填料塔工艺尺寸的计算

合集下载

塔公称直径与填料尺寸的关系_理论说明

塔公称直径与填料尺寸的关系_理论说明

塔公称直径与填料尺寸的关系理论说明1. 引言1.1 概述本文旨在探讨塔公称直径与填料尺寸之间的关系,并对其进行理论说明。

在化工和环境保护等领域,填料塔广泛应用于气体吸收、脱硫和蒸馏等过程中。

而填料的尺寸和塔的直径是两个影响塔性能的重要因素。

研究塔公称直径与填料尺寸之间的关系,有助于优化填料设计和提高工艺效率。

1.2 文章结构本文共分为五个部分,包括引言、塔公称直径与填料尺寸的关系、理论说明、结论和结束语。

下面将逐一介绍每个部分的内容。

1.3 目的本文旨在通过对塔公称直径与填料尺寸之间关系进行理论说明,明确它们之间的联系以及对塔性能的影响。

同时,探讨存在的问题和挑战,并提出未来改进方向。

最后总结研究发现,并展望进一步研究的方向。

以上是“1. 引言”部分内容,请根据需要进行修改完善。

2. 塔公称直径与填料尺寸的关系2.1 塔公称直径的定义与影响因素塔公称直径是指在化工和环保领域中用于描述填料塔尺寸的一个参数。

它通常表示为D,单位为米。

塔公称直径的确定需要考虑多方面因素,包括流体物性、操作条件以及所需分离效果等。

其中,流体物性是影响塔公称直径的重要因素之一。

流体物性如粘度、密度以及相变等会对传质和传热过程产生影响,从而影响到塔的尺寸设计。

另外,操作条件也会对塔公称直径造成影响。

例如,在高压工艺下,由于需要抗压能力较强,所以塔的直径可能较大;而在低压工艺下,则可以选择较小的直径。

除此之外,所需分离效果也是决定塔公称直径大小的一个重要因素。

如果需要实现更高的分离效果,可能需要增加填料高度和表面积,并相应地增加填料层与填料层之间的有效间隙大小。

2.2 填料尺寸对填料性能的影响填料尺寸是指填料的物理特性参数,如直径、高度等。

填料尺寸对填料的性能具有重要影响。

首先,填料尺寸会影响填料的比表面积。

较小的填料尺寸会导致更大的比表面积,从而提供更多的传质界面和反应活性位点,增加了传质和反应过程中的接触机会,提高了塔的分离效果。

填料塔的设计

填料塔的设计

目录前言世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。

”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。

工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。

因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。

一.设计任务书1.设计目的通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。

培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。

2.设计任务试设计一个填料塔,常压,逆流操作,操作温度为25℃,以清水为吸收剂,,气体处理量为1500m3/h,其中含氨%(体积分数),吸收脱除混合气体中的NH3要求吸收率达到99%,相平衡常数m=。

