《分式的基本性质》教案
《分式的基本性质》教案

《分式的基本性质》教案6知能演练提升一、能力提升1.在分式4y+3x4x ,x2-1x4-1,x2-xy+y2x+y,a2+2abab-2b2中,最简分式有()A.1个B.2个C.3个D.4个2.当x=6,y=-2时,式子x2-y2(x-y)2的值为()A.2B.43C.1 D.123.不改变分式2-3x 2+x-5x 2+2x -3的值,使分子、分母的最高次项的系数为正数的结果是( )A.3x 2+x+25x 2+2x -3 B.3x 2-x+25x 2+2x -3 C.3x 2+x -25x 2-2x+3D.3x 2-x -25x 2-2x+34.下列各题中,所求的最简公分母错误的是( ) A.13x 与a6x 2的最简公分母是6x 2 B.13a 2b 3与13a 2b 3c 的最简公分母是3a 2b 3cC.1m+n 与1m -n 的最简公分母是m 2-n 2D.1a (x -y )与1b (y -x )的最简公分母是ab (x-y )(y-x )5.等式-m m -n =-mnmn -n 2,从左到右的变形中需加的条件是 . 6.将分式的分子与分母中各项系数化为整数,则0.2x -12y14x+23y = .7.已知4x=y (y ≠0),则分式4x 2-y 2xy的值是 .8.化简求值:(1)a+3ba 2-9b 2,其中a=4,b=1; (2)b 3-9a 2bb 3+9a 2b -6ab 2,其中a=2,b=12.二、创新应用★9.从三个式子:①a 2-2ab+b 2,②3a-3b ,③a 2-b 2中任意选择两个构造成分式,然后进行化简,并求当a=6,b=3时该分式的值.知能演练·提升一、能力提升1.C 本题考查最简分式的概念.x 2-1x 4-1=1x 2+1,其余三个分式的分子、分母都不能再约分,故选C .2.D3.D2-3x 2+x-5x 2+2x -3=-(3x 2-x -2)-(5x 2-2x+3)=3x 2-x -25x 2-2x+3.4.D 本题考查分式最简公分母的确定.b (y-x )可化为-b (x-y ),与a (x-y )中有公因式(x-y ),取所有因式的积-ab (x-y ),即为最简公分母,D 错误,故选D .5.n ≠06.12x -30y15x+40y 原式=(0.2x -12y)×60(14x+23y)×60=12x -30y15x+40y .7.-3 原式=4x 2-(4x )2x ·4x=-12x 24x 2=-3.8.解 (1)原式=a+3b(a+3b )(a -3b )=1a -3b . 当a=4,b=1时,原式=14-3×1=1. (2)原式=b (b 2-9a 2)b (b 2+9a 2-6ab )=b (b+3a )(b -3a )b (b -3a )2=b+3a b -3a.当a=2,b=12时,原式=12+3×212-3×2=-1311.二、创新应用9.解 共有六种计算方法和结果,分别是: (1)a 2-2ab+b 23a -3b=a -b 3=1.(2)交换(1)中分式的分子和分母的位置,结果也为1. (3)a 2-b 23a -3b =a+b 3=3.(4)交换(3)中分式的分子和分母的位置,结果为13. (5)a 2-2ab+b 2a 2-b 2=a -b a+b =13.(6)交换(5)中分式的分子和分母的位置,结果为3. (任选其一作答即可)。
初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案一、教学内容本节课选自初中数学教材第九章第二节,主要详细讲解分式的基本性质。
内容包括分式的定义、分式的基本性质、分式的简化以及分式在生活中的应用等。
二、教学目标1. 理解并掌握分式的定义,能够识别并运用分式的基本性质。
2. 学会简化分式,并能运用简化后的分式解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力,激发学生对数学学习的兴趣。
三、教学难点与重点教学难点:分式的基本性质的理解与应用。
教学重点:分式的定义、简化分式的方法以及分式的实际应用。
四、教具与学具准备1. 教具:黑板、粉笔、教学课件。
2. 学具:学生用书、练习本、计算器。
五、教学过程1. 实践情景引入利用生活中的例子(如水果分配、时间计算等)引出分式的概念。
2. 知识讲解(1)分式的定义:讲解分式的构成,分子、分母、分数线等。
(2)分式的基本性质:讲解分式的分子分母同乘(除)一个不等于0的数,分式的值不变。
(3)简化分式:讲解如何将分式简化,并举例说明。
3. 例题讲解结合教材例题,详细讲解分式的简化过程。
4. 随堂练习(1)让学生独立完成练习题,巩固分式的简化方法。
(2)小组讨论,解决实际问题,培养学生的合作意识。
5. 课堂小结六、板书设计1. 分式的定义2. 分式的基本性质3. 简化分式的步骤4. 例题及解答七、作业设计1. 作业题目2x^2 / 4x, (x+1)^2 / (x+1), 6x^3 / 3x^2(2)运用分式的性质,解决实际问题。
2. 答案(1)简化后的分式分别为:x / 2, x+1, 2x(2)实际问题答案根据具体情况而定。
八、课后反思及拓展延伸2. 拓展延伸:引导学生探索分式在生活中的其他应用,提高学生的创新意识和应用能力。
重点和难点解析1. 分式的基本性质的理解与应用。
2. 简化分式的方法。
3. 实际问题的解决。
4. 板书设计。
5. 作业设计与答案。
一、分式的基本性质的理解与应用分式的分子分母同乘(除)一个不等于0的数,分式的值不变。
分式的基本性质 优秀教案

