有趣的数阵图(一)[精选.]
有趣的数阵图课件

10-1=9 则2+7=3+6=4+5
有趣的数阵图
5
练一练:将 1~7入下图的○内,使得每条边上的三个数 字之和都等于12。
通关小诀窍:确定中间值
3 5
4
6
7
1 2
三条数之和: 3×12=36 2-8数之和:
有趣的数阵图
9
将2-10这九个数填入下图圆圈内,使每条线上三个数字相加之和为 22.
2
3
4
5
1A0
6
7
8
9
有趣的数阵图
10
将1、2、3、4、5、6填在下图中,使每条边上 三个数之和等于9。
1A
6
5
B2
4
3C
三条边数字总和: 3×9=27
1-6六数之和: 1+2+3+4+5+6=21
A+B+C=27-21=6 故只能选1,2,3
有趣的数阵图
14
把1~7分别填入左下图中的七个空块里,使每 个圆圈里的四个数之和都等于13。
2 4 17 635
有趣的数阵图
15
把1~7分别填入左下图中的七个空块里,使每 个圆圈里的四个数之和都等于15。
6 31 5 4 72
有趣的数阵图
16
将1-6这六个数字填入下图的圆圈中,使每个大圆 圈上4个数字之和为14。
50-45=5 12346789八个数分为两组, 使每组中四个数字之和:
25-5=20 则1+4+6+9=2+3+7+8
09 第九讲 有趣的数阵图(一)

第7讲有趣的数阵图(一)【知识导航】1、认真分析数阵图中隐含的数量关系和数字的位置关系,以特殊的位置为突破口。
通常选择使用次数多的数作为关键数。
2、依据数阵图中的条件,建立所求的和与关键数的关系式,一般采用试验的方法,确定关键数的数值及相等的和。
3、数字比较复杂的图形,可采用化简数据,消去公共部分,设立未知量等方法。
基本训练1、把1—7这七个数分别填入下图中的七个圆圈内,使每条直线上的三个圆圈内各数之和都相等。
2、把1--11这11个数,分别填入下图的辐射型数阵图中,使每条线上三个○内数的和相等。
3、将1--9这9个数分别填入下图中,使每条线段上五个○内数的和相等。
4、把1—7这七个数分别填入圆圈内,使图中每个圆和每条直线上的三个数和都相等。
5、把1—9这九个数填入圆圈内,使每条对角线五数之和相等,大小正方形四角上四数之和也相等。
拓展提高6、下图中四个圆被相互分割成八个部分,在这八个部分中分别填入1或2,使得各圆内三个数字之和互不相同。
7、把1--10这10个数分别填入下图复合型数阵图中,使每条线上四个○内数的和相等,每个三角形三个顶点上○内的和边相等。
8、把4—9分别填入下图中的圈内,使每个圆周上四个数的和尽可能最大。
9、下图的六条线分别连着九个圆圈,其中一个圆圈里的数是6,请选出九个连续自然数(包括6在内),填入圈内,使每条线上各数的和都等于23。
10、把1-10这十个自然数填入图中的10个方格中,要求图中3个2×2的正方形中四数之和相等,那么这个和的最小值是几?想一想,算一算下图像十字路口的红绿灯吗?请你在每盏灯处分别填入1~9中的任何一个数字,让相连的每三个数相乘的得数都相同。
你能行吗?。
五年级下册数学奥数有趣的数阵图人教版

例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
假设重叠数是a、b、c 5+6+7+8+9+10+a+b+c=24×3
45+a+b+c=72 a+b+c=27
8+9+10=27
8 76 9 5 10
2 9 561 3 8 45~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
中间的三个数只加一次, 三个角上的数都加了两次, 有三个数要设字母吗?
例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
1
3
2
1+2+…+7+8+a+b=21×2 6
5
36+a+b=42 a+b=6
4
8
7
1+5=6或2+4=6
将1、3、5、7、9、11、13、15这八个数,分别填入图中的 八个○内,使得每个大圆上五个○内数的和都是39。
1+3+5+……+15=64
3
5
1
39×2-64=14
7
9
中间的两个圆圈数重叠一次, 15 13 11
例5:将1~8这八个数分别填入下图的○中,使两个大圆 上的五个数之和都等于21。
假设重叠数是a、b
2
3
1
1+2+…+7+8+a+b=21×2 6
《有趣的数阵图》PPT课件

