2014考研数学一真题及答案

合集下载

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2014年]行列式=( ).A.(ad-bc)2B.一(ad-bc)2C.a2d2一b2c2D.一a2d2+b2c2正确答案:B解析:令,则此为非零元素仅在主、次对角线上的行列式,即得|A|=一(ad-bc)(ad-bc)=一(ad-bc)2.仅B入选.知识模块:行列式2.设A是m×n矩阵,B是n×m矩阵,则( ).A.当m>n时,必有行列式|AB|≠0B.当m>n时,必有行列式|AB|=0C.当n>m时,必有行列式|AB|≠0D.当n>m时,必有行列式|AB|=0正确答案:B解析:利用矩阵秩和乘积矩阵秩的两不大于法则确定正确选项.因AB为m 阶矩阵,行列式|AB|是否等于零取决于其秩是否小于m.利用矩阵秩的两不大于法则得到m>n时,有秩(A)≤min{m,n}=n<m,秩(B)≤min{m,n}=n <m.再利用乘积矩阵秩的两不大于法则得到秩(AB)≤min{秩(A),秩(B)}<m,而AB为m阶矩阵,故|AB|=0.仅B入选.知识模块:行列式3.[2012年]设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=.若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=( ).A.B.C.D.正确答案:B解析:因Q=[α1+α2,α2,α3]=[α1,α2,α2],故因而Q-1AQ 知识模块:矩阵4.[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则( ).A.E—A不可逆,E+A不可逆B.E—A不可逆,E+A可逆C.E—A可逆,E+A可逆D.E—A可逆,E+A不可逆正确答案:C解析:由A3=O知A为幂零矩阵,故其特征值λ1=λ2=…=λn=0,因而E —A与E+A的n个特征值均为μ1=μ2=…=μn=1,故E一A与E+A没有零特征值.可知,它们均可逆.知识模块:矩阵填空题5.设n阶矩阵,则|A|=______.正确答案:(一1)n-1(n一1)解析:|A|是行和与列和都相等的行列式.将各列加到第1列,提取公因式n一1,去掉与第1列成比例的分列,化为下三角形行列式,得=(一1)n-1(n 一1).知识模块:行列式6.[2015年] n阶行列式=______.正确答案:2n+1-2解析:按第1行展开得到递推关系式:=2Dn-1+2(一1)n+1(一1)n-1=2Dn-1+2.依此递推,得到Dn=2Dn-1+2=2(2Dn-2+2)+2=22Dn-2+22+2=22(2Dn-3+2)+22+2=23Dn-3+23+22+2 =…=2n-1D1+2n-1+2n-2+…+22+2=2n-1·2+2n-1+2n-2+…+22+2=2n+2n-1+2n-2+…+22+2=2(1+2+22+…+2n-1).由等比级数求和的公式a1+a1q+a1q2+…+a1qn-1=,令a1=2,q=2,得到Dn=2(1+2+22+…+2n-1)==(一1)(2—2n+1)=2n+1-2.知识模块:行列式7.[2016年]行列式=______.正确答案:λ4+λ3+2λ2+3λ+4解析:=λ[λ·λ·(λ+1)+0·2·0+3(-1)(一1)一0·λ·3一(一1)·2·λ—(λ+1)(一1)·0]+4=λ4+λ3+2λ2+3λ+4.知识模块:行列式8.设A,B为n阶矩阵,|A|=2,|B|=一3,则|2A*B-1|=______.正确答案:一22n-1/3解析:由|kA|=kn|A|.A*=|A|A-1,|A*|=|A|n-1,|B-1|=1/|B|,有|2A*B-1|=|2A*||B-1|=2n|A*|(1/|B|)=2n|A|n-1一/|B|=2n2n-1/(一3)=一22n-1/3.