分式的基本性质教学 目标知识与技能1.使学生理解分式的基本性质,并会运用分式的基本性质将分式进行变形;2.利用分式的基本性质归纳,归纳理解粉饰的变号法则,并灵活应用。
过程与方法通过对比分数和分式基本性质的异同点,渗透类比的思想方法。
情感态度与价值观通过学习中的研究、讨论、交流,提高学生的学习能力和与人合作、交流的能力。
并体会发现、成功的美。
教学重点: 正确理解分式的基本性质。
教学难点: 运用分式的基本性质,将分式进行变形。
教学方法: 启发式教学过程教学活动学生活动 教学意图 (一)引导学生复习分式的有关概念1.指定两名学生就下列各式分别回答哪些是整式、分式,请其他学生判断其答案的正误,并说明原因。
52+x , mn, 2a-3b , 32-y y ,)2)(1(92---x x x , 53-2.指定学生分别回答上列各分式何时有意义,请其他学生判断其答案的正误,并说明原因。
(二)讲解分式的基本性质1.引导学生回忆分式的意义是对照分数的意义明确的,因此继续学习分式的知识也对照着分数的知识来学习。
再使学生回忆分数的知识;约分、通分、加减、乘除法等,都是以分数的基复习与分数进与分数类比,培养学生独立获取知识的能力。
本性质为根据,从而引出继续学习分式的知识,也从学习分式的基本性质开始。
2.指定学生叙述分数的基本性质,并以21等为例说明:MM ⨯⨯==-⨯-⨯=⨯⨯=21)3(2)3(1222121 (M 表示不等于零的数)MM ⨯⨯==-⨯-⨯=⨯⨯=32)3(3)3(2232232 (M 表示不等于零的数)MB M A B A B A B A ⨯⨯==-⨯-⨯=⨯⨯= )3()3(22 上式当BA表示分数时,M 是不等于零的数;若BA表示的是分式,则M 可以表示不等于零的整式。
以“把各式中的‘×’号换成‘÷’号,还对吗?”提问,指定学生回答,订正后明确M B MA B A ÷÷=。
八年级数学上册《分式的基本性质》教案、教学设计

6.课后拓展:布置具有挑战性的拓展题,鼓励学生进行深度思考,提高学生的数学思维能力。
-设计意图:培养学生的创新意识,提高学生的数学素养。
7.教学评价:结合课堂表现、练习成绩和课后拓展成果,全面评价学生的学习效果。
-设计意图:关注学生的全面发展,激发学生的学习积极性,提高教学质量。
-设计意图:从生活实例出发,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.问题驱动:提出问题“分数可以表示什么?分式与分数有什么联系和区别?”让学生思考并回答,为新课的学习做好铺垫。
(二)讲授新知
1.分式的定义:讲解分式的概念,强调分式的三个要素:分子、分母和分数线。通过具体实例,解释分式的意义和表示方法。
-题目2:(x^3 - 2x^2 + x) / (x^2 - 1) × (x^2 + 1) / (x - 1)
-设计意图:通过拓展挑战题,锻炼学生的运算能力,提高学生的数学思维。
4.小组合作题:分组讨论并完成以下问题:
-问题:已知一个分数的分子和分母分别是两个连续的整数,且它们的和为17,求这个分数。
八年级数学上册《分式的基本性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解分式的定义,掌握分式的表示方法,能够正确书写分式。
2.掌握分式的基本性质,如约分、通分、乘除法则等,并能够灵活运用这些性质解决相关问题。
3.能够运用分式进行简单的代数运算,解决实际问题,提高学生的运算能力和解决问题的能力。
-分式的基本性质有哪些?
-分式的运算方法有哪些?
-如何运用和评价。
-设计意图:通过小组讨论,培养学生的合作精神和交流能力,提高学生对分式知识的理解。
《5.1认识分式--分式的基本性质》教案

