光的波动模型

合集下载

光的波动模型

光的波动模型

能流密度
光强
wc S wv k EH nk 1 I | S | dt | S |

0
光强的表达式
r r 0 0 2 r 0 n 2 2 E |E| S EH E r 0 r 0 c r 0
n 1 T 2 I E dt E dt c r 0 0 c 0 T 0 如光波做简谐振动, E E0 cos(t k x 0 ) 2 T TE 2 E0为简谐振动的振幅 0 | E | d t 0 2
第一章 光的波动模型
定态光波及其数学描述 平面波和球面波 波的复振幅表达式 光程与相位 傍轴条件与远场条件
波动光学的建立
• 1678年,Huygens提出光的波动学说。 • 1801年,T.Young在光通过双孔的实验中,首次 观察到了光的干涉现象。 • 1808年,Malus观察到了光的偏振现象,说明光是 横波。 • 1817年,Fresnel用波动理论分析光的衍射 • 1865年,Maxwell提出电磁波理论,断言光是电磁 波。 • 1887年,Hertz证实光是电磁波。 光的电磁波模型
E (r , t ) E0 ( P)cos[t kz 0 ]
• 波场的量值由相位决定 • 物理量的传播其实就是相位的传播,在传 播的过程中,相位保持不变。 E (r r , t t ) E (r , t )
k ( z z) (t t ) 0 kz t 0
2
cos[ k x 2 y 2 z 0 t 0 ]
2
(0,0,-z0)出发出的球面波在(x,y,0)平面上的振动 亦为
U ( x, y,0)
A x y z0
2 2 2

