监督分类后处理和精度评价

合集下载

遥感影像解译-分类后处理及精度评价、分类新方法

遥感影像解译-分类后处理及精度评价、分类新方法

二、精度评价
• 遥感信息提取中的不确定性是当前遥感研究的一个热点。 人们总是希望从遥感数据中提取的信息完全客观准确地反映 实际情况,但由于自然环境的复杂性,以及自然环境与遥感 波谱相互作用的复杂性,从传感器记录的光谱信号中提取的 关于地表的信息中,总是存在不确定性,因此,在使用从遥 感数据得到的专题图或某一地表参数的分布信息时,需要了 解这些信息的不确定性。
3×3窗口分析结果
(4) 分类后处理-平滑处理
• 针对问题 分类结果斑点噪声严重
• 解决方法: a. MRF随机场建模 b. Majority Voting 方法
原始多光谱遥感影像与地面真实值
(1) IKONOS 多光谱影像
原始多光谱遥感影像与地面真实值
(1) IKONOS 多光谱影像
(2) 地表真实值
(a) 混淆矩阵
• 混淆矩阵是通过比较分类结果和地面真实情况得到的数值 矩阵。 - 列表示地面真实类(Ground Truth Class),列值表示地面 真实类被分配到各个影像类的像元数(百分比, Percent)
• 通过比较分类结果和地面真实情况来估计分类精度,根据 混淆矩阵可以计算各种精度评价参数。
25446 Aprod 52987 48.02% 1 Eo
(e) 用户精度(User’s Accuracy)
• 用户精度(User’s Accuracy): - 影像类中,某类像元被正确分类为该类的概率,利用 混淆矩阵的行来计算。如水的用户精度:
Auser

9180 56104
16.36%
3、判断聚类是否合理
采用误差平方和准则函数判断聚类是否合理,不合理则修改分类。循 环进行判断、修改直至达到算法终止条件。

郭平--土地分类精度评价

郭平--土地分类精度评价
通过目视可分辨5类地物,本次分类分为居民点、水域、 林地、耕地、裸地
采用Landsat7北京市影像数据,裁剪后RGB(432)波段组合的研究区影 像
(2)训练样本的选取
选好训练样本后, 进行分离度检查,根据 分离性值的大小,从小 到大列出感兴趣区组合, 这两个参数的值为0~2.0 之间,大于1.9说明样本 之间可分离性好,属于 合格样本,小于1.8,需 要重新选择样本,小于1, 考虑将两类样本合并成 一类样本。
1. 遥感影像分类
遥感图像通过亮度值或像元值的高低差异及空间变 化来表示不同地物的差异,这是区分不同图像地物的物 理基础。遥感图像分类通过计算机手段,利用某种算法 进行分类,获取遥感图像中与实际地物的对应信息,从 而实现遥感图像的分类,一般分类方法有监督分类与非 监督分类[1]。
1.1 监督分类
监督分类,又称训练分类法,用被确认类别的样本像元去识 别其他未知类别像元的过程。它就是在分类之前通过目视判读和 野外调查,对遥感图像上某些样区中影像地物的类别属性有了先 验知识,对每一种类别选取一定数量的训练样本,计算机计算每 种训练样区的统计或其他信息,同时用这些种子类别对判决函数 进行训练,使其符合于对各种子类别分类的要求,随后用训练好 的判决函数去对其他待分数据进行分类。使每个像元和训练样本 作比较,按不同的规则将其划分到和其最相似的样本类,以此完 成对整个图像的分类。
(2)本次研究中的验证
常用的精度评价的方法有两种:一是混淆矩阵;二是ROC曲线。其 中,比较常用的为混淆矩阵,ROC曲线可以用图形的方式表达分类精 度,比较形象。
真实参考源可以使用两种方式:一是ห้องสมุดไป่ตู้准的分类图;二是选择的 感兴趣区(验证样本区)。
真实的感兴趣区验证样本的选择可以是在高分辨率影像上选择, 也可以是野外实地调查获取,原则是获取的类别参考源的真实性。由 于没有更高分辨率的数据源,本例中就把原分类的TM影像当作是高分 辨率影像,在上面进行目视解译得到真实参考源,并采用混淆矩阵的 地表真实感兴趣区进行精度验证。

