单管共射放大电路 (2)

合集下载

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告一、实验目的1、掌握晶体管共射极单管放大电路的组成及工作原理。

2、学习静态工作点的调试方法,研究静态工作点对放大器性能的影响。

3、掌握放大器电压放大倍数、输入电阻、输出电阻的测量方法。

4、观察放大器输出波形的失真情况,了解产生失真的原因及消除方法。

二、实验原理1、晶体管共射极单管放大电路的组成晶体管共射极单管放大电路由晶体管、基极电阻、集电极电阻、发射极电阻和耦合电容等组成。

输入信号通过耦合电容加到晶体管的基极,经晶体管放大后,从集电极输出,再通过耦合电容加到负载电阻上。

2、静态工作点的设置静态工作点是指在没有输入信号时,晶体管各极的直流电流和电压值。

合适的静态工作点可以保证放大器在输入信号的作用下,输出信号不失真。

静态工作点的设置主要通过调整基极电阻和集电极电阻的阻值来实现。

3、放大器的性能指标(1)电压放大倍数:是指输出电压与输入电压的比值,反映了放大器对信号的放大能力。

(2)输入电阻:是指从放大器输入端看进去的等效电阻,反映了放大器从信号源获取信号的能力。

(3)输出电阻:是指从放大器输出端看进去的等效电阻,反映了放大器带负载的能力。

三、实验仪器及设备1、示波器2、信号发生器3、直流稳压电源4、万用表5、实验电路板6、晶体管、电阻、电容等元件四、实验内容及步骤1、按图连接实验电路仔细对照电路图,在实验电路板上正确连接晶体管共射极单管放大电路,注意元件的极性和引脚的连接。

2、静态工作点的调试(1)接通直流稳压电源,调节电源电压至合适值。

(2)用万用表测量晶体管各极的电压,计算静态工作电流。

(3)通过调整基极电阻的阻值,改变静态工作点,观察输出电压的变化,使输出电压不失真。

3、测量电压放大倍数(1)将信号发生器的输出信号接到放大器的输入端,调节信号发生器的频率和幅度,使输入信号为正弦波。

(2)用示波器分别测量输入信号和输出信号的峰峰值,计算电压放大倍数。

4、测量输入电阻(1)在放大器的输入端串联一个已知电阻。

单级共射放大电路

单级共射放大电路

单级共射放大电路实验原理图2-1是电阻分压器式工作点稳定单管共发射放大器电路的实验原理图。

其偏置电路采用RB1和Rb2组成的分压电路,发射极中连接电阻re以稳定放大电路的静态工作点。

当将输入信号UI加到放大电路的输入端时,可以在放大电路的输出端获得相位相反、幅度放大的输出信号U0,从而实现电压放大。

rp1100krc12k47μfrb114。

7k47μfrb1210k510re151c3图2-1共射极单管放大电路实验电路在图2-1的电路中,当流过偏置电阻器RB1和Rb2的电流远大于晶体管t的基极电流IB(通常为5~10倍)时,其静态工作点可通过以下公式估算:UB?rb1uccrb1?rb2u?ubeie?b?icreuce=ucc-ic(rc+re)电压放大倍数av??βrc//rlrbe输入电阻ri=rb1//rb2//rbe实验二单级共射放大电路输出电阻ro≈ 钢筋混凝土由于电子电路件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。

在设计前应测量所用元电路件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大电路的静态工作点和各项性能指标。

一个优质放大电路,必定是理论设计与实验调整相结合的产物。

因此,除了学习放大电路的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大电路的测量和调试一般包括:放大电路静态工作点的测量和调试,干扰和自激振荡的消除,放大电路各种动态参数的测量和调试。

1.放大电路静态工作点的测量和调试1)静态工作点的测量测量放大电路的静态工作点,应在输入信号ui=0的情况下进行,即将放大电路输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流ic以及各电极对地的电位ub、uc和ue。