精选课件
14
把1~7分别填入左下图中的七个空块里,使每 个圆圈里的四个数之和都等于13。
2 4 17 635
精选课件
15
把1~7分别填入左下图中的七个空块里,使每 个圆圈里的四个数之和都等于15。
6 31 5 4 72
精选课件
16
将1-6这六个数字填入下图的圆圈中,使每个大 圆圈上4个数字之和为14。
1+2+3+4+5+6+7=28 A:(30-28)÷2=1 134567八个数分为两 组,使每组中两个数 字之和:
10-1=9 则2+7=3+6=4+5
精选课件
5
练一练:将 1~7入下图的○内,使得每条边上的三个数 字之和都等于12。
通关小诀窍:确定中间值
3 5 4 6 2
7 1
三条数之和: 3×12=36 2-8数之和:
精选课件
9
将2-10这九个数填入下图圆圈内,使每条线上三个数字相加之和为 22.
2
3
4
5
1A0
6
7
8
9
精选课件
10
将1、2、3、4、5、6填在下图中,使每条边上 三个数之和等于9。
A1
6
5
B2
4
C3
三条边数字总和: 3×9=27
1-6六数之和: 1+2+3+4+5+6=21
A+B+C=27-21=6 故只能选1,2,3
1+2+3+4+5+6+7+8+9=45 A:48-45=3 12456789八个数分为两组, 使每组中四个数字之和:
奥数有趣的数阵图.doc

有趣的数阵图(一)教学要求:1、使学生掌握解答有趣的数阵图的方法。
2、培养学生的逻辑思维能力和推理能力,以及联想、试探归纳等思维能力。
教学过程:一、导入新课语:如果把一些数按照一定的规律填在特定的图形里,那么这种图形,我们就称它为数阵图。
它是一种趣味性很强的游戏,它的形式很多,大概分为三种:封闭型数阵、辐射型数阵、复合型数阵。
二、探索新课:1、教学例1:将2、4、6、8、10填入“十字形数阵图中,使横行、竖列三个数的和相等。
解题思路:找出中间数,填在中间的公关位置,再剩下的数中,找一对和相等的数。
再分别填入。
2、教学例2:把1〜6这六个数填入。
中,使三角形每边上的三个数和相等。
形式尝试,练习。
解题思路:由于三个顶点上的数要加二次,所以我们先假设,顶点,再推出,其它的点。
3、教学例3:、一、一把1〜9这九个数,填入到方格中,使横、竖、斜上的三个数和相等。
解题思路:先观察数,1+9=2+8=3+7=4+6而5在中间其余的成对来填。
方法有多种。
4、教学例4:把1、2、3、5、6、7、填入右表,使每行三个数和相等,竖列二数也相等。
解题思路:有2行3列,而1+2+3+5+6+7=24,所以每行为12,这样分成(1、5、6);(2、3、7)两组。
每列和是24+3=8,所以:(1、7);(2、6);(3、5)o答案多种。
三、课堂练习:1、填上合适的数,使所以的边和等于18。
2、用1〜5填空。
使每一边和为8。
I I < )(I、,\ E ,、/ V 、/3、填上数,使横、竖、斜和为21。
4、使横、竖、斜和相等。
151418625老师让同学们按1、2、3、4、5循环报数,最后一个人报2, )人。
C 、 28 D 、 32《吉林省“金翅杯”小学数学竞赛试题》答案必须是5的倍数所以我们经过计算发现可以选B DoA 、26B 、27 余数的妙用(二)教学要求:1、 使学生掌握正确计算有余数的除法。
2、 培养学生活跃的思维能力,提高学习奥数的兴趣。
第四讲-有趣的数阵图学生版-奥数教程-讲义