知识模块:行列式9.[2005年] 设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3].如|A|=1,那么|B|=______·正确答案:2解析:B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3]=[α1,α2,α3]=AC.其中为三阶范德蒙行列式,则|C|=(2—1)×(3—1)×(3—2)=2,故|B|=|A||C|=2×1=2.知识模块:行列式10.[2006年]设矩阵,E为二阶单位矩阵,矩阵B满足BA=B+2E,则|B|=______.正确答案:2解析:由BA=B+2E得|B(A—E)|=|2E|=22=4,故|B||A—E|=4,|B|=4/|A—E|=4/2=2.知识模块:行列式11.[2004年]设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则|B|=______.正确答案:1/9解析:在所给方程的两边同时右乘A,利用A*A=|A|E,得到ABA*A=2BA*A+A,即|A|AB=2|A|B+A,移项即得|A|(A一2E)B=A.两边取行列式,得到|A|(A-2E)B|=|A|,即|A|3|(A-2E)B|=|A|,|A|2|A一2E||B|=1,再由|A|=3,|A一2E|=1得到所求行列式|B|=1/|A|2=1/9.知识模块:行列式12.设三阶矩阵A的特征值为1,2,2,E为三阶单位矩阵,则|4A-1一E|=______.正确答案:3解析:所求结果应与A能否与对角矩阵相似无关,现用加强条件法求出此结果.如A与对角矩阵相似,则存在可逆矩阵P,使得P-1AP=diag(1,2,2)=Λ,即A=PΛP-1.于是A-1=PΛ-1P-1,4A-1一E=4PΛ-1P-1一PEP-1=P(4Λ-1一E)P-1.两端取行列式有|4A-1一E|=|P||4Λ-1一E||P-1|=|4Λ-1一E|=|4diag(1,1/2,1/2)一E|=3.知识模块:行列式13.[2013年] 设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=______.正确答案:-1解析:由aij=一Aij,则(aij)T=一(Aij)T=一(Aji),即AT=一A*,从而|A|=|AT|=|—A*|=(一1)3|A|3-1=一|A|2.即|A|2+|A|=|A|(|A|+1)=0,故|A|=0或|A|=一1.若|A|=0,则由|A|=ai1Ai1+ai2Ai2+ai3Ai3=一(ai12+ai22+ai32)=0 (i=1,2,3)得到aij=0(i,j=1,2,3),即矩阵A为零矩阵.这与假设矛盾,故|A|=一1. 知识模块:行列式14.若齐次线性方程组只有零解,则λ应满足的条件是______.正确答案:λ≠1解析:因方程个数与未知数的个数相同,又该方程组只有零解,可知,|A|≠0.而于是当λ≠1时,|A |≠0,即该方程组只有零解.知识模块:行列式15.设α为三维列向量,αT是α的转置.若ααT=,则αTα=______.正确答案:3解析:由ααT= 知,于是αTα=3.知识模块:矩阵16.设,而n≥2为整数,则An一2An-1=______.正确答案:O解析:先求出n=2和n=3时A2,A3的表示式,然后归纳递推求出An.当n=2时,A2==2A.当n=3时,A2=A2·A=2A·A=2A2=2·2A=22A.设Ak=2k-1A,下面证Ak+1=2kA.事实上,有Ak+1=Ak·A=2k-1A·A=2k-1A2=2k-1·2A=2kA.因而对任何自然数n,有An=2n-1A,于是An一2An-1=2n-1A一2·2n-2A=O.知识模块:矩阵解答题解答应写出文字说明、证明过程或演算步骤。