三种光电效应的原理及应用

三种光电效应的原理及应用

三种光电效应的原理及应用光电效应是指当光照射到金属表面时,如果光的能量足够大,则能够使得金属表面的电子逸出,从而产生电流。

光电效应的原理可以根据不同的电子运动特性,分为三种不同的机制:波动模型(经典光电效应)、光子模型(细致光电效应)和光电倍增管模型。

1. 波动模型(经典光电效应)波动模型是建立在经典物理学的基础上,根据电磁波辐射能量及频率的关系来解释光电效应。

当光照射到金属表面时,光的能量通过辐射电磁波的形式传递给金属上的自由电子。

如果光的能量大于金属表面所需的解离能,电子就能从金属中解离出来,并形成电流。

这种光电效应不符合传统的经典波动理论,导致了对传统光学理论的重大突破。

2. 光子模型(细致光电效应)光子模型基于量子力学的原理,将光看作由光子组成的粒子流。

当光照射到金属表面时,光子会与金属表面的原子或电子发生相互作用。

如果光子的能量大于金属表面材料的逸出功,则能够使得金属的电子逸出,并形成电流。

对于每个光子来说,其能量与频率有确定的关系,即E = h·f,其中E表示光子的能量,h为普朗克常数,f为光的频率。

光子模型能很好地解释光电效应中的一些细致现象,如光电子动能与入射光频率的关系等。

3. 光电倍增管模型光电倍增管模型是利用光电子倍增管实现对光电效应的应用。

光电倍增管由光阴极、光子增强器、阳极等部分组成,可用于放大导致光电效应的电流。

当光照射到光阴极上时,光子能够使得光阴极上的原子或分子电离产生电子。

这些电子受到光电复合器加速和聚焦后,进入光子增强器,通过倍增过程,产生成倍增加的电子。

最终,这些电子被加速到阳极上,形成一个较强的电流信号。

光电倍增管可应用于光电信号弱化时的放大处理,以及光电传感器等领域。

光电效应的应用十分广泛。

其中,应用最广泛的是光电子器件的制造和应用。

光电二极管(光电管)、光电效应太阳能电池、光敏电阻等光电子器件都是利用光电效应的原理制作而成。

这些器件可以将光能转化为电能,实现光电转换和传感功能。

(完整)光的波动性精品PPT资料精品PPT资料

(完整)光的波动性精品PPT资料精品PPT资料

当相干光在空间相遇时,光波产生了稳定的加强或减
弱,并在相遇的空间形成明暗相间的条纹,这种的现象叫
f / (×1014 Hz)
光的干涉。光的干涉证明了光是一种波。 在波峰与波谷叠加的地方,光波互相抵消或削弱,形成暗条纹。
菲涅耳开创了光学的新阶段。 并运用大量工具进行数学运算,使实验数据与计算结果一致, 夜间驾车容易被迎面来车的前灯射花眼。 把带肥皂液薄膜的金属圈放在酒精灯旁适当的位置,使眼睛恰能看到由薄膜反射而生成的黄色火焰的 0×10-4 m 以下时, 光通过狭缝后明显偏离了直线方向,但其边缘模糊,由明区逐渐过渡到暗区。 如果在每辆汽车的车灯和司机座位前车窗上各安装一块偏振片,就可避免对方车灯眩光的影响。 当相干光在空间相遇时,光波产生了稳定的加强或减弱,并在相遇的空间形成明暗相间的条纹,这种的现象叫光的干涉。 在波峰与波谷叠加的地方,光波互相抵消或削弱,形成暗条纹。 偏振是横波区别于纵波的一个重要标志。 1678年荷兰物理学家惠更斯向法国科学院提交了著作《光论》。 在波峰与波谷叠加的地方,光波互相抵消或削弱,形成暗条纹。 与牛顿同时代的荷兰物理学家惠更斯首先提出光的波动说。 在书中,惠更斯把光波假设为一纵波,推导和解释了光的直线传播、反射和折射定律,书中并末提到关于光谱分解为各种颜色的问题。 当时牛顿反对光的波动说,主要是因为当时光的波动说还不能很好解释光的直线传播这一基本事实,也不能解释光的偏振现象。 直到1801年,英国物理学家托马斯·杨进行了著名的杨氏干涉实验,1815年法国物理学家菲涅耳进行的“菲涅耳双镜”实验,才令人信
f / (×1014 Hz) 3.9~4.8 4.8~5.0 5.0~5.2 5.2~6.1 6.1~6.7 6.7~7.5
2. 薄膜干涉
如图,点着酒精

1乙型光学第一章光的波动模型PPT课件

1乙型光学第一章光的波动模型PPT课件
观察到了光的干涉现象。 • 1808年,Malus观察到了光的偏振现象,说明光是
横波。 • 1815年,A. Fresnel用波动理论导出了光的圆孔、
圆屏衍射公式,并被D. Arago以实验验证。 • 1865年,Maxwell提出电磁波理论,断言光是电磁
波。 • 1887年,Hertz(1857-1894)证实光是电磁波。
k
r2
波矢的方向角表示
• 在数学中常用方向余弦表示矢量的方向, 即用矢量与坐标轴间的夹角表示
• 在光学中习惯上采用波矢与平面间的夹角 表示矢量的方向
X
2
3
1
Z
Y
k k (c o se x c o se y c o se z)
k k (s in1 e x s in2 e y s in3 e z)
• T:时间周期;ν=1/T:时间频率,单位
时间内变化(振动)的次数
• 空间周期性:某一时刻,波场物理量的分布, 随空间作周期性变化,具有空间上的周期性

波长λ:空间周期;
单位距离内的变化次数~ , 波1数/
:空间频率,
• 波场具有空间、时间两重周期性
1.2 定态光波
• 1.定态光波 具有下述性质的波场为定态波场 • (1)空间各点的扰动是同频率的简谐振动。 • (2)波场中各点扰动的振幅不随时间变化,
在空间形成一个稳定的振幅分布。
• 满足上述要求的光波应当充满全空间, 是无限长的单色波列。但当波列的持续 时间比其扰动周期长得多时,可将其当 作无限长波列处理。
• 任何复杂的非单色波都可以分解为一系 列单色波的叠加。
2.定态光波的描述
电磁波都是矢量波,应该用矢量表达式描述。但对符合上 述条件的定态光波,通常用标量表达式描述。