3.设计内容和要求1)研究分析资料。

2)净化设备的计算,包括计算吸收塔的物料衡算、吸收塔的工艺尺寸计算、填料层压降的计算及校核计算。

3)附属设备的设计等。

4)编写设计计算书。

设计计算书的内容应按要求编写,即包括与设计有关的阐述、说明及计算。

要求内容完整,叙述简明,层次清楚,计算过程详细、准确,书写工整,装订成册。

设计计算书应包括目录、前言、正文及参考文献等,格式参照学校要求。

5)设计图纸。

包括填料塔剖面结构图、工艺流程图。

应按比例绘制,标出设备、零部件等编号,并附明细表,即按工程制图要求。

图纸幅面、图线等应符合国家标准;图面布置均匀;符合制图规范要求。

6)对设计过程的评述和有关问题的讨论。

二.设计资料1.工艺流程采用填料塔设计,填料塔是塔设备的一种。

塔内填充适当高度的填料,以增加两种流体间的接触表面。

例如应用于气体吸收时,液体由塔的上部通过分布器进入,沿填料表面下降。

气体则由塔的下部通过填料孔隙逆流而上,与液体密切接触而相互作用。

填料塔的计算

填料塔的计算

一、填料塔的计算(一) 操作条件的确定1.1吸取剂的选择1.2装置流程的确定1.3填料的类型与选择1.4操作温度与压力的确定45℃常压(二)填料吸取塔的工艺尺寸的运算2.1基础物性数据①液相物性数据关于低浓度吸取过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据7.熔依照上式运算如下: 混合密度是:1013.865KG/M3 混合粘度0.001288 Pa ·s 暂取CO2在水中的扩散系数表面张力б=72.6dyn/cm=940896kg/h 3②气相物性数据混合气体的平均摩尔质量为 M vm =y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347混合气体的平均密度ρvm = =⨯⨯=301314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m3混合气体粘度近似取空气粘度,手册28℃空气粘度为μV =1.78×10-5Pa ·s=0.064kg/(m •h) 查手册得CO2在空气中的扩散系数为 D V =1.8×10-5m 2/s=0.065m 2/h 由文献时CO 2在MEA 中的亨利常数:在水中亨利系数E=2.6⨯105kPa相平稳常数为m=1.25596.101106.25=⨯=P E 溶解度系数为H=)/(1013.218106.22.997345kPa m kmol E M s•⨯=⨯⨯=-ρ2.2物料衡算进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403 出塔气相摩尔比为Y2= 0.153403×0.05=0.00767 进塔惰性气相流量为V=992.1mol/s=275.58kmol/h该吸取过程为低浓度吸取,平稳关系为直线,最小液气比按下式运算,即2121min /X m Y Y Y )V L(--=关于纯溶剂吸取过程,进塔液组成为X2=02121min /X m Y Y Y )V L(--==(0.153403-0.00767)/(0.1534/1.78)=1.78取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67 L=2.67×275.58=735.7986kmol/h ∵V(Y1-Y2)=L(X1-X2) ∴X1=0.054581①塔径运算采纳Eckert 通用关联图运算泛点气速 气相质量流量为 W V =13.74kg/s=49464kg/h 液相质量流量运算即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/h Eckert 通用关联图横坐标为0.011799查埃克特通用关联图得226.02.0=••L LV F F g u μρρϕφ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φ s m g u LV F LF /552.21338.112602.99881.9226.0226.02.02.0=⨯⨯⨯⨯⨯==μϕρφρUf=3.964272m/s取u=0.8u F =0.8×3.352=2.6816m/s 由=1.839191m圆整塔径,取D=1.9m 泛点率校核 u=s m /12.26.0785.03600/15002=⨯ = 4.724397m/s100522.212.2⨯=F u u ﹪=84.18%(在承诺范畴内) =3.352964272/ 4.724397=70.9% 填料规格校核:82425600>==d D =1900/25=76》8 液体喷淋密度校核,取最小润湿速率为 (L W )min =0.08m 3/m ·h 查塑料阶梯环特性数据表得:型号为DN25的阶梯环的比表面积 a t =228 m 2/m 3 U min =(L W )min a t =0.08×228=18.24m 3/m 2·h U=min 251.76.0785.02.998/312121U 。