一般实验中,为了避免断开集电极,所以采用测量电压ue或uc,然后算出ic的方法,例如,只要测出ue,即可用ic?ie?ueu?uc算出ic(也可根据ic?cc,由uc确定ic),rerc同时也能算出ube=ub-ue,uce=uc-ue。

共射极单管放大电路(二)

共射极单管放大电路(二)

电路分析实验报告共射极单管放大电路(二)一、实验摘要通过单管放大电路,认识三极管性能参数。

经过测量、分析、学习、研究后,你能够控制三极管的工作状态,使三极管按设定的要求工作。

这次关注的是动态参数Ri和Ro,使用输出电压相等法和戴维南等效电路法。

二、实验环境模拟电路试验箱函数信号发生器示波器万用表三、实验原理输出电压相等法第一步,不串电阻,在放大电路输入端接入信号源电压U1,在放大电路输出端接示波器观察输出电压Uo;第二步,在输入电路中串大电阻R,这时在示波器上看到的波形将明显变小,调整(增大)信号源输出,使示波器上的输出波形达到原来的Uo大小,(这时输入端的电压还是U1),再测量这时的信号源输出电压U2,(由于信号源内阻很小,不会产生感应电压),U2与U1的差就是R上的压降。

输入电流Ii=(U2-U1)/R,电路的输入电阻Ri=U1/Ii=U1*R/(U2-U1) 。

戴维南等效法放大电路对其负载而言,相当于信号源,我们可以将它等效为戴维南等效电路,这个戴维南等效电路的内阻就是输出电阻。

四、实验步骤在模电试验箱对应模块上连接电路调节信号发生器,调节电位器,450mVpp,1kHz使波形不失真分别用输出电压相等法和戴维南等效法测量输入输出电阻五、实验数据输入电阻Ri:输出电压相等法不加R时:Vin=450mVpp Vout=6.4V加R时:Vin=920Vpp Vout=6.4VR=5.1千欧输入电阻Ri=5326.7欧姆输出电阻Ro:戴维南法V1=4mVpp V2=550mVppV=0.19452V I=0.0656mA输出电阻R=2965.2欧姆六、实验总结在本次实验中了解到了三极管的放大特性。

通过单管放大电路,认识了三极管放大电路的动态参数Ri和Ro。

单管共射放大电路

单管共射放大电路

项目一单管共射放大电路1、实验目的(1)熟悉晶体管的管型、管脚和电解电容器的极性。

(2)测量单管放大电路的电压增益,并比较测量值与计算值。

(3)测定单级共射放大电路输入与输出波形的相位关系。

(4)测定负载电阻对电压增益的影响。

(5)熟悉放大器静态工作点的调试方法以及静态工作点变化对放大器性能的影响。

(6)研究放大器的动态性能。

2、实验仪器PC机一台 Multisim软件低频信号发生器示波器直流稳压电源万用表3、实验原理及电路晶体三极管由半导体材料硅或锗制成。

各种管的外形和管芯在制造工艺上各有不同,但最基本的结构只有NPN型和PNP型两种,管芯内部包含由两个PN结组成的三个区(发射区、基区、集电区)。

三极管的工作状态可以分为以下三个区域:(1)截止区减小基极电流IB、集电极电流IC也随着减小,当IB=0时,IC≈0,即特性曲线几乎与横轴重合,这时,三极管相当于一个断开的开关。