一、教学内容
《5.1认识分式-分式的基本性质》教案,本节课将围绕以下内容展开:
1.分式的定义:根据教材,引导学生理解分式的概念,明确分子和分母的关系。
2.分式的性质:
(1)分式中的分子与分母同乘(或除以源自一个不等于0的整式,分式的值不变。
(2)分式的分子与分母互换,分式的值不变。
(3)分式的乘方与开方:对于分式的乘方和开方运算,学生可能会忽略分子分母分别进行运算。
-举例:分式(2/3)^3,学生可能会直接将2^3和3^3相除,得到8/27,而实际上应为8/27×(1/9)。
(4)分式在实际问题中的应用:学生可能难以将实际问题转化为分式问题,无法正确运用所学知识解决问题。
-举例:在速度、比例等问题中,学生可能不理解如何将问题转化为分式形式进行解答。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式的基本概念。分式是由两个整式构成的数学表达式,其中上面的整式称为分子,下面的整式称为分母。分式是表达比例关系的重要工具,它在数学和现实生活中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有3个苹果要平均分给4个小朋友,我们可以用分式3/4来表示每个小朋友能得到的苹果数量。这个案例展示了分式在实际中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的定义、基本性质以及它在实际中的应用。通过实践活动和小组讨论,我们加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活和学习中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
分式的基本性质教案

分式的基本性质教案一、分式的定义分式是由两个整数构成的符号,中间用水平线分隔开,形如a/b的表达式,其中a称为分子,b称为分母,a和b都可以是整数(b≠0)。
二、分式的化简与约分1. 化简分式:当分子和分母均为整数时,可以化简为最简分式,即分子和分母的公约数只有1。
例如:4/8可以化简为1/2,因为4和8的最大公约数是4。
当分子和分母含有变量时,需要根据某些规则化简,如可以提取公因子等。
例如:12a^2/(6a)可以化简为2a,因为12和6有公因子6,a^2可以化简为a。
2. 约分分式:根据最大公约数的性质,可以通过求分子和分母的最大公约数,然后分子和分母同时除以最大公约数的方式进行约分分式。
例如:8/12可以约分为2/3,因为8和12的最大公约数是4,分子和分母同时除以4得到2和3。
三、分式的运算1. 分式的加减运算:加减分式的基本原则是:分母相同的分式可以直接相加或相减,分母不同的分式需要先找到它们的公倍数,然后将分子乘以相应的倍数,使得它们的分母相同,然后再进行加减运算。
例如:1/3 + 1/4 = 4/12 + 3/12 = 7/12。
2. 分式的乘除运算:乘除分式的基本原则是:分子乘以分子,分母乘以分母,乘法除法运算时最好化简分式。
例如:(1/3) * (4/5) = (1*4)/(3*5) = 4/15;(2/3) ÷ (1/4) = (2/3) * (4/1) = (2*4)/(3*1) = 8/3。
四、实际问题中的分式运用1. 比例问题:比例问题可以通过分式来表示,如某一物品的价格是X元,已知该物品的价格和数量成比例关系,可以用X/1表示价格,1/数量表示单位价格。
两者的比例关系可以用分式表示。
2. 分数运算问题:分数运算问题中可以通过分式的加减乘除来解答,如某工程师一天完成1/3的工作量,另一工程师一天完成1/4的工作量,两人一起工作一天可以完成多少工作量,可以通过1/3 + 1/4的加法运算来解答。
2024年分式的基本性质课时教案

2024年分式的基本性质课时教案一、教学内容本节课选自人教版数学八年级下册第十四章《分式》第一节《分式的基本性质》。
具体内容包括分式的概念、分式的分子与分母同乘(除)一个不等于0的整式,分式的值不变、分式的分子与分母同乘(除)一个不等于0的整式,分式的约分等。
二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质进行分式的化简和运算。
2. 培养学生的逻辑思维能力和抽象思维能力,提高学生的数学素养。
3. 培养学生运用分式基本性质解决实际问题的能力,增强学生的应用意识。
三、教学难点与重点教学难点:分式的分子与分母同乘(除)一个不等于0的整式,分式的值不变;分式的约分。
教学重点:分式的基本性质及其运用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:学生用书、练习本、文具。
五、教学过程1. 实践情景引入通过一个关于实际问题的情景,如“计算两个长方形的面积比”,引出分式的概念。
2. 例题讲解(1)讲解分式的定义,通过具体的例子让学生理解分式的组成。
(2)讲解分式的基本性质,结合例题让学生掌握分子与分母同乘(除)一个不等于0的整式,分式的值不变。
(3)讲解分式的约分,通过例题使学生掌握约分的方法。
3. 随堂练习让学生独立完成教材第14页练习题1、2、3。
5. 课堂小结六、板书设计1. 分式的概念2. 分式的基本性质3. 分式的约分4. 例题及解答过程七、作业设计1. 作业题目:(1)教材第14页习题1、2、3。
(2)已知分式 $\frac{a}{b}$ 的值,求 $\frac{2a}{3b}$、$\frac{3b}{2a}$ 的值。
2. 答案:(1)见教材。
(2)$\frac{2a}{3b}$ 的值为 $\frac{2}{3} \times\frac{a}{b}$,$\frac{3b}{2a}$ 的值为 $\frac{3}{2} \times\frac{b}{a}$。
八、课后反思及拓展延伸1. 反思:关注学生在课堂上的表现,及时发现问题,调整教学方法,提高教学效果。
分式的基本性质教案