填料塔的计算

填料塔的计算

一、 设计方案的确定 (一) 操作条件的确定1.1吸收剂的选择1.2装置流程的确定1.3填料的类型与选择1.4操作温度与压力的确定45℃ 常压(二)填料吸收塔的工艺尺寸的计算2.1基础物性数据①液相物性数据对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据7.熔 根据上式计算如下:混合密度是:1013.865KG/M3混合粘度0.001288 Pa ·s暂取CO2在水中的扩散系数表面张力б=72.6dyn/cm=940896kg/h 3②气相物性数据混合气体的平均摩尔质量为M vm =y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347混合气体的平均密度ρvm = =⨯⨯=301314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m 3混合气体粘度近似取空气粘度,手册28℃空气粘度为μV =1.78×10-5Pa ·s=0.064kg/(m?h)查手册得CO2在空气中的扩散系数为D V =1.8×10-5m 2/s=0.065m 2/h由文献时CO 2在MEA 中的亨利常数:在水中亨利系数E=2.6⨯105kPa 相平衡常数为m=1.25596.101106.25=⨯=P E 溶解度系数为H=)/(1013.218106.22.997345kPa m kmol E M s ∙⨯=⨯⨯=-ρ 2.2物料衡算进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403出塔气相摩尔比为Y2= 0.153403×0.05=0.00767进塔惰性气相流量为V=992.1mol/s=275.58kmol/h 该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算,即 2121min /X m Y Y Y )V L (--=对于纯溶剂吸收过程,进塔液组成为X2=0 2121min /X m Y Y Y )V L (--==(0.153403-0.00767)/(0.1534/1.78)=1.78 取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67L=2.67×275.58=735.7986kmol/h∵V(Y1-Y2)=L(X1-X2)∴X1=0.054581①塔径计算采用Eckert 通用关联图计算泛点气速气相质量流量为 W V =13.74kg/s=49464kg/h液相质量流量计算即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/hEckert 通用关联图横坐标为0.011799 查埃克特通用关联图得226.02.0=∙∙L LV F F g u μρρϕφ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φUf=3.964272m/s取u=0.8u F =0.8×3.352=2.6816m/s由=1.839191m圆整塔径,取D=1.9m泛点率校核 u=s m /12.26.0785.03600/15002=⨯ = 4.724397m/s 100522.212.2⨯=F u u ﹪=84.18%(在允许范围内) = 4.724397=70.9%填料规格校核:82425600>==d D =1900/25=76》8 液体喷淋密度校核,取最小润湿速率为 (L W )min =0.08m 3/m ·h查塑料阶梯环特性数据表得:型号为DN25的阶梯环的比表面积 a t =228 m 2/m 3U min =(L W )min a t =0.08×228=18.24m 3/m 2·h U=min 251.76.0785.02.998/312121U 。

填料塔的计算范文

填料塔的计算范文

填料塔的计算范文料塔是一种常见的工程结构,用于储存和输送颗粒状物料。

其设计过程中需要进行一系列计算,以确保料塔具有足够的强度和稳定性,能够安全承载预计的荷载。

本文将介绍料塔的计算方法和步骤,并给出一个具体的例子,展示如何进行料塔的计算。

一、料塔的计算方法和步骤1.确定设计参数:包括预计储存物料的密度、颗粒大小和湿度;预计料塔高度和直径;料塔所处环境的温度、湿度和风速等。

2.计算所需容量:根据预计储存物料的总重量和密度,计算料塔的总容量。

3.确定料塔的结构形式:包括筒形、锥形、碗形等,根据具体情况选择合适的结构形式。

4.计算料塔的自重和荷载:根据料塔的几何形状和预计物料的重量,计算料塔的自重;同时考虑其他荷载,如风荷载、地震荷载等。

5.计算料塔的强度和稳定性:根据材料的弹性模量和抗压强度,计算料塔的强度;同时根据料塔的几何形状和与地面的接触方式,计算料塔的稳定性。

6.进行结构优化:根据计算结果,进行结构优化,满足强度和稳定性的要求;同时尽可能减小材料的使用量和成本。

二、料塔计算范例假设我们需要设计一个筒形料塔,用于储存密度为1.2t/m³的玉米,预计储存量为2000t,料塔的高度为20m,直径为8m。

现在我们按照上述步骤进行料塔的计算。

1.设计参数:玉米的密度为1.2t/m³,预计料塔高度为20m,直径为8m,环境温度为25℃,相对湿度为60%,风速为15m/s。

2.计算所需容量:预计储存量为2000t,根据玉米的密度计算料塔的总容量为2000t/1.2t/m³=1666.7m³。

3.结构形式:选择筒形料塔。

5.强度和稳定性:根据材料的弹性模量和抗压强度,计算料塔的强度;根据料塔的几何形状和与地面的接触方式,计算料塔的稳定性。

6.结构优化:根据计算结果,进行结构优化,满足强度和稳定性的要求,同时尽可能减小材料的使用量和成本。

三、结论料塔的计算是一个复杂而重要的工程问题,涉及材料力学、结构力学、流体力学等多个学科。

填料塔工艺尺寸的计算

填料塔工艺尺寸的计算

填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段塔径的计算1. 空塔气速的确定——泛点气速法 对于散装填料,其泛点率的经验值u/u f =~贝恩(Bain )—霍根(Hougen )关联式 ,即:2213lg V F L L u a gρμερ⎡⎤⎛⎫⎛⎫⎢⎥⎪ ⎪⎝⎭⎝⎭⎣⎦=A-K 1418V L V L w w ρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ (3-1) 即:112480.23100 1.18363202.59 1.1836lg[()1]0.0942 1.759.810.917998.24734.4998.2Fu ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以:2F u /(100/3)()=UF=3.974574742m/s其中:f u ——泛点气速,m/s;g ——重力加速度,9.81m/s 2 23t m /m α--填料总比表面积,33m /m ε--填料层空隙率33V 998.2/1.1836kg /m l kg m ρρ==液相密度。