第四讲有趣的数阵图经典精讲:数阵图: 将一些数按照一定的要求排列成各种各样的图形。
数阵图是一种趣味性很强的填数游戏, 它的形式多样, 绚丽奇妙。
这里给同学们介绍三种形式的数阵图, 即封闭型数阵图、辐射型数阵图和复合型数阵图。
(一)辐射型数阵图(像雪花)从一个中心出发, 向外作若干条射线, 在每条射线上安放同样多个数, 使其和是一个不变的数。
突破关键:确定中间数, 多算的次数, 公共的和线数x公共的和=数和+中心数x重复次数【例1】把1—5 这五个数分别填在左下图中的方格中, 使得横行三数之和与竖列三数之和都等于9。
【例2】把1—7这七个数分别填入图1中的各○内, 使每条线段上三个○内数的和相等。
【课堂练习】将1~11这11个数分别填入图11中的方格内, 每个数只许用一次, 使相邻两个或三个方格内数的和都相等。
(二)封闭型数阵图(像围墙)多边形的每条边放同样多的数, 使它们的和都等于一个不变的数。
突破关键:确定顶点上的数字, 公共的和边数x公和=数和+重叠数和【例3】把1~6这六个数分别填在下图中三角形三条边的六个○内, 使每条边上三个○内数的和相等。
(本题有24种填法, 你能想出几种?)【例4】将2—9这八个数分别填入右图的○里, 使每条边上的三个数之和都等于18。
【课堂练习】1.1—10这十个数, 分别填在图9中五边形五条边上的十个○内, 并使五条边上的三个○内数的和相等。
2.把1—8这8个数, 填入图13中的八个○内, 使每条线段上的四个数的和, 与每个四边形四个顶点上的四个数的和都相等。
(三)复合型数阵图既有辐射型数阵图的特点, 又有封闭型数阵图的特点。
突破点: 找出关键位置重复次数。
【例5】将1~7这七个数分别填入下图的○里, 使得每条直线上三个数之和与每个圆圈上的三个数之和都相等。
【课堂练习】1.将1.2.3.4.5.6六个数字填入图中的小圆圈内, 使每个大圆上四个数字的和是16。
2. 将1—8这八个数, 分别填入图10中两个圆圈的八个○内, 使每个圆圈上五个○内数的和分别为20、21.22。
第五讲有趣的数阵图

例2 把1~7填入下图中,使每条线段上三个 内的数的和相等.
分析: 中心圆填入的数是公共数,它参与3条线的连加, 这意味着每一条线的另外两数相加的和相等即可,将1-7 这7个自然数分组组合便可得到如下的结果: (1)1、(2,7)、(3,6)、(4,5)由此可得中心 圆是1。 (2)4、(1,7)、(2,6)、(3,5)由此可得中心 圆是4。 (3)7、(1,6)、(2,5)、(3,4)由此可得中心 圆是7。
分析:每个面上4个数之和为18, 把这几个数前后配对(1,8)、 (2,7)、(3,6)、(4,5)。
小数学家们,接下来是你们大 展身手的时候咯!加油!
ห้องสมุดไป่ตู้
小朋友们,周六晚上见 ~~
例(3)在下图各圆空余部分填上1、2、4、 6,使每个圆中4个数的和都是15。
3 7
5
分析:由于每个圆中4个数的和为15, 求出上圆的和为15-3-5=7,易知1+6=7; 左圆另外两个圆的和为15-3-7=5,易知1+4=5; 右圆另外两个圆的和为15-5-7=3,易知1+2=3。 则中间数一定为1。
有趣的数阵图
让猴博士告诉你
将一些数按照一定的规律排列而成的图 形,通常叫做数阵图。 数阵图的种类繁多,绚丽多彩,这里只 向大家介绍三种数阵图: 封闭型数阵图 辐射型数阵图 复合型数阵图
例1 将1~6分别填在图中,使每条边上的三个 内的数的和都等于9.
分析: 因为 1+2+3+4+5+6 = 21 ,而 每条边上的三个数的和为9,则三条边上的和 为 9×3 = 27 , 27-21 = 6 , 这个 6 就是由于 三个顶点都被重复算了一次。所以三个顶点的 和为 6 ,在 1-----6中,只能选1、2、3 填入三 个顶点中,再将4、5、6填入另外的三个圈即可。
有趣的数阵图