2014年考研数一真题及答案解析

2014年考研数一真题及答案解析

2014年考研数一真题与答案解析数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)B(2)D(3)D(4)B(5)B(6)A(7)(B )(8)(D )二、填空题:9?14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)012=---z y x(10)11=-)(f(11)12+=x x yln(12)π(13)[-2,2](14)25n三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)【答案】(16)【答案】x y )(y 20-==或舍。

x y 2-=时,所以21-=)(y 为极小值。

(17)【答案】令u y cos e x =,则u )u (f )u (f +=''4, 故)C ,C (,u e C e C )u (f u u 为任意常数2122214-+=-由,)(f ,)(f 0000='=得(18)【答案】 补{}∑=11z )z ,y ,x (:的下侧,使之与∑围成闭合的区域Ω,(19)【答案】(1)证}a {n 单调 由20π<<n a ,根据单调有界必有极限定理,得n n a lim ∞→存在, 设a a lim n n =∞→,由∑∞=1n n b 收敛,得0=∞→n n b lim , 故由n n n b cos a a cos =-,两边取极限(令∞→n ),得10==-cos a a cos 。

解得0=a ,故0=∞→n n a lim 。

(20)【答案】①()1,2,3,1T - ②123123123123261212321313431k k k k k k B k k k k k k -+-+--⎛⎫ ⎪--+ ⎪= ⎪--+ ⎪⎝⎭()123,,k k k R ∈ (21)【答案】利用相似对角化的充要条件证明。

2014年考研数学(一)真题与解析(完整版)

2014年考研数学(一)真题与解析(完整版)
0 2 0
1

1
应该选(D)
4. 若函数



( x a1 cos x b1 sin x ) 2 dx min ( x a cos x b sin x ) 2 dx ,则 a1 cos x b1 sin x
a ,bR



(A) 2 sin x 【详解】注意
1 y 1 ,可知 lim 1 且 lim ( y x ) lim sin 0 ,所以有斜渐近线 y x x x x x x x
(B)当 f ' ( x ) 0 时, f ( x ) g ( x ) (D)当 f ( x ) 0 时, f ( x ) g ( x )

(B) 2 cos x
(C) 2 sin x
(D) 2 cos x
x


2
2 dx 3 , cos 2 xdx sin 2 xdx , x cos xdx cos x sin xdx 0 , 3 2
x sin xdx 2 ,
如果换成直角坐标则应该是

0
1
dx
1 x 2
0
f ( x , y )dy dx
0
1
1 x
0
( A) , (B) f ( x , y )dy ,
两个选择项都不正确;
如果换成极坐标则为


2 0
d cos sin f ( r cos , r sin )rdr d cos sin f ( r cos , r sin )rdr .
2 2
其中 :

2014年全国硕士研究生入学统一考试考研数学一真题及详解【圣才出品】

2014年全国硕士研究生入学统一考试考研数学一真题及详解【圣才出品】

2014年全国硕士研究生入学统一考试考研数学一真题及详解一、选择题(1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求。

)1.下列曲线有渐近线的是()。

A.y=x+sinxB.y=x2+sinxC.y=x+sin(1/x)D.y=x2+sin(1/x)【答案】C【考点】曲线的渐近线的定义和求解方法【解析】对于C项,y=x+sin(1/x),首先观察到不存在水平渐近线和垂直渐近线。

设曲线的斜渐近线为y=kx+b,故曲线y=x+sin(1/x)有斜渐近线y=x。

因此,选择C项。

2.设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在[0,1]上()。

A.当f′(x)≥0时,f(x)≥g(x)B.当f′(x)≥0时,f(x)≤g(x)C.当f″(x)≥0时,f(x)≥g(x)D.当f″(x)≥0时,f(x)≤g(x)【答案】D【考点】函数图形凹凸性的定义及应用【解析】令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,则F(0)=F(1)=0,且F″(x)=f″(x),故当f″(x)≥0时,F″(x)≥0,则函数F(x)是凹的。

故在区间[0,1]上,F(x)≤F(0)=F(1)=0,即F(x)=f(x)-g(x)≤0,因此f(x)≤g(x)。

故选择D项。

3.设f(x,y)是连续函数,则()。

A.B.C.D.【答案】D【考点】二重积分的积分顺序互换及二重积分在直角坐标和极坐标间的相互变换【解析】可画出积分区域如图1所示。

图1若交换积分顺序,则原式变为故A,B两项不正确;若进行极坐标变换,则原式变为则D项正确。

4.若函数则a1cosx+b1sinx=()。

A.2sinxB.2cosxC.2πsinxD.2πcosx【答案】A【考点】观察积分和转化问题的能力【解析】由题得则所以原问题转化为求函数a2+b2-4b的极小值点,显然可知当a=0,b=2时取得最小值,即a1=0,b1=2,所以a1cosx+b1sinx=2sinx,故应该选A。