2.1光的波动性.pptx

2.1光的波动性.pptx

L L0
图 2-1-4
少和最多?最多时能看到几条干涉条
纹? 平行光垂直入射,经双棱镜上、下两半折射后,成为两束倾角均为θ
的相干平行光。当幕与双棱镜的距离等于或大于 L0 时,两束光在幕上的重
学海无涯 叠区域为零,干涉条纹数为零,最少,当幕与双棱镜的距离为 L 时,两束 光在幕上的重叠区域最大,为 L,干涉条纹数最多。利用折射定律求出倾 角θ,再利用干涉条纹间距的公式及几何关系,即可求解.
1
2
A
1
I ( A A )2 干涉相加
1
2
I ( A A ) 2干涉相消
1
2
பைடு நூலகம்
I 4 A2cos 2 2 1
2
3、光的干涉
(1)双缝干涉 在暗室里,托马斯·杨利用壁上的小孔得到一束阳光。在这束光里,在
垂直光束方向里放置了两条靠得很近的狭缝的黑
屏,在屏在那边再放一块白屏,如图 2-1-1 所示, 阳光
下表面(即空气与玻璃分界面)反射的情况不同,所以在式中仍有附加
的 半波长光程差。由此
学海无 涯
2h k
2
k 1,2,3 ……明纹
2h
2
(2k
1)
2
k
1,2,3 ……暗纹
干涉条纹为平行于劈尖棱边的直线条纹。每一明、暗条纹都与一定的 k
做相当,也就是与劈尖的一定厚度 h 相当。
任何两个相邻的明纹或暗纹之间的距离 l 由下式决定:
射线 图是 b1 ,折射线是 c1 ;光线 b1 再经过上、下表面
的反射和折射,依次得到 b2 、 a2 、 c2 等光线。 其中之一两束光叠加, a1 、 a2 两束光叠加都能
a
a1

光的波动模型

光的波动模型
比如波的反射,几何光学中利用光线,非常简洁地得到了反射定 律。但是,从波动观点看,反射是一个复杂得多的过程。
3
崔宏滨 光学 第二章 光的波动模型
D S
Mirror
一个光源,可以向任意方向发出光波,这些波到达反射面上时, 反射面上的每一点都是一个次波中心,又可以向任意方向发出次波, 所以,在接收点,观察者收到了来自反射面上各处的反射光。而决不 是像几何光学中所说的仅仅符合反射角=入射角的那条光线才能被接 收。也就是说,镜面作为一个波前,其各处都对到达 D 点的光有贡献。 对于这一说法,实在是无法反驳,但是,不同地点的反射波,到达 D 所经历的路程和方向都不相同,它们对于在 D 点所引起的振动的贡献 也应该不同吧。我们不妨做一个实验。
三.定态光波
1.定态光波
具有下述性质的波场为定态波场 (1)空间各点的扰动是同频率的简谐振动。 (2)波场中各点扰动的振幅不随时间变化,在空间形成一个稳定的振幅分布。
满足上述要求的光波应当充满全空间,是无限长的单色波列。但当波列的持续时间比其 扰动周期长得多时,可将其当作无限长波列处理。
任何复杂的非单色波都可以分解为一系列单色波的叠加。 定态光波不是简谐波,其空间各点的振幅可以不同。
1.电场分量、磁场分量、波的传播方向即波矢。
G 2.波矢 k
=

GG n, n 传播方向的单位矢量。
λ
3.电场分量振幅、磁场分量振幅、波长、频率等是标量。
光速
v =1/ εµ =1/ ε rε 0 µ r µ0 = c / ε r µr
c = 1/ ε 0 µ0 为真空中的光速。
折射率
n = c/v = εrµr
z − z0 νλ
+ ϕ0] =

光的波动模型

光的波动模型

‣光源:任何发光的物体都可以叫做光源。如太阳、燃烧 的火把、蜡烛的火焰、日光灯、激光器等。 ‣按照能量补给方式不同,光的发射可分为两大类:
(1)热辐射(温度辐射、平衡辐射): 一定温度下,处于热平衡状态下的物体辐射,如太阳、白 炽灯中光的发射。 (2) 非热发射(非平衡辐射)
•光源与光谱
同一光源中光的发射过程往往并不单一。
•平面电磁波是自由空间电磁波的一基元成分
•光是横波
说明电磁振荡在与波矢正交的横平面内振动。
•电场和磁场之间的正交性和同步性
•Poynting矢量
伴随波的传播必定有能量的传输,电磁波或光波也是 如此,即光波携带能量离开光源而向外辐射。
•光强--平均电磁能流密度
我们更关心能流密度的平均值
光强是一个可观测量,因而是波动光学中一个非常重要 的物理量。
第二章
光的波动模型
• 光波的基本性质 • 单色光波及其描述 • 波的叠加
电磁波谱
Maxwell电磁场理论建立之 后,光的电磁理论便随之诞 生。 光是特定波段的电磁波。 可见光波长介于400nm-760nm之间。 从紫外光到红外光这个范围 统称光波,是光学的研究对 象。
虽然光波在整个电磁波谱中仅占有一很窄的波段, 但它对人类的生命和生存、人类生活的进程和发 展,有着巨大的作用和影响。
‣根据波面的形状可将定态光波简单分类 ✓平面波 ✓球面波
复振幅
可以统一概括波场的振幅分布和相位分布。 用复振幅可以很方便地表示光强
平面波
发散球面波 会聚球面波
实际光束往往是复杂的非均匀光波场。
波前函数与共轭波
波动回顾
•最简单的波动--简谐波
时间周期性和空间周期性
波传播的速度