监督分类与专题制图(Erdas)

监督分类与专题制图(Erdas)

遥感实验报告实验目的:掌握遥感图像计算机分类的基本原理以及监督分类方法,掌握分类后处理方法、分类精度评价及专题地图制作。

实验内容:1、遥感图像计算机监督分类2、分类后处理3、分类精度评价4、专题图制作实验方法和步骤:实验方法:在监督分类的过程中,首先借助或者识别其他信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有该特性的像元。

对分类结果进行评价后在对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上进行最终分类。

实验步骤:1.定义分类模板2.精度评价3.进行监督分类4.评价分类结果5.分类后处理6.专题制图实验的过程和结果:(一)监督分类1.定义分类模板第一步:打开分类的图像,南宁市1990年9月16日TM,目视判断该遥感图像中南宁市土地利用类型,确定土地利用分类体系为:耕地、灌草地、林地、水域、建设用地、裸地。

如图1-1:图1-1第二步:打开模板编辑器并调整显示字段点击主菜单上的classifier打开classification对话框,选择signature editor。

如图1-2:图1-2第三步:获取分类模板信息,点击AOI,利用AOI-tools中的多边形工具绘制某一地类的样区。

将画好的耕地AOI添加到模板。

signature editor-edit-add.如图1-3,1-4:图1-3图1-4重复步骤第三步,在图中采集多个耕地样本。

选择所有耕地样本模板,按merge 按纽合并这组分类模板。

合并后将模板取名为耕地。

利用同样的方法,依次做好其灌草地、林地、水域、建设用地、裸地土地覆盖类型模板。

如图1-5:图1-5第四步:保存分类模板。

2 .评价分类模板第一步:点signature editor-Evaluate-contingency,利用可能性矩阵方法评价分类模板精度。

达到90以上即为精度满足要求,否则重新选择训练样区,再次进行精度评价,直到精度满足。

ENVI中几种监督分类方法精度比较

ENVI中几种监督分类方法精度比较

ENVI中几种监督分类方法精度比较遥感图像的监督分类常用方法目前可以分为:平行六面体法,马氏距离法,最大似然法,神经网络法以及支持向量机法等。

文章将就以上所述的五种常用的监督分类方法在ENVI中分别对汶川县威州镇同一Landsat8 OLI数据进行土地覆盖与利用状况分类.比较各种方法的分类精度,并对之所产生的差异的原因进行浅析,进而对实际的生产以及应用做出借鉴。

标签:监督分类;平行六面体;神经网络;支持向量机;分类精度Abstract:The common methods of supervised classification of remote sensing images can be divided into:parallelepiped classifier method,Mahalanobis distance method,maximum likelihood method,neural network method and support vector machine method. In this paper,the land cover and utilization of the same Landsat8 OLI data in Weizhou Town,Wenchuan County are classified by the five common supervised classification methods mentioned above in ENVI. Comparing the classification accuracy of various methods,we made an analysis of the causes of the differences,and then identify their actual production and application.Keywords:supervised classification;parallelepiped;neural network;support vector machine;classification accuracy1 概述遥感图像的分类主要是利用计算机将遥感图像中的光谱和空间信息进行分析,提出不同地物之间的特征及边界,并利用一定的算法的各个像元划归到互不重叠的各个子空间之中。

ENVI的监督分类操作步骤

ENVI的监督分类操作步骤

老师要求提交:1.可能性矩阵2.精度评价报告3.分类结果图具体流程:1.打开影像,考试时的影像是老师给的高分辨率影像。

以已有的QuickBird影像为例:File---Open Image File ,在Available Band 中以RGB打开,为真彩色,即地物的真实颜色。

2.选择监督分类样本(感兴趣区域):在影像的工具栏中选择,Overlay---Region of interest在打开的#1 ROI Tool 工具栏中,以多边形的方式选择感兴趣区:ROI-Type----Polygon 在zoom窗口中进行选择选择类别,植被,水体,裸地,房屋。

