二年级奥数数阵图12
二年级奥数:巧妙填数数阵图练习题含答案

第二讲:数字游戏—填图与拆数【有话要说】填数是一种既有趣,又能锻炼头脑、发展智力的趣味活动。
它不仅可以提高你的运算能力,而且能促使你积极地去思考问题,解决问题。
填数这类题目的题型比较多,解答时除了口算要熟练外,更重要的是要会分析、推理。
有的题目答案不止一种,要多尝试,要尽量运用发散思维、求异思维,把各种可能的答案想出来。
【经典例题】例1:把1、3、5、7、9、11、13七个数填入右图中的七个圆圈内,使每条直线上三个数的和都等于21.思路导航:这道题可以这样想:1+3+5+7+9+11+13=49,21+21+21=63,63-49=14,由于计算三条直线上三个数时,中间圆圈里的数多算了两次,就多出了14,正好7+7=14,说明中间圆圈里应该填“7”,21-7=14,把另外六个数两个两个分组,使每组两个数的和都等于14; 1+13=3+11=5+9=14,也就是首尾配对。
例2:如图:在空格中填入不同的数,使每一横行、竖行、 斜行的三个数的和等于15.思路导航:因为每一横行、竖行、斜行三个数的和都等于15,我们可以先填一行中只有一个空格的数,如:4+(9)+2=15,竖行6+(7)+2=15,斜行6+(5)+4=15,根据填出的数再填只有一个空格的数。
6 42375645213解:例3:把1、2、3、4、5、6这六个数填入右图的圆内,使每个大圆的四个数的和都等于13。
思路导航:先确定图形中央的两个数分别填几,可以这样想,先求六个数的和与两个大圆上八个数的和:1+2+3+4+5+6=21,13+13=26,26-21=5,这个5就是中央两个圆的数的和,1+4=5,2+3=5,就是说中央两个小圆里可以填1和4,也可以填2和3,中央填1和4,13-5=8,左边填3和5,右边填2和6,中央填2和3行不行呢?剩下的数有1、4、5、6任意两个数的和都不是8,所以无法填出,因此,中央只能填1和4. 解:例4:由图中三个圆圈两两相交形成七个部分,分别填上1~7七个自然数,在一些部分中,自然数3、5、7三个数已填好,请填上其余各数,使每个圆圈中四个数的和都是15.思路导航:5462137524675381图中空着四个部分要填入四个数:1、2、4、6,可以看出中心部分属三个圆圈公共部分,关键要确定中心填哪个数,我们用拆数的方法来确定。
二年级奥数竞赛班第12讲数阵图之谜

在神奇的数学王国里,有一类非常有趣的数学问题,它有各式各样、花样繁多的几何阵列,变化万千、趣味无穷。
它就是数阵图。
到底什么是数阵图呢?
梧桐小讲堂
什么是数阵图?
数阵图就是将一些数按照一定要求排列而成的某种图形。
通常来说,是把从1开始(或者是从任一整数开始),把若干个连续的自然数适当的排列起来形成各种形式的几何阵列,使得几何阵列中的特定图形上的数之和都是一个固定的值,这就是数阵图。
(★★★)
把1,2,3,4,5,6,7这7个数分别填入圆圈中,使得每条直线上的3个数的和等于12。
数阵图之谜
(★★★)
将1,2,3,4,5,6,7这7个数分别填入圆圈中,使得每条直线上的3个数的和都等于10。
【拓展】(★★★★)
把1~7这七个数分别填入图中的各○内,使每条直线上三个○里数的和相等。
一共有多少种方法?