(2)饱和区三极管的发射结、集电结均处于正向偏置,IC基本上不受IB控制(IC≠βIB),晶体管失去了电流放大作用。

这时,VCE很小,晶体管相当于一个接通的开关,使电源电压VCC几乎全加到集电极电阻RC上。

(3)放大区发射结正向偏置、集电结反向偏置,IC的变化取决于IB(IC=βIB),基本上与VCE无关,晶体管具有电流放大作用。

这时晶体管工作于线性放大区。

截止、放大、饱和三个区的VBE数值见表1-1。

表1-1 VBE数值表对放大器的基本要求是:有的电压放大倍数,输出电压波形失真要小。

放大器工作时,晶体管应工作在放大区,如果静态工作点选择不当,或输入信号过大,都会使输出波形产生非线性失真。

一般采用改变偏置电阻RB的方法来调节静态工作点。

当放大器的输入信号幅值较小时,在保证输出电压波形不失真的条件下,常选取较低的静态工作点,以降低放大器噪声和电源的能量损耗。

实际使用中,常通过测量RC上电压的方法来测量集电极电流IC。

放大器的电压增益Au可用交流输出电压峰值Uop除以输入电压峰值Uip来计算在单级共射放大器中,集电极等效交流负载电阻R’L为晶体管的输入电阻rbe可估算为式中,IE为静态发射极电流,也可用静态集电极电流ICQ来代替。

单管共射放大电路及其分析方法

单管共射放大电路及其分析方法

单管共射放大电路及其分析方法单管共射放大电路是一种常用的单管放大电路,常用于电子设备中的信号放大部分。

它的基本原理是将输入信号串联到输入电容上,通过串联的电容将信号引入到放大管的基极,并通过电阻将放大管的发射极接地,从而形成共射放大电路。

本文将介绍单管共射放大电路的工作原理以及常用的分析方法。

单管共射放大电路的基本原理是利用放大管的电流放大能力将输入信号放大到输出端。

在电路中,放大管的基极被输入电容串联,并接到输入信号源。

当输入信号变化时,电容将输入信号引入到放大管的基极中,使得管子的驱动点发生偏移。

同时,放大管的发射极通过电阻连接到地,形成共射放大电路,通过电流放大作用,将输入信号放大到输出端。

具体的过程是:当输入信号为正向偏移时,放大管的发射电流增加,使得扩散极的电压下降,从而使放大管的驱动点偏向截止状态。

反之,当输入信号为负向偏移时,放大管的发射电流减小,使扩散极的电压上升,从而使放大管的驱动点偏向饱和状态。

通过这种方式,输入信号经过放大管的放大,输出端可以得到一个放大后的信号。

但需要注意的是,在实际电路中,为了保持放大管的工作在放大区,通常会对放大管的工作点进行偏置,即通过添加恒流源、电流镜等元件来保持放大管的工作在线性放大区。

在进行单管共射放大电路的分析时,有几个常用的方法可以帮助我们更好地理解电路的工作原理。

首先,可以使用直流分析的方法来分析电路的静态工作状态。

直流分析可以通过对电路中的直流元件(如电阻、电流源等)进行分析,得到电路的静态工作点。

静态工作点是指在没有输入信号时,电路各个节点和分支的电压和电流的数值。

在进行直流分析时,需要对电路中的直流元件进行参数计算,并应用基本的电路定理(如欧姆定律、基尔霍夫电流定律、基尔霍夫电压定律等)进行方程的建立和求解。

其次,可以使用小信号分析的方法来分析电路的交流工作状态。

在小信号分析中,将电路中的元件替换成小信号等效模型,可以得到电路中对小信号响应的表达式。

实验二 单管共射放大电路实验

实验二 单管共射放大电路实验

实验二单管共射放大电路实验一、实验目的:1.研究交流放大器的工作情况,加深对其工作原理的理解。

2.学习交流放大器静态调试和动态指标测量方法。

3.进一步熟悉示波器、实验箱等仪器仪表的使用方法。

4.掌握放大器电压放大倍数、输入电阻、输出电阻和最大不失真输出电压的测试方法。

二、实验仪器设备:1.实验箱 2.示波器 3.万用表三、实验内容及要求:1.按电路原理图在试验箱上搭接电路实验原理:如图为电阻分压式共射放大电路,它的偏置电路由Rw、Rb1和Rb2组成,并在发射极接有电阻Re’和Re’’,构成工作点稳定的放大电路。