气相密度W L =㎏/h W V =7056.6kg/h A=; K=;取u= F u =2.78220m/s0.7631D === (3-2)圆整塔径后 D=0.8m 1. 泛点速率校核:260003.31740.7850.83600u ==⨯⨯ m/s3.31740.83463.9746F u u ==则Fuu 在允许范围内 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核:(1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量。

(2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。

对于直径不超过75mm 的散装填料,可取最小润湿速率()3min 0.08m /m h w L ⋅为。

()32min min 0.081008/w t U L m m h α==⨯=⋅ (3-3)225358.895710.6858min 0.75998.20.7850.8L L w U D ρ===>=⨯⨯⨯⨯ (3-4) 经过以上校验,填料塔直径设计为D=800mm 合理。

填料塔塔径圆整标准

填料塔塔径圆整标准

填料塔塔径圆整标准
填料塔是一种广泛应用于化工、石油、制药等行业的重要设备,用于气液两相间的传质和分离。

在设计填料塔时,塔径的圆整是一个重要的环节,其标准通常包括以下几个方面:
1. 直径整数化:为了方便制造和安装,填料塔的塔径通常取整数,如1000mm、1200mm 等。

这是因为在实际制造过程中,非整数的直径会增加制造成本和难度。

2. 标准直径系列:在化工、石油等行业中,存在一些标准的直径系列,如300mm、400mm、500mm、600mm 等。

这些标准直径系列是经过长期实践和经验总结得出的,具有一定的通用性和合理性。

3. 填料尺寸:填料塔的塔径还需要考虑填料的尺寸,以确保填料能够在塔内自由流动,避免堵塞和积液。

一般来说,填料的尺寸应该小于塔径的1/8 到1/10。

4. 流量和传质要求:塔径的大小还需要根据工艺要求和流量来确定,以确保气液两相能够在塔内充分接触和传质。

同时,塔径的大小也会影响到塔的阻力和分离效率。

5. 安全因素:在确定塔径时,还需要考虑安全因素,如塔内压力、温度、介质等因素,以确保塔的安全运行。

填料塔塔径的圆整标准需要综合考虑多种因素,包括制造、安装、工艺要求、安全等方面。

在实际设计中,需要根据具体情况进行综合分析和决策,以确保填料塔的高效、安全和稳定运行。

化工原理课程设计——水吸收氨气

化工原理课程设计——水吸收氨气

填料吸收塔设计任务书1 设计题目试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。

混合气体的处理量为____4300____m3/h,其中含氨为____6%____(体积分数),混合气体的进料温度为25℃。

要求:①塔顶排放气体中含氨低于___0.04%_____(体积分数);2 操作条件2.1 操作压力常压2.2 操作温度20℃3 填料类型选用聚丙烯阶梯环填料,填料规格自选4 设计内容4.1设计方案的选择及流程说明4.2工艺计算4.3主要设备尺寸计算(1) 塔径的确定(2) 填料层的高度计算(3) 总塔高、总压降及接管尺寸的确定4.4 辅助设备选型与计算4.5 设计结果汇总4.6 设计评述5设计基础数据20℃下氨在水中的溶解度系数为H=0.725kmol/(m3*kPa).目录1. 设计方案简介 (1)1.1设计方案的确定 (1)1.2填料的选择 (2)2. 工艺计算 (2)2.1 基础物性数据 (2)2.1.1液相物性的数据 (1)2.1.2气相物性的数据 (2)2.1.3气液相平衡数据 (2)2.1.4 物料衡算 (3)2.2 填料塔的工艺尺寸的计算 (3)2.2.1 塔径的计算 (4)2.2.2 填料层高度计算 (5)2.2.3 填料层压降计算 (6)2.2.4 液体分布器简要设计 (7)3. 辅助设备的计算及选型 (8)3.1 填料支承设备 (8)3.2填料压紧装置 (8)3.3液体再分布装置 (8)4. 设计一览表 (9)5. 后记 (10)6. 参考文献 (10)7. 主要符号说明 (10)8. 附图(工艺流程简图、主体设备设计条件图)1..设计方案简介1.1设计方案的确定1.1.1装置流程的确定:用水吸收NH3属高溶解度的吸收过程,为提高传质效率和分离效率,所以,本实验选用逆流吸收流程。