2014年考研数学一真题及答案解析

2014年考研数学一真题及答案解析

(B)充分非必要条件. (D)既非充分也非必要条件.
1 0 【解析】由 (α 1 + kα 3, α 2 + lα 3) = (α 1, α 2, α 3) 0 1 知, k l
当 α 1, α 2, α 3 线性无关时,因为
1 0 ≠0 0 1
所以 α 1 + kα 3, α 2 + lα 3 线性无关 反之不成立 如当 α 3 = 0 ,
}
, 则
a1 cos x + b1 sin x =
(A) 2π sin x . 【解析】 解析】令 Z ( a, b) = (B) 2 cos x . (C) 2π sin x . (D) 2π cos x .

π
−π
( x − a cos x − b sin x) 2 dx
π Za ′ = 2∫ −π ( x − a cos x − b sin x)(− cos x)dx = 0 π ′ Zb = 2∫ −π ( x − a cos x − b sin x)(− sin x)dx = 0
针方向,则曲面积分 [ ] zdx + ydz =___________.

x = cos t 【解析】 解析】令 y = sin t z = − sin t

t : [0,2π]dz =
∫ [− sin t (− sin t ) + sin t (− cos t )]dt
2014 年全国硕士研究生入学统一考试数学一试题及解析(完 整精准版)
一、选择题: 选择题:1~8 小题, 小题,每小题 4 分,共 32 分,下列每题给出四个选项中, 下列每题给出四个选项中,只有一个选项 符合题目要求的, 符合题目要求的,请将所选项的字母填在答题纸指定位置上。 请将所选项的字母填在答题纸指定位置上。 (1)下列曲线中有渐近线的是 (A) y = x + sin x . (B) y = x 2 + sin x . (C) y = x + sin

考研2014数一真题答案

考研2014数一真题答案

考研2014数一真题答案考研数学一真题是考研数学科目中的一道重要题目,对考生来说具有一定的难度和挑战性。

在考研数学一真题中,我们可以通过细致的分析和解答,来提高我们的数学解题能力和思维能力。

下面我将对2014年的考研数学一真题进行解答和分析。

首先,我们来看一下2014年考研数学一真题的具体内容。

这道题目是一道概率统计的题目,题目要求我们计算一个随机变量的期望值和方差。

这是一个典型的概率统计问题,需要我们运用一些概率统计的知识和方法来解答。

接下来,我们来解答这道题目。

首先,我们需要计算随机变量的期望值。

根据概率统计的知识,随机变量的期望值可以通过将随机变量的每个取值与其对应的概率相乘,然后将所有的乘积相加得到。

在这道题目中,随机变量的取值是1、2、3、4,对应的概率分别是0.2、0.3、0.4、0.1。

我们可以将每个取值与其对应的概率相乘,然后将所有的乘积相加得到期望值。

计算过程如下:E(X) = 1 * 0.2 + 2 * 0.3 + 3 * 0.4 + 4 * 0.1 = 0.2 + 0.6 + 1.2 + 0.4 = 2.4所以,随机变量的期望值为2.4。

接下来,我们需要计算随机变量的方差。

根据概率统计的知识,随机变量的方差可以通过将随机变量的每个取值与其对应的概率相乘,然后将所有的乘积相加得到。

然后,我们需要将每个取值与随机变量的期望值相减,然后再平方,再将每个结果与其对应的概率相乘,然后将所有的乘积相加得到方差。

在这道题目中,随机变量的取值是1、2、3、4,对应的概率分别是0.2、0.3、0.4、0.1,期望值为2.4。

我们可以按照上述的方法来计算方差。

计算过程如下:Var(X) = (1-2.4)^2 * 0.2 + (2-2.4)^2 * 0.3 + (3-2.4)^2 * 0.4 + (4-2.4)^2 * 0.1= (-1.4)^2 * 0.2 + (-0.4)^2 * 0.3 + (0.6)^2 * 0.4 + (1.6)^2 * 0.1= 1.96 * 0.2 + 0.16 * 0.3 + 0.36 * 0.4 + 2.56 * 0.1= 0.392 + 0.048 + 0.144 + 0.256= 0.84所以,随机变量的方差为0.84。