(★★★★)
把1~6填入○里,使每个圆圈上的四个数之和都相等6。
(★★★★★)
将1-6填入下图的六个○中,使三角形每条边上的三个数之和都等于10。
(★★★★★)
把10,20,30,40,50,60,70这7个数填在圆圈里,使每条直线上和每个圆周上的三个数的和都是120。
二年级奥数学练习试卷思维培训资料 巧填数阵图 教师

第十二讲巧填数阵图数学乐园晶晶和莹莹来到了雪精灵国,天空中到处飘着洁白剔透的雪花,就像下面图中的样子.一个雪精灵告诉她们:“你们只要能够把1~7这七个数填在雪花的七个花瓣上,使每三个位于同一直线上的花瓣上的数之和都相等,你们就能见到雪精灵国的女王了.”你能帮她们填一填吗?.【教学思路】在开课的时候,老师可通过故事引入,激发学生对填数游戏的兴趣.让学生初步感知什么是数阵.因为填数阵有一定的难度,所以在这里我们不需要马上让孩子完成这个题,可以放在最后来解决这个问题.小朋友们,你喜欢这样的填数字游戏吗?要想准确的填出图中的每一个数,可不是一件容易的事,这就要我们小朋友们认真去观察图,观察数字的排列规律,这样才能找到填图的方法.下面我们就一起来学习吧!基础篇使用数字0,1,2,3,4,5,6,7,8,9做加法.在每一道题中,同一个数字不能重复出现.数阵图是小学奥数中比较重要的一个知识点,现在我们把它放在一年级开始学习似乎有些过难.但这节课我们只是希望通过一些简单的填数字游戏,使学生初步感知到什么样的是数阵,让学生用自己喜欢的方法来巧填数字,培养他们的思维能力.在鼓励学生去研究方法的同时,教师引导学生去发现数阵的简单规律,以及填数阵的基本方法,通过找数阵中的关键数来找到解题的钥匙.在今后的不断学习中,能把这种方法灵活应用到实际中去.【教学思路】一般在解答这类填数问题时,把同一条边上出现两个数字的空格先填.之前我们已经有过这样的练习,学生有了一定的基础.这道题的答案不止一个,我们只要求学生能找到其中的一种就达到要求了.(1)右边两个圆的和应该是9,所以里可填(0,9)(2,7)(3,6).(2)告诉我们中间的数字是2,剩下两边上两个数字的和应该是9-2=7.0+7=1+6=3+4,所以剩下两边上两个数可以填(0,7),(1,6),(3,4)(3)7+6=13,15-13=2,所以第2条线中间填2.左边第一条线:15-7=8,0+8=3+5,数字不重复共两种填法.第三条线15-6=9,0+9=4+5,数字不重复共两种填法(4)6+4=10,13-10=3,所以第2条线最下是3,.左边第一条线:13-6=7,0+7=2+5,数字不重复共两种解法.第三条线:13-3=10,1+9=2+8,数字不重复共两种解法.拓展练习(1)填数,使横行、竖行的三个数相加都得11. (2)填数,使每条线上的三个数之和都得15.【答案】【答案】在每个方格中填入适当的数,使每一横行、竖行的和以及两斜行的三个数之和都是18.【教学思路】方法一:填数时,首先要看哪一行已经有了两个数,然后用18减去这两个数,就得出这一行的第三个数.填数的顺序如下:方法二:从斜行来考虑:要使表格中每行、每列和两条对角线上的三个数的和都为18,下面每个方框里应填什么数?【教学思路】首先我们要找到填这个表格的突破口,一般情况下我们先找每行、每列以及每条对角线上已知两个数的来先填.找到这个突破口,后面就容易多了.方法一:从竖行入手.方法二:分别从两条对角线入手.拓展练习在下列两图的空格中填上数,使横行和竖行或每条对角线上的三个数相加都等于15.【答案】【答案】把1,2,3,4,5,6六个数,分别填入○内,使每条线上3个数的和相等.【教学思路】比较三个已知数1,2,3,和1比2大1,3大2.还剩下三个数4,5,6要我们来填,5+6=11 6+4=10 5+4=9 ,要使每边和相等,5+6+1=6+4+2=5+4+3=12,答案如下:提高篇把3,4,5,6,7这五个数分别填入下面的空格里,使横行、竖行的三个数相加都得15.【教学思路】方法一:观察法.要使横行、竖行的三个数相加都得15,我们就要考虑中间填什么数.