例4
将1~6六个数字填入下图,使四条线每条线上个 数之和都等于10。
例5
把1、2、3、4、5、6、7、8这八个数分别填入图中的正方形的 各个圆圈中,使得正方形每边上的三个数的和都等于15。
练一练: 1、把30、40、50、80、90这五个数填入下图的 五个圆圈里,使每条直线上三个数相加的和相等。
例1
把11、12、13、14、15填入下面的五个空格内, 使横行、竖列三个数相加的和相等。
12
13
11
14
15
例2: 请你把1~7这七个自然数,分别填在右图的圆圈 内,使每条直线上三个数的和相等。应怎样填?
例3 把1、2、3、4、5、6、7、8、9这九个数填入右 面的方格内,使每一横行、每一竖列和两条对角 线上的数之和都等于15。
挑战思维 例6 将1~7这七个自然数分别填入下图的七个o内, 使得三个大圆周上的四个数之和都等于13,请给 出一种符合要求的填法。
试一试: 把1~8这八个数分别填入下图中的八个o内,使 每个圆圈上五个数的和都等于21。
挑战思维 例7
右图的六条线分别连着9个o,其中一个o里的数是 6.请你选9个连续的自然数(包括6在内),填入 o内,使每条线上的各数之和都等于23。
试一试:
下图中4个圆共被分成12个区域,其中已有6个 区域内填有数,请将1~12中的另6个数填入其它 区域,使得每个圆中4个数的和都是28。
练一练:
Hale Waihona Puke 2、把1~9九个数分别填入下图中的九个圆圈内, 使每条直线上三个圆圈内各数之和都相等。
练一练: 3、把1234567891011填入下图中,使得每条线 段上的三个数的很都相等。
练一练: 4、把10~15六个数分别填入下图中的六个0内使 每条边上的三个0内的数字和都等于37。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学内容:有趣的数阵图(一)
教学时间:第一、二课时
教学目的:
1、掌握数阵图的基本特征。
2、按要求填出数阵。
教学重难点:寻找解题突破口。
教学过程:
一、宣布本课学习内容:
二、通过例题学习数阵的知识。
1、例1:将1—6填入右图的6个圆圈内,
使三角形每条边上的三个数的和都等
于S,请你指出S的取值范围。
①试着独立填一填。
②如果让你把所有的答案都填出,你能做到吗?
③讲解:三个角上的三个数最小是1、2、3;最大是4、5、
6,所以,S的取值范围是9、10、11、12。
④从9、10、11、12四个和中选一个,填出数阵。
2、例2:将1—6填入下图的6个圆圈内,要求四条线上
的数字之和都相等。
⑴当每条线上的和是10时,A是多少?
⑵当每条线上的和是9时,B是多少?
①观察:这6个数哪一个数最特殊?为什么?
②求A:1~6的和是21,用21×2-40=2
③求B:如右图,用21-18=3
④独立填出两个答案。
⑤小结:观察、找特征。
3、例3:将1—9这9个数字填入下图的9个圆圈内,使
每个三角形和直线上的3个
数字的和都相等。
①计算出1~9的和,用45除以3
得15,所以每个和是15。
(为
什么?
②找规律:在1—9中,三个数的和为15的,只有两种情
况:1+9+5和1+8+6。
③填数,调整。
4、例4:将1—9这9个数字填入下图的9个小三角形中,
使大三角形每条边上的5个小三角形之
和相等,那么这个和的最大值是多少?
最小值是多少?
①观察:找出每个数用几次。
②如右图,三个阴影三角形上的数字各用了
一次,其它的都用了两次。
这三个数最大是7、8、9;最小是1、2、3。
所以,和最小是45×2-24=66;最大是45×2-6=84。
③试验填出:
5、例5:把1、2、3、4、5、
6、
7、
8、
9、10、14这11
个数填入右图的11个○内,使
7个加法算式成立,求出□中
的数,并填入□中。
①观察数阵,你发现了什么规律?
②讲解:将数阵划分为三个区。
如下图:这样,就可以求
出□中的数为:(1+2+3+4+5+6+7+8+9+10+14)÷3=23。
③填数:问:填时要先填甲、乙、
丙哪个区的?为什么?
④先填丙,再填乙,最后填甲。
通过调整,有以下两种填法。
三、课堂小结:通过这节课的学习,你有什么收获?
四、家庭作业:课后第2、3、4题。
课后小结:
学生的学习兴趣非常浓厚,但观察能力较差,在以后要多培养。
最新文件仅供参考已改成word文本。
方便更改。