电路静态工作点合适的情况下,放大器的输入端加入合适的输入信号Vi后,放大器的输出端便可得到一个与Vi相位相反、幅度被放大了的输出信号V0,从而实现了电压放大。

2.静态工作点的测试打开电源,不接入输入交流信号,调节电位器W2使三极管发射极电位UE =2.8V。

用万用表测量基极电位UB、集电极电位UC和管压降UCE,并计算集电极电流IC。

、3.动态指标测量(1)由信号源输入一频率为1kHz ,峰峰值为400mv 的正弦信号,用示波器观察输入、输出的波形,观察并在同一坐标系下画出输入ui 和uo 的波形示意图。

(2)按表中的条件,测量 us 、 ui 、 uo 、 uo',并记算Au 、ri 和ro 。

s i s i i i iR U U U I U r -== Lo o oo o oR U U U I U r -=='4. 研究静态工作点与波形失真的关系在以上放大电路动态工作情况下,缓慢调节增大和减小W2观察两种不同失真现象,并记录失真波形。

若调节W2到最大、最小后还不出现失真,可适当增大输入信号。

5. 实验数据记录。

(1). 静态工作点的测试(2). 动态指标测量 1. Ui 和Uo 的波形(3) 测量 Us 、Ui 、Uo 、Uo',并记算Au 、Ri 和Ro 。

Uo Ui t(4)研究静态工作点与波形失真的关系Uo Uit增大R w2Uo Ui减小R W2四、思考题(1)总结放大电路静态工作点、负载、旁路电容的变化,对放大电路的电压放大倍数及输出波形的影响。

晶体管单管放大电路的三种基本接法特点

晶体管单管放大电路的三种基本接法特点

晶体管单管放⼤电路的三种基本接法特点
晶体管单管放⼤电路的三种基本接法:
共射极:射极接地,基极输⼊,集电极输出;
共集电极:集电极接电源,基极输⼊,射极输出;
共基极:基极接固定电压,射极输⼊,集电极输出;
特点:
(1)共射电路既能放⼤电流⼜能放⼤电压,输⼊电阻居三种电路之中,输出电阻较⼤,频带较窄。

常作为低频电压放⼤电路的单元电路。

(2)共集电路只能放⼤电流不能放⼤电压,是三种接法中输⼊电阻最⼤、输出电阻最⼩的电路,并具有电压跟应的特点。

常⽤于电压放⼤电路的输⼊级和输出级,在功率放⼤电路中也常采射极输出的形式
(3)共基电路只能放⼤电压不能放⼤电流,具有电流跟的特点;输⼊电阻⼩,电压放⼤倍数、输出电阻与共射电路相当,是三种接法中⾼频特性最好的电路。

常作为宽频带放⼤电路。

单管放大器总结 共射、共集、共基放大电路

单管放大器总结 共射、共集、共基放大电路

晶体管共射极单管放大器单管放大电路的三种基本结构单管放大电路有共发射极、共基极和共集电极三种解法(组态),他们的输入和输出变量不同,因而电路的性能也不太一样。

共发射极单管放大电路.共集电极单管放大电路.共基极单管放大电路图一为电阻分压式工作点稳定单管放大器实验电路图。

他的偏置电路采用Rb1组成的分压式电路,并在发射极中接有电阻Re,以稳定放大器的静态工作点。

在放大器的输入端加入输入信号Ui后,在放大器的输入端可得到一个与Ui相位相反,幅值被放大的输出信号U0,从而实现放大。

图一共射极单管放大器实验电路图当流过电阻Rb1和Rb2的电流远大于晶体管T的基极电流Ib时,则他的静态工作点Ub可以以以下式估算Ub=Rb1*U/Rb1+Rb2 Ie=Ub-Ube/Re≈Ic Uce=Ucc-Ic(Rc+Re)放大倍数Av=-β(Rc∥Rc)/rbe+(1+β)Re输出电阻:R=Rb1∥Rb2∥[rbe+(1+β)Re]输入电阻;R0≈Rc放大器的测量与调试一般包括:放大器静态工作点的测量与调试。