查看分离程度,继续在ROI Tool 工具栏中,选择Option—compute ROI separability ,选择影像ok.,相关度大于1.8的说明分类较好。

保存文件。

2.用最大似然法进行监督分类,主菜单栏中,Classification —Supervised—Maximum Likelihood,进入选择参数的对话框。

Select all Item阈值Probability Threshold一般在0~1之间。

不需输出真实值。

因为还要分类后处理,储存至memory.3.分类后处理,①分类合并,在主菜单中Classification—post classification—Sieve Classes选择刚才分类好的,memory影像,改变Group Min Threshold数值,由2改到8.即改变每类别最小像元值,由于我只选了四个类别数,应该做完后不会有类别的合并。

保存文件,即要求交的分类结果图。

②生成混淆矩阵主菜单中,Classification—post classification—confusion Matrix—Using Ground Truth ROIS. 将所有类别都选上。

保存混淆矩阵大致是这样,可能还不完整。

全国信息化工程师GIS应用水平考试2018年5月二级应用参考答案

全国信息化工程师GIS应用水平考试2018年5月二级应用参考答案

单选1-5:AACCC6-10:BDCDD11-15:BADAB16-20:BBABA21-25:DCDAA26-30:ACDDC31-35:DBBCC36-40:DCCAD41-45:BDCBD46-50:ABBCA多选51、ABCD52、CD53、AD54、ABC55、ACD操作56-60:CCBDA61-65:DABBA名词解释66.大地坐标系答:大地坐标系是大地测量中以参考椭球面为基准面建立起来的坐标系。

地面点的位置用大地经度、大地纬度和大地高度表示。

大地坐标系的确立包括选择一个椭球、对椭球进行定位和确定大地起算数据。

大地坐标系亦称为地理坐标系。

67.BDS答:BDS是中国北斗卫星导航系统简写,是中国自行研制的全球卫星导航系统。

北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力。

68.分布式数据库答:是一组数据的集合,这些数据在物理上分布于计算机网络的不同结点上,而逻辑上属于同一个系统。

它具有分布性,同时在逻辑上互相关联。

69.泰森多边形答:它采用了一种极端的边界内插方法,只用最近的单个点进行区域插值。

泰森多边形按数据点位置将区域分割成子区域,每个子区域包含一个数据点,各子区域到其内数据点的距离小于任何到其它数据点的距离,并用其内数据点进行赋值。

70.空间分析答:是基于空间数据的分析技术,它以地学原理为依托,通过分析算法,从空间数据中获取有关地理对象的空间位置、空间分布、空间形态、空间形成、空间演变等信息。

简答题71.请简述影响大比例尺地形图数学精度的质量元素有哪些,并分别进行阐述。

1、数学基础:坐标系统、高程系统的正确性;各类投影计算、使用参数的正确性;图根控制测量精度;图廓尺寸、对角线长度、格网尺寸的正确性;控制点间图上距离与坐标反算长度较差;2、平面精度:平面绝对位置中误差;平面相对位置中误差;接边精度;3、高程精度:高程注记点高程中误差;等高线高程中误差;接边精度。

遥感图像分类后处理

遥感图像分类后处理

遥感图像分类后处理一、实验目的与要求监督分类和决策树分类等分类方法得到的一般是初步结果,难于达到最终的应用目的。

因此,需要对初步的分类结果进行一些处理,才能得到满足需求的分类结果,这些处理过程就通常称为分类后处理。

常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。

本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。

二、实验内容与方法1.实验内容1.小斑块去除●Majority和Minority分析●聚类处理(Clump)●过滤处理(Sieve)2.分类统计3.分类叠加4.分类结果转矢量5.ENVI Classic分类后处理●浏览结果●局部修改●更改类别颜色6.精度评价1.实验方法在ENVI 5.x中,分类后处理的工具主要位于Toolbox/Classification/Post Classification/;三、实验设备与材料1.实验设备装有ENVI 5.1的计算机2.实验材料以ENVI自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。