1.1.2吸收剂的选择对填料吸收塔,其吸收装置的流程主要有逆流操作、并流操作、吸收剂部分再循环操作、多塔串联操作和串联-并联混合操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节 填料塔工艺尺寸的计算
填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段
3.1 塔径的计算
1. 空塔气速的确定——泛点气速法
对于散装填料,其泛点率的经验值u/u f =0.5~0.85
贝恩(Bain )—霍根(Hougen )关联式 ,即:
2
213lg V F L L u a g
ρμερ⎡⎤
⎛⎫⎛⎫⎢⎥
⎪ ⎪⎝⎭⎝⎭⎣⎦=A-K 14
18
V L V L w w ρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭
⎝⎭ (3-1) 即:1
124
8
0.23100 1.18363202.59 1.1836lg[
()1]0.0942 1.759.810.917998.24734.4998.2F
u ⎛⎫⎛⎫⎛⎫
=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
所以:2
F u /9.81(100/0.9173)(1.1836/998.2)=0.246053756
UF=3.974574742m/s
其中:
f u ——泛点气速,m/s;
g ——重力加速度,9.81m/s 2 23t m /m α--填料总比表面积,
33m /m ε--填料层空隙率
33
V 998.2/1.1836kg /m l kg m ρρ==液相密度。

气相密度
W L =5358.89572㎏/h W V =7056.6kg/h A=0.0942; K=1.75; 取u=0.7 F u
=2.78220m/s
0.7631D =
=
= (3-2)
圆整塔径后 D=0.8m 1. 泛点速率校核:2
6000
3.31740.7850.83600
u =
=⨯⨯ m/s
3.31740.83463.9746
F u u == 则
F
u
u 在允许围 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核:
(1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量。

(2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。

对于直径不超过75mm 的散装填料,可取最小润湿速率
()3min 0.08m /m h w L ⋅为。

()32min min 0.081008/w t U L m m h α==⨯=⋅ (3-3)
22
5358.8957
10.6858min 0.75998.20.7850.8
L L w U D ρ=
==>=⨯⨯⨯⨯ (3-4) 经过以上校验,填料塔直径设计为D=800mm 合理。

3.2 填料层高度的计算及分段
*110.049850.75320.03755Y mX ==⨯= (3-5)
*220Y mX == (3-6)
3.2.1 传质单元数的计算
用对数平均推动力法求传质单元数
12
OG M
Y Y N Y -=
∆ (3-7) ()**1
1
2
2*
11*
22()
ln
M
Y Y Y Y Y Y Y Y Y ---∆=
-- (3-8)
=
0.063830.00063830.03755
0.02627ln
0.0006383
--
=0.006895
3.2.2 质单元高度的计算
气相总传质单元高度采用修正的恩田关联式计算:
()
0.75
0.10.05
2
0.2
2
21exp 1.45/t c l L t L
L V t w l t l L U U U
g ασαρσαασαμρ-⎧⎫⎛⎫⎛⎫⎛⎫⎪

