原 理 -
yb yb mxb ya ya mxa
工 原
解法二:作图+排除法
Y
吸收填料塔高的计算

最小液气比的计算式:
L V
min
Y1 Y2 X1,max X 2
Lmin
V
Y1 Y2 X1,max X 2
吸收剂用量的确定
➢ 在最小液气比下操作时,在塔的某截面上(塔底或塔内)
气、液两相达平衡,传质推动力为零,完成规定传质任务
所需的塔高为无穷大。对一定高度的塔而言,在最小液气
比下操作则不能达到分离要求。
对气、液两相并流操作的吸收塔,取塔内填料层任一截面
与塔顶(浓端)构成的控制体作物料衡算,可得并流时的
操作线方程,其斜率为(-L/V)。
并流操作线方程
Y
L V
X
Y1
L V
X1
L, X1 V, Y1
V, Y
L, X
Y
A
Y*=f(X)
Y1 P X*-X
Y
Y2
Y- Y*
B
V, Y2 L, X2
Y*
o
X1
L V
X1
同理,若在任一截面与塔顶端面间作溶质A 的物料衡算,有
L, X2 V, Y2
V, Y
L, X V, Y1
L, X1
Y
L V
X
Y2
L V
X2
上两式均称为吸收操作线方程,代表逆流操作时塔内任一截 面上的气、液两相组成 Y 和 X 之间的关系。 (L/V)称为吸收塔操作的液气比。
操作线方程与操作线
3-4.3 传质单元数和传质单元高度
• 传质单元数的意义: 反映了取得一定吸收 效果的难易程度。
•定义:NOG
Y1 dY Y2 Y Y *
气相总传质单元数
NOG
Y1 dY Y2 Y Y *
化工原理吸收塔的计算

一、物料衡算与操作线方程
虚框范围内,对溶质作物料衡算:
稀端
G,Y2
L,X2
LX GY2 LX 2 GY
L Y Y2 G X X2
Y
L G
X
(Y2
L G
X2)
HG
NG
HOG
NOG
Z G Y1 dY G Y1 dY kY a Y2 Y1 Yi KY a Y2 Y Y *
Z L X1 dX L X1 dX kX a X2 X i X K X a X2 X * X
HL
NL
HOL
NOL
低浓度气体吸收塔计算填料层高度的基本公式
L 吸收剂用量 操作费用 , G
吸收塔高,设备费 。
L 吸收剂用量 操作费用 , G
吸收塔低,设备费 。
L G
(1.1 ~
L 2.0)( G )min
三、填料层高度的计算
(一)填料层高度的基本计算式
单位时间,dZ内吸收A的量:
dA adZ N AdA N AadZ GdY LdX
X
)
LdX K X a( X *
X
)
kY a, KY a, kX a, K X a等称为体积传质系数。 (对低浓度气体的吸收时,近似为常数,或取平均值)
对稳态操作的吸收塔,气 液相流量G、L 以及塔的横截面积均为定值。
K ya ——气相总体积传质系数,kmol/(m3·s) Kxa ——液相总体积传质系数,kmol/(m3·s)
化工原理吸收塔的计算

填料层高度=传质单元高度×传质单元数
(1)传质单元数(以NOG为例)
•定义:NOG
Y1 dY Y2 Y Y *
气相总传质单元数
NOG
Y1 dY Y2 Y Y *
Y1 Y2 (Y Y *)m
气相组成变化 平均传质推动力
• 传质单元数的意义:
反映了取得一定吸收效果的难易程度。
HL
NL
HOL
NOL
低浓度气体吸收塔计算填料层高度的基本公式
(二)传质单元高度与传质单元数
Z HG NG气相传质单元高度 气相传质单元数
Z HOG NOG气相总传质单元高度 气相总传质单元数
Z
HL
N
液相传质单元高度
L
液相传质单元数
Z
H OL
N
液相总传质单元高度
OL
液相总传质单元数
2.影响Y2的因素 L、G、m、X2、Y1
当L ,G , m L mG
若NOG已定,则由图可知:
Y2 Y1
mX2 mX2
Y2
当NOG、L / mG已定时,则
Y2 mX2 一定,令为1/
Y1 mX 2
则:Y2
Y1
(
1)mX 2
X 2 ,Y1 Y2
K ya ——气相总体积传质系数,kmol/(m3·s) Kxa ——液相总体积传质系数,kmol/(m3·s)
HG
NG
HOG
NOG
Z G Y1 dY G Y1 dY kY a Y2 Y1 Yi KY a Y2 Y Y *
化工原理 吸收(或解析)塔计算

NOG仅与气体的进出口浓度、相平衡关系有关,与塔的结构、 操作条件(G、L)无关,反映分离任务的难易程度。
(2)传质单元高度
H
=
OG
K
G y a
kmol 单位: m2 • s m
kmol m3 • s
HOG与操作条件G、L、物系的性质、填料几何特性有关,是吸收 设备性能高低的反映。其值由实验确定,一般为0.15~1.5米。
y4
•B
y3
E3
yN1
y2
y1 A
E1
E2
x0 x1
x2
x3
解析法求理论板数
x0
y1
平衡线方程:y=mx
y1
操作线方程:y=y1+L/G(x-x0)
由第一板下的截面到塔顶作物料衡算:
y2
y1
L G
x1
x0
y1 mx1
y2
y1
L G
y1 m
x0
(1
A) y1
Amx0
1
2
x1 y2
x2 y3
xN 2 y N 1
N 11 A A1
N-1
N xN 1 y N
yN 1
xN
y2
x2
吸收
y1
x1
y1
解吸
y2
六、塔板数
• 板式塔与填料塔的区别在于组成沿塔高是阶跃 式而不是连续变化的。
x0
y1
1
x1 y2
2
x2 y3
xN 2 y N 1
N-1
yN
N xN 1
xN
理论板:气液两相在塔板上充分接触, 传质、传热达平衡。
相平衡关系:yn f (xn )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填料层高度基本计算式
对截面积为Ω ,高为dz的微元 填料层作物料衡算得:
从气体浓度变化,气体中A的传质量 单位时间传质量=qn,V -dy (kmol/s) 从两方面考虑的单位时间传质量应相等
分析
的单位是 称为传质单元高度,用HOG表示。
的单位是无因数的纯数 称为传质单元数,用NOG表示。来自所以 即:(1)
(2)
(2)代入(1) 下面的关键是求传质单元数
qn,L下降,
也下降,塔底出口浓度x1上升。
最小液气比的表达式 若平衡线是直线,
几何关系图
吸收物料衡算示例
用清水吸收氨-空气混合气中的 氨,混合气NH3的浓度为y1 = 0.05(摩尔分数,下同),要求出 塔的NH3的浓度下降至y2 = 0.01。 物系的平衡关系,y* = 0.788x。 求此种分离要求的最小液气比。 若取实际液气比是最小液气比 的1.6倍,此时出塔溶液的浓度 为多少?
4 吸收填料层高度计算
吸收塔物料衡算,对吸收塔作物料衡算。 从塔顶-塔底衡算范围得
实际吸收过程中,qn , V , q n ,L是变化的, 由于此处讨论的是低浓度吸收,为了简化计 算,此处假定不变。
塔顶 塔底
对全塔画衡算范围得: 此即吸收塔的物料衡算方程,或称为吸收塔操作线方程。
最小液气比 通常,y1,y2 ,x2 ,qn ,V是给定的