观察这五个数3,4,5,6,7,我们发现4和6,3和7可以组成10,它们分别再加上多出来的5都得15,所以中间这个数应该填5,上下,左右可以分别填4和6,3和7,如图:方法二:观察这些图,容易发现,中间方框中的数比较特殊,它既在横行上,又在竖列中,在数阵中这样的数称为“重叠数”.只要我们确定了中间的“重叠数”填几,别的空格就简单了.那么横行3个数的和加上竖列3个数之和就等于所要填入的5个数的和与重叠数的和.于是(3+4+5+6+7)+重叠数=15+15,重叠数=30-25=5,所以中间的这个数应该填5,在剩下的4个数3,4,6,7中,只有3+7=4+6=10,填法如图.建议:在这两种方法中,学生习惯用第一种方法来观察出答案,但是这种方法对于以后数字大的题就很难把握,因此老师在学生掌握了第一种方法的前提下,要介绍第二种解答数阵图的一般方法,不要求学生马上掌握,但是要让学生明确解答这样的题要从重叠数开始入手分析,以后练得多了就能融会贯通了.如果老师觉得这几个数太大学生不容易接受,还可以改成更小的数.拓展练习把2,3,4,5,6这五个数分别填入圆圈中,使每条线上三个数相加的和都等于1 2.【答案分析】中间○即为特殊的重叠数,因为它既是横线上的数,又是竖线上的数.中间的数填什么呢?横行加上竖行之和应为 12+12=24,而2+3+4+5+6=20,中间的要多加一次,所以应为4.把1,2,3,4,5,7分别填入○里,使每一个大椭圆上的四个数之和等于13.【教学思路】方法一:观察法,在这6个数中,有两个数是公共的,那么剩下的四个数两两相加应该相等,观察1,2,3,4,5,7中1是公共数,这时我们发现2+7和4+5都等于9,因此剩下的3也应该是公共数,2和7,4和5应该分别填在这两个圆的左边和右边.经检验每个大椭圆上的四个数这和等于13.方法二:每个椭圆里的四个数之和等于13,那么两个椭圆里的四个数之和就是13+13=26,另外这6个数相加的和是1+2+3+4+5+7=22,26和22之间相差的是什么呢?只有中间的这两个重叠数被多加了1次,这相差的4应该是两个重叠数的和,1+3=4,所以中间的这两个重叠数应该是1和3.剩下的数2+7=4+5=9.把1,2,3,4,5,6,7这七个数分别填入○里,使每条直线上的三个数相加的和都为12.【教学思路】方法一:观察法,在1,2,3,4,5,6,7这七个数中,除去中间的重叠数,剩下的六个数两两相加应该相等,经验算,当重叠数是4时,1+7=2+6=3+5=8,8+4=12,如图:方法二:因为图中共有3条直线,所以中心的重叠数重叠了2次,于是(1+2+3+4+5+6+7)+重叠数×2=12+12+12.重叠数=(36-28)÷2=8.那么中间的数应该填14剩下的6个数1,2,3,5,6,7,中,2个数的和等于12-4=8的有1+7=2+6=3+5,如图:拓展练习把1~9这九个数字填入下列圆圈内,使每条横线、竖线、斜线连接起来的三个圆圈内的数之和都等于15.把2,3,4,5,6,7,8这七个数分别填入圆圈中,使两个正方形中四个数之和相等19.【教学思路】先考虑求两个正方形公共的中间数.2+3+4+5+6+7+8+重叠数=19+19.重叠数=3,那么中间圆圈里面应该填3.剩下的数中2+6+8=4+5+7=19-3=16,所以每个正方形中,剩下的三个数应该填:2,6,8或4,5,7.具体填法如下:拓展:如果使两个正方形中四个数之和相等21,又应该怎样填?我会做一做把1,2,3,4,5,6,7这7个数分别填入右图中,使得每条直线上的3个数的和相等.【教学思路】这道题的答案不唯一.附加题(老师可根据自己的课堂进度灵活处理讲义内容,附加题仅供老师参考使用.)在空格内填上适当的数,使得图中每行、每列及两对角线上四个数的和都是64.【答案】【教学思路】如果有充足的时间,建议这题可放在例3的后面做一个加深,这道题也主要是利用加减法之间的关系来解答的.这个题我们要从已知三个加数的第二列入手开始填,先计算出这三个加数的和,再用64减去这三个加数的和就得到了这第四个加数.用图中已有的三个数填满其余的空格,每个数字必须使用三次.