消除干扰与自激振荡机放大器各项动态参数的测量与调试。

1.放大器静态工作点的测量与调试(1)放大器静态工作点的测量测量放大器静态工作点的条件:输入信号Vi=0即将输入端与地短接,选用量程合适的直流毫安表和直流电压表分别测出所需参数:Ic,Ub,Uc,Ue.(2)静态工作点的调试放大器静态工作点的调试是指对管子集电极电流Ic(或Uce)的调试与测量。

静态工作点对放大器的性能和输出波形都有很大影响。

工作点偏高会导致饱和失真如图(2)所示;反之则导致截止失真如图(3).图二图三改变电路参数Ucc,Rc,Rb(Rb1,Rb2)都会引起静态工作点的改变如图四所示:图四2.放大器的动态指标测试放大器的动态指标包括:电压放大倍数,输入电阻,输出电阻,最大不失真输出电压(动态范围)和通频带等。

(1)电压放大倍数Av的测量调整放大器到合适的静态工作点,再加入输入电压Ui ,在输出电压不是真的情况下,用交流豪伏表测出Ui和Uo的有效值,则Av=Uo/Ui。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单管放大电路实验报告
作者: ET6V 一、实验原理图
二、实验过程以及理论值推算
(1)测量静态工作点
调节Rp,得到V CE=5、5V
则I E≈I C==2、54mA V E=I E R E=1、42V
V B=V E+V BE=2、12V V c=V E+V CE=1、42V
(2)测电压放大倍数
β=35
)m ()
be )(26)
β(1300r A E I mV ++==678、74Ω
L C
L R R R //
′=
R=∞时,C L R R =′=2K Ω Av=be r ′
β
o L i
R V V -==-104 R=2K Ω时,L C L R R R //′==1K Ω Av=be r ′β
o L i R V V -==-52
(3)观察静态工作点变化对输出波形的影响 当
V CE 过大或过小时会出现截止失真与饱与失真。

三.仿真
(1)静态工作点的仿真值
(2)测电压放大倍数的仿真值
带有负载时,V i与V O的波形
其中ChannedA 就是V o, ChannedB 就是V i
空载时,V i与V O的波形
其中ChannedA 就是V o, ChannedB 就是V i
(3)观察静态工作点变化对输出波形的影响饱与失真
截止失真
四.实验时的实验数据
(1)实际使用的电路图
(2)测量静态工作点
(3)测电压放大倍数的值
(4)观察静态工作点变化对输出波形的影响
当R P减小就是,观察到饱与失真图形
当R P增大时,观察到截止失真图形(5)观察V i与V o
当有负载时:
横轴扫描:0、5ms/格,2格/T
V i:10mv/格,峰峰值共3格
V o:0、2v/格,峰峰值共6、5格
Vi与VO之间有π个相位差
当空载时:
横轴扫描:0、5ms/格,2格/T
V i:10mv/格,峰峰值共3格
V o:0、5v/格,峰峰值共5、8格
Vi与VO之间有π个相位差
五.对比分析
(1)测量静态工作点
实验值与仿真值、理论值很接近。

(2)测算电压放大倍数
实验值与理论值很接近但与仿真值相差很远,可能就是在Mutilism中三极管β值修改错误或放大倍数与三极管其她参数有关,而在Mutilism中未能修改导致。

(3)观察静态工作点变化对输出波形的影响。

实际操作中与仿真中当V CE等静态工作点设置不当时,都会产生失真现象,V CE较小时出现饱与失真,VCE较大时出现截止失真。

六.收获与体会
1 Multisim仿真结果在一定程度上能够预测实际的实验结果,运用软件仿真可以验证我们实验的正确性
2 三极管只有在静态工作点设置合适时,才能处于放大条件,静态工作点设置不合适会导致输出波形失真。

相关文档
最新文档