数据位于"...\13数据\"。

其他数据描述:•can_tmr.img ——原始数据•can_tmr_验证.roi ——精度评价时用到的验证ROI四、实验步骤1.小斑块去除应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面积很小的图斑。

无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority分析、聚类处理(clump)和过滤处理(Sieve)。

1)Majority和Minority分析Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该类中,定义一个变换核尺寸,主要分析(Majority Analysis)用变换核中占主要地位(像元数最多)的像元类别代替中心像元的类别。

监督分类与非监督分类

监督分类与非监督分类

光谱理论,遥感影像上的同类地物在相同的表面结构特征、植被覆盖、光照条件下,具有相同或相近的光谱特征,应归属于同一个光谱空间区域;不同的地物,光谱信息特征不同,应归属于不同的光谱空间区域。

数据准备与研究区概况实习数据:1. 512×512的研究区 Landsat 8 OLI影像;研究区概况:研究区域位于甘肃省金昌市北部,东北部分连接腾格里沙漠。

研究区地形以戈壁为主,有少量沙漠,土地干旱;植被以干旱植物为主,有叫少量的数目与草地,无河流。

土地空旷。

根据所下载影像数据命名规则可知,成像时间为2014年第262天,即八月下旬。

由于影像为西北河西走廊区域金昌市,农作物一年一熟,成熟期约为八月,故此时农作物尚未成熟。

农作物与各植物依旧呈现绿色。

研究区大部分以沙漠及戈壁为主,除此之外,有少量砾漠、草地、农田等,且有一条较小的河流与一片较大水体,地物种类简单且形式单一。

研究区含小部分城区且城区规模较小,建筑物密集度低,城镇高楼较少,农村建筑以砖瓦房为主,有少量土坯房。

其余戈壁区域未经人为开发,为自然状态。

操作步骤一、监督分类:1、选取研究区数据(512×512或者1024×1024),结合GoogleEarth影像通过目视解译建立分类系统及其编码体系;编码体系如下:编码地物名称色调12水浇地 irrigated land R225 G225 B15030草地 grassland R170 G190 B03051河流 stream R150 G240 B25552水库、坑塘 reservoir or pond R160 G205 B24071沙漠 sandy desert R200 G190 B17072砾漠 gravel desert R215 G200 B18573裸地及盐碱地 barren land R200 G205 B2002、按照监督分类的步骤,在影像上找出对应各个土地利用/覆盖类型的参考图斑,利用ROI工具建立训练区:训练样本如下:对训练样本进行统计,结果如下:对训练样本中各地物特征值进行统计,得到各个类别的特征统计表:地物类型73:barren land 采样单元数:波段1234567号:单变量统计最小13329132781422116003179042056019082值最大14137143391590318212208392251620998值均值13593。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

监督分类后处理和精度评价
1.下面的图像是用监督分类法来分的乌鲁木齐市的遥感图像,我分了四个class,植物,水体,城市,山地等。

我们可以看到很多不应该城市的地方变成城市了,所以我们应该对它进行一些处理。

2.处理过程是:#1Max like窗口的overlay-→classification→出现一个下面的窗口b5E2RGbCAP
我把Active class调整山地,然后按下面的步聚来进行处理
#1Interactive class tool 窗口的Edit Mode:polygon add to classp1EanqFDPw
3.下面的是处理好的图像。

4.接下来可以进行精度评价;classification→post classification→Confusion Matrix→Using Ground Truth ROIs。

然后选择自己分类的图像和原图像进行评价操作。

DXDiTa9E3d
5.下面的进行精度评价而的出来的结果。

申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用
途。

相关文档
最新文档