=--⎨⎬ ⎪ ⎪ ⎪⎝⎭
⎝⎭⎝⎭⎪
⎪⎩

(3-9)
即:αw/αt =0.37404748
液体质量通量为:L u =WL/0.785×0.8×0.8=10666.5918kg/(㎡•h ) 气体质量通量为: V u =60000×1.1761/0.64=14045.78025kg/(㎡•h) 气膜吸收系数由下式计算:
()10.7
3
0.237(
)
/V
t V
G v v V t v
U D k D RT
αμραμ⋅⎛⎫
=⋅
⎪⎝⎭
(3-10)
=0.237(14045.78025÷100.6228×10-5)0.7(0.06228÷0.081÷1.1761)
0.3(100×0.081÷8.314÷293) =0.152159029kmol/(㎡h kpa) 液膜吸收数据由下式计算:
2
113
23
0.0095L L L L w l L L L U g K D μμαμρρ-
⎛⎫⎛⎫⎛⎫
⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (3-11)
=0.566130072m/h 因为 1.45ψ=
1.1G G W K K ααϕ==0.15215×0.3740×1.451.1×100 (3-12)
=8.565021kmol/(m3 h kpa)
0.4L L W K K ααϕ= =0.56613×100×0.37404×1.450.4 (3-13)
=24.56912/h 因为:F
u u =0.8346
所以需要用以下式进行校正:
1.4
'
19.50.5G G F u k k u αα⎡⎤⎛⎫⎢⎥⋅=+-⋅ ⎪⎢⎥⎝⎭⎣⎦
(3-14)
=[1+9.5(0.69999-0.5)1.4] 8.56502=17.113580 kmol/(m3 h kpa)
2.2'
1 2.60.5l L F u k k u αα⎡⎤⎛⎫⎢⎥⋅=+-⋅ ⎪⎢⎥⎝⎭⎣⎦
(3-15)
=[1+ 2.6 (0.6999-0.5)2.2] 24.569123=26.42106/h
''
111G G L K K HK ααα
=
+ (3-16)
=1÷(1÷17.1358+1÷0.725÷26.4210)
=9.038478 kmol/(m3 h kpa)
OG Y G V V H K K P αα=
=
Ω
Ω
(3-17)
=234.599÷9.03847÷101.3÷0.785÷0.64 =0.491182 m
OG OG Z H N = (3-18)
=0.491182×9.160434=4.501360m,得
'Z =1.4×4.501=6.30m
3.2.3 填料层的分段
对于鲍尔环散装填料的分段高度推荐值为h/D=5~10。

h=5×800~10×800=4~8 m
计算得填料层高度为7000mm ,,故不需分段
3.3 填料层压降的计算
取 Eckert (通用压降关联图);将操作气速'u (=2.8886m/s) 代替纵坐标中的
F u 查表,DG50mm 塑料鲍尔环的压降填料因子φ=125代替纵坐标中的.
则纵标值为:
2
.02L
L V P g u μρρϕφ••=0.1652 (3-19) 横坐标为:
0.5
V L V L W W ρρ⎛⎫= ⎪⎝⎭
0.5
5358.89572 1.17617056.6998.2⎛⎫ ⎪⎝⎭
=0.02606 (3-20)
查图得
P
Z
∆=∆ 981Pa/m (3-21) 全塔填料层压降 P ∆=981×7=6867 Pa
至此,吸收塔的物科衡算、塔径、填料层高度及填料层压降均已算出。

第四节 填料塔件的类型及设计
4.1 塔件类型
填料塔的件主要有填料支撑装置、填料压紧装置、液体分布装置、液体收集再分布装置等。

合理的选择和设计塔件,对保证填料塔的正常操作及优良的传质性能十分重要。

4.2 塔件的设计
4.2.1 液体分布器设计的基本要求: (1)液体分布均匀
(2)操作弹性大 (3)自由截面积大
(4)其他
4.2.2 液体分布器布液能力的计算 (1)重力型液体分布器布液能力计算
(2)压力型液体分布器布液能力计算
注:(1)本设计任务液相负荷不大,可选用排管式液体分布器;且填料层不高,可不设液体再分布器。

(2)塔径及液体负荷不大,可采用较简单的栅板型支承板及压板。

其它塔附件及气液出口装置计算与选择此处从略。

注:
1填料塔设计结果一览表
塔径0.8m
填料层高度7m
填料规格50mm鲍尔环
操作液气比 1.2676356 1.7倍最小液气比
校正液体流速 2.78220/s
压降6867 Pa
惰性气体流量234.599kmol/h
2 填料塔设计数据一览
附件一:塔设备流程图
附件二:塔设备设计图。

相关文档
最新文档