分式的基本性质优秀教案一、教学内容本节课我们将探讨《数学》教材第十五章第一节“分式的基本性质”。
具体内容包括分式的定义、分式的基本性质、分式的乘除法运算以及分式的约分。
二、教学目标1. 理解并掌握分式的定义及基本性质。
2. 学会分式的乘除法运算,并能熟练运用。
3. 能够对分式进行约分,并解释其约分原理。
三、教学难点与重点教学难点:分式的乘除法运算及约分。
教学重点:分式的定义、基本性质以及相关运算法则。
四、教具与学具准备1. 教具:PPT、黑板、粉笔。
2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中分式的应用,如分数蛋糕、速度等,引发学生对分式的兴趣。
2. 分式的定义及性质(10分钟)讲解分式的定义,并通过例题讲解分式的基本性质。
3. 分式的乘除法运算(15分钟)介绍分式的乘除法运算规则,并进行例题讲解。
接着,布置随堂练习,让学生独立完成。
4. 分式的约分(10分钟)讲解分式约分的原理及方法,并进行例题演示。
随后,让学生进行随堂练习。
5. 小结与巩固(5分钟)6. 互动环节(10分钟)学生提问,教师解答。
针对学生在学习过程中遇到的问题进行解答。
七、作业设计1. 作业题目:2. 答案:(1)2(2)5/4(3)3/2八、课后反思及拓展延伸1. 反思:通过本节课的学习,学生对分式的定义、基本性质及运算法则有了更深入的理解,但仍有个别学生在约分环节存在困难,需要在课后进行个别辅导。
2. 拓展延伸:鼓励学生探索分式在其他数学领域的应用,如函数、不等式等,提高学生的综合运用能力。
重点和难点解析:1. 分式的定义及性质2. 分式的乘除法运算3. 分式的约分4. 互动环节5. 作业设计一、分式的定义及性质分式的定义:分式是由两个整式相除得到的表达式,其中被除数称为分子,除数称为分母。
分式的基本性质包括:1. 分式的分子与分母同时乘以(或除以)同一个非零整式,分式的值不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§15.1.2 分式的基本性质
一、教学目标
1.使学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形.
2.通过分式的恒等变形提高学生的运算能力.
3.渗透类比转化的数学思想方法.
二、教学重点和难点
1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.
2.难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形.
三、教学方法
分组讨论.
四、教学手段
幻灯片.
五、教学过程
(一)复习提问
1.分式的定义?
2.分数的基本性质?有什么用途?
(二)新课
1.类比分数的基本性质,由学生小结出分式的基本性质:
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:
2.加深对分式基本性质的理解:
例2 填空:
(1)
()
3
x
xy y
=,
()
2
2
33
6
x xy x y
x
++
=
解:∵x≠0,
同理可化简第二个.
(2)
()()
222 12
,
a b
ab a b a a b
-
==
学生自己解答.
把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.
练习1:
化简下列分式(约分)
例3(1)23
225;15a bc ab c - (2) (3)
教师给出定义:
把分式分子、分母的公因式约去,这种变形叫分式的约分. 问:分式约分的依据是什么?
分式的基本性质
在化简分式 时,小颖和小明的做法出现了分歧:
小颖: 小明:
你对他们俩的解法有何看法?说说看!
教师指出:一般约分要彻底, 使分子、分母没有公因式.
彻底约分后的分式叫最简分式.
练习2(通分): 把各分式化成相同分母的分式叫做分式的通分.
229;69x x x -++22
6126.
33x xy y x y -+-y x 20xy 5222x 20x 5y x 20xy 5=x 41xy 5x 4xy 5y x 20xy 52=⋅=。