光的波动模型

光的波动模型

3
二、波动回顾 • 最简单的波动–简谐波 y (z, t) = A cos[(kz − ωt) + ϕ0]
3
二、波动回顾 • 最简单的波动–简谐波 y (z, t) = A cos[(kz − ωt) + ϕ0] 2π k= , λ 2π ω = 2πν = T
3
二、波动回顾 • 最简单的波动–简谐波 y (z, t) = A cos[(kz − ωt) + ϕ0] 2π k= , λ 波传播的速度 ω ω v = λν = λ · = 2π k • 波场的周期性 2π ω = 2πν = T
7
• 光是横波 将平面波函数代入∇ · E = 0和∇ · H = 0可得到 E ⊥ k 和H ⊥ k ,说明电磁振荡在与波矢正交的横平 面内振动。
8
• 电场和磁场之间的正交性和同步性 H 将平面波函数代入∇ × E = −µ0 µr ∂∂t ,可以导出 1 µ0 µr H = k × E ω √ √ 可得H ⊥ E, ϕH = ϕE , µ0 µr H0 = ε0 εr E0
如果在同一介质中研究光强的空间分布,可以 2 2 用I = E0 度量光强,在不同介质中则用I = nE0 度量 光强。
12
五、光源和光谱 • 光源 任何发光的物体都可以叫做光源。如太阳、燃烧的火 把、蜡烛的火焰、日光灯、激光器等。
12
五、光源和光谱 • 光源 任何发光的物体都可以叫做光源。如太阳、燃烧的火 把、蜡烛的火焰、日光灯、激光器等。 • 按照能量补给方式不同,光的发射可分为两大类: (1) 热辐射(温度辐射、平衡辐射): 一定温度下,处于热平衡状态下的物体辐射,如太 阳、白炽灯中光的发射。 (2) 非热发射(非平衡辐射)
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外光
50nm------400nm-------760nm--------100μm
对红外光1μm------------10μm-----------100μm
近红外 中红外 远红外 对紫外光(UV),其波长较短的部分由于只能在真空 中传播,被称为真空紫外光(VUV)
三.定态光波
1.定态光波 具有下述性质的波场为定态波场 (1)空间各点的扰动是同频率的简谐振动。 (2)波场中各点扰动的振幅不随时间变化,
电场分量、磁场分量、波的传播方向即波矢 等物理量,都是矢量。
波播方向的单位矢量
电场分量的振幅、磁场分量的振幅、 波长、频率等物理量是标量
v 光速
1/ 1/ r0r0
c/ rr
c1/ 00 真空中的光速
折射率 nc/v rr
对于透光的介质 r 1 故 n r
能流密度, 即坡印廷矢量
3
1
Z
Y
k k (c e x o cs o e y c se o z ) s
k k (s 1 e x i s n 2 i e y n s3 i e z ) n
波场中一点(X,Y ,Z )处的位相为
k k (s 1 e x i ( s x n ,y 2 i ,e y z ) n s k3 i e r z ) n 0r xe xye yze z
光的波动模型
波动光学的建立
1678年,Huygens提出光的波动学说。 1801年,T.Young在光通过双孔的实验中,
首次观察到了光的干涉现象。 1808年,Malus观察到了光的偏振现象,说
明光是横波。 1865年,Maxwell提出电磁波理论。后来证
实光是电磁波。 光的电磁波模型
2.1定态光波及其描述
振幅
A(P)a/r
空间位相
(P)kr0
(P)kr0Co.nst
波面为球面 振幅沿传播方向衰减 从点源发出或向点源汇聚
如果波源为O(0,0,0),波面为
(P)k rt0
krt0k(rd) r(td) r0
v dr 从原点发出的发散球面波
dt k
如果波面为 (P)k rt0
vdr 向原点汇聚的球面波