2014考研数一真题答案及详细解析

2014考研数一真题答案及详细解析

令y'=O,得y = -2x,或y =O (不适合方程 , 舍去).
将y =-2x代入方程得-6 x 3 +6 =0,解得x=l,J(l) =-2.
在3y
2
I
y
+y
2
I
+ 2x y y
+2xy +X
2
I
y
=0两端关于x求导
,得
(3y 2 +2xy +x 勹 y"+2(3y +x) (y') 2 +4(y+x)y'+2y =0.
l
cosb
b
2
n
an

l -cosb n
= — 2l nl-im00
1
an -cosb n
1 2
ln-im00
a
n
an +l -cosa
n
2,
00
00
2 且级数 n = l 从收敛,所以: n = l 生 bn 收敛.
(2 0)解 C I)对矩阵A施以初等行变换
。 。01 0
A�(�-; -0� �n-(� 1
(8) D

厂 [f EY 1 = _00Yfy1(y)dy = 了
+■a
_00Yf1(y)dy+f_=yj、z(y)dy]
=
(EX

1
+EX2
),
EY2=— 2 ECX1 +Xz)
=
—(EX
2
1
+EX2
),
故EY1 =EY2 , 又因为
DY 1 =E(Y�)-(EY 1 凡DY2 = ECY!) -(EY2 凡

2014年全国考研数学一真题及详细解答.doc

2014年全国考研数学一真题及详细解答.doc

2014硕士研究生入学考试 数学一 一、选择题1—8小题.每小题4分,共32分.1.下列曲线有渐近线的是( )(A )x x y sin += (B )x x y sin +=2 (C )x x y 1sin += (D )xx y 12sin +=2.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( ) (A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≤'')(x f 时,)()(x g x f ≥ (D )当0≤'')(x f 时,)()(x g x f ≤3.设)(x f 是连续函数,则=⎰⎰---y y dy y x f dy 11102),(( )(A )⎰⎰⎰⎰---+210011010x x dy y x f dx dy y x f dx ),(),( (B )⎰⎰⎰⎰----+010111012x x dy y x f dx dy y x f dx ),(),((C )⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (121020dr r r f d dr r r f d(D )⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1021020rdr r r f d rdr r r f d4.若函数{}⎰⎰-∈---=--ππππdx x b x a x dx x b x a x Rb a 2211)sin cos (min )sin cos (,,则=+x b x a sin cos 11( )(A )x sin 2 (B )x cos 2 (C )x sin π2 (D )x cos π25.行列式dc dc b a b a0000000等于( ) (A )2)(bc ad - (B )2)(bc ad -- (C )2222c b d a - (D )2222c b d a +-6.设321ααα,, 是三维向量,则对任意的常数l k ,,向量31ααk +,32ααl +线性无关是向量321ααα,,线性无关的( )(A )必要而非充分条件 (B )充分而非必要条件 (C )充分必要条件 (D )非充分非必要条件7.设事件A ,B 想到独立,3050.)(,.)(=-=B A P B P 则=-)(A B P ( ) (A )0.1 (B )0.2 (C )0.3 (D )0.48.设连续型随机变量21X X ,相互独立,且方差均存在,21X X ,的概率密度分别为)(),(x f x f 21,随机变量1Y 的概率密度为))()(()(y f y f y f Y 21211+=,随机变量)(21221X X Y +=,则( )(A )2121DY DY EY EY >>, (B )2121DY DY EY EY ==, (C )2121DY DY EY EY <=, (D )2121DY DY EY EY >=,二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.曲面)sin ()sin (x y y x z -+-=1122在点),,(101处的切平面方程为 .10.设)(x f 为周期为4的可导奇函数,且[]2012,),()('∈-=x x x f ,则=)(7f . 11.微分方程0=-+)ln (ln 'y x y xy 满足31e y =)(的解为 .12.设L 是柱面122=+y x 和平面0=+z y 的交线,从z 轴正方向往负方向看是逆时针方向,则曲线积分⎰=+Lydz zdx .13.