22v 2π时间内的频率, 圆频率(角频率)
k2/
2π长度内的频率, 角波数,波矢
(P ,t) t k x0 波的位相,与时间和 (P ,t)k xt 0 空间相关
U (P ,t) A (P )co (P s ,t)[]
振动取决于位相,所以振动的 传播就是位相的传播。
二、光波是电磁波(矢量波)
简谐波的数学描述
最简单的是简谐波,其
振动可以用三角函数表
x
示,在一维情况下,为
U (P ,t)A (P )co ( s t [v x) 0]
表示沿X方向传播的余弦波
x 2 x 2 x kx
v
U ( P ,t) A ( P ) co t k s [ x 0 ]
U ( P ,t) A ( P ) ck o x s t [0 ]
但对符合上述条件的定态光波,通常用标量表达式
描述。 x
x
y
z
y
其实是在一个取定的平面内描述定态 光波的振动
定态光波(光场)的标量表达式
U ( P ,t) A ( P ) co t s ( P [ )]
A (P )co (P s) [ t]
A(P) 振幅的空间分布
(P) 位相的空间分布
均与时间t无关
SEH r0 r
0|E |2
0
0nE2
n
c0
2 E
坡印廷矢量表示的是能流密度的瞬时值,这一数值以光
的频率作周期性变化,光强是指能流密度的平均值。
如光E波2 做简12E谐02振动即,E0为I 简谐S振 动的2cn 振幅0E ,0则2 光强nE 02
在均匀介质中,通常取
I E02
光波长的范围
紫外光 可见光
一、波动的特征 波,振动的传播。振动在空间的传播形
成物理量在空间的分布,形成波场。 波动的最基本特征是具有周期性
光波场具有时间和空间两重周期性
波场中任一点:具有振动的周期性,即时间 周期性,用振动的周期T描述。
任一时刻:波场具有空间分布的周期性,即 物理量在空间作周期分布,用波长λ描述。
(t,z)k zt0
z
k
k
在下一时刻, ttdt
设该波面的位置为 zzdz
k z t 0 k ( z d ) z ( t d ) t 0
kdzdt
v
dz
dt k
22
相速度
沿+z向传播
如果波面的表达式为
(t,z)k zt0
其相速度为
vdz
dt k
向-z方向传播
(2)球面波:波面是球面
(b)空间位相为直角
坐(标P的)线性k函r数0
r
kxxkyykzz0
k
k
波面 krCo.nst
满足上式的点构成与波矢垂直的一系列平面
r1
r2
波矢的方向角表示
在数学中常用方向余弦表示矢量的方向,即 用矢量与坐标轴间的夹角表示
在光学中习惯上采用波矢与平面间的夹角表 示矢量的方向
X
2
在空间形成一个稳定的振幅分布。
满足上述要求的光波应当充满全空间, 是无限长的单色波列。但当波列的持续 时间比其扰动周期长得多时,可将其当 作无限长波列处理。
任何复杂的非单色波都可以分解为一系 列单色波的叠加。
定态光波不一定是简谐波,其空间各点 的振幅可以不同。
2.定态光波的描述
电磁波都是矢量波,应该用矢量表达式描述。
3.定态光波按波面分类
波面:波场空间中位相相同的曲面构成光波 的等位相面,即波面或波阵面。可根据波面 的形状将光波分类。 位相相同的空间点应满足下述方程 (相同时刻)
(P)Con.st
场点 P ( x ,y ,z ) x e x y e y z e z
(1)平面波:波面是平面
(a)振幅为常数
(x,y,z) k ( x si 1 n y si2 n z si 3 ) n0
通常取一平面在z=0处,则该平面上的位相分布为
( x ,y ,0 ) k ( x si 1 n y si 2 ) n0
XOY平面
Z 0
如果平面波沿z向传播,其波面垂直于z轴。轴 上某一点z处的波面在t时刻的位相为
dt k
在一个平面(观察平面)上,球面波的位相分布 不是恒定值。
S(0,0,z0) S
XOY平面 P(x, y,0) OZ
相关文档
最新文档