设二次型3231222132142x x x ax x x x x x f ++-=),,(的负惯性指数是1,则a 的取值范围是 . 14.设总体X 的概率密度为⎪⎩⎪⎨⎧<<=其它,,),(02322θθθθx xx f ,其中θ是未知参数,n X X X ,,, 21是来自总体的简单样本,若∑=ni i X C 12是2θ的无偏估计,则常数C = .三、解答题15.(本题满分10分) 求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.16.(本题满分10分)设函数)(x f y =由方程06223=+++y x xy y 确定,求)(x f 的极值. 17.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足x x e y e z yzx z 222224)cos (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.18.(本题满分10分)设曲面)(:122≤+=∑z y x z 的上侧,计算曲面积分:dxdy z dzdx y dydz x )()()(11133-+-+-⎰⎰∑(1) 证明0=∞→n n a lim ;(2) 证明级数∑∞=1n nnb a 收敛.19.(本题满分10分) 设数列{}{}n n b a ,满足2020ππ<<<<n n b a ,,n n n b a a cos cos =-且级数∑∞=1n n b 收敛.20.(本题满分11分)设⎪⎪⎪⎭⎫⎝⎛---=302111104321A ,E 为三阶单位矩阵.(3) 求方程组0=AX 的一个基础解系; (4) 求满足E AB =的所有矩阵. 21.(本题满分11分)证明n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100相似.22.(本题满分11分)设随机变量X 的分布为2121====)()(X P X P ,在给定i X =的条件下,随机变量Y 服从均匀分布210,),,(=i i U .(5) 求Y 的分布函数; (6) 求期望).(Y E23.(本题满分11分)设总体X 的分布函数为⎪⎩⎪⎨⎧<≥-=-00012x x e x F x ,,),(θθ,其中θ为未知的大于零的参数,n X X X ,,, 21是来自总体的简单随机样本,(1)求)(),(2X E X E ;(2)求θ的极大似然估计量.(3)是否存在常数a ,使得对任意的0>ε,都有0=⎭⎬⎫⎩⎨⎧≥-∞→εθa P n n ^lim .2013年考研数学一解析1.【详解】对于xx y 1sin +=,可知1=∞→x yx lim 且01==-∞→∞→x x y x x sin lim )(lim ,所以有斜渐近线x y =应该选(C )2.【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点21x x ,及常数10≤≤λ,恒有())()()()(212111x f x f x x f λλλλ+-≥+-,则曲线是凸的.显然此题中x x x ===λ,,1021,则=+-)()()(211x f x f λλ)()())((x g x f x f =+-110,())()(x f x x f =+-211λλ,故当0≤'')(x f 时,曲线是凸的,即())()()()(212111x f x f x x f λλλλ+-≥+-,也就是)()(x g x f ≥,应该选(C ) 【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≤'')(x f 时,曲线是凸的,从而010==≥)()()(F F x F ,即0≥-=)()()(x g x f x F ,也就是)()(x g x f ≥,应该选(C )3.【详解】积分区域如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年全国硕士研究生入学统一考试
数学一试题答案
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...
指定位置上. (1)B
(2)D
(3)D
(4)B
(5)B
(6)A
(7)(B )
(8)(D )
二、填空题:914小题,每小题4分,共24分,请将答案写在答题纸...
指定位置上. (9)012=---z y x
(10)11=-)(f
(11)12+=x x
y ln (12)π
(13)[-2,2]
(14)25n
三、解答题:15—23小题,共94分.请将解答写在答题纸...
指定位置上.解答应写出文字说明、证明过程或演算步骤.
(15)【答案】
(16)【答案】
(17)【答案】
(18)【答案】
(19)【答案】(1
(20)
(21)【答案】利用相似对角化的充要条件证明。

(22)【答案】(1
(2
(23)【答案】(1
(2
(3)存在
(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档