使得每行、每列和两条对角线上的三个数之和相等.【答案】【答案】把1~9这九个数字填入下列圆圈内,使每条横线、竖线、斜线连接起来的三个圆圈内的数之和都等于15.【答案】【教学思路】这道题可参考放在例6的后面,做一个拓展.在例6的基础上,我们只需要调动四条边上各数的位置就可以验证出结果.使用数字0,1,2,3,4,5,6,7,8, 9求和.而且同一个数在一幅图中不能重复出现.【答案】【答案】把1~11这十一个数分别填入图中的圆圈里,使每条直线上的三个数的和都等于18.【答案】练习十二1.在下面的○里填上适当的数,使每条线上的三个数之和都是12.【答案】2.把3~8这6个数,填在下图中使得每行、每列和两条对角线上的三个数的和都为18.【答案】3. 把1,2,3,4,5这五个数分别填入下面的○里,使横行、竖行的三个数相加都得10.【答案】4.把3,4,5,7,9,11,13这七个数分别填入○里,使每条直线上的三个数相加的和都为20.【答案】5. 将1,2,3,4,5,6这6个数分别填入下图中,使两个大圆上4个数的和都等于14.【答案】6.把数字1,2,3,5,6,7,9填在下面的○里,使每边上的和为15.【答案】小朋友,你在少年宫里走过“勇敢者的道路”吗?道路崎岖,充满艰难险阻.但是,它能培养小朋友的勇敢精神和不怕困难的毅力.这里有两幅图,也叫“勇敢者的道路”.图中的道路狭窄、曲折,不易通过,需要小朋友细心和有耐心.现在请小朋友用一枝铅笔,按照图中箭头的方向画出通行路线,而且线条不能碰到两边的“围墙”.小朋友,这可真不容易哦!。
小学奥数 数阵图(一) 精选练习例题 含答案解析(附知识点拨及考点)

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。
【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】例题精讲知识点拨教学目标5-1-3-1.数阵图87654321【答案】87654321【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图 【难度】2星 【题型】填空【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)h gf ed c baa+b+c=14(1)c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行.若e=1,则c=14-(1+3)=10,不行. 若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。
二年级奥数数阵图之欧阳道创编

数阵图时间:2021.03.06 创作:欧阳道1.使用数字0,1,2,3,4,5,6,7,8,9做加法.在每一道题中,同一个数字不能重复出现。
(1)填数,使横行、竖行的三个数(2)填数,使每条线上的三个数相加都得11. 之和都得15.2.在每个方格中填入适当的数,使每一横行、竖行的和以及两斜行的三个数之和都是18.在空格中填入适当的数,使横行和竖行或每条对角线上的三个数相加都等于15。
3.把3,4,5,6,7这五个数分别填入下面的空格里,使横行、竖行的三个数之和都等于14。
拓展练习(1)把2,3,4,5,6这五个数分别填入圆圈中,使每条线上三个数相加的和都等于12。
(2)把1,2,3,4,5,6分别填入○里,使每一个大椭圆上的四个数之和等于13.例 4.把1,3,5,7,9,11,13这七个数分别填入○里,使每条直线上的三个数相加的和都为17。
简单数阵图例1、把1—5 这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
例2、把1—7这七个数分别填入图中的各○内,使每条线段上三个○内数的和等于10。
例3、在下图圆圈内分别填入数字1~9,使两条直线上五个数的和相等,和是多少?例4、把1~6这六个数分别填在下图中三角形三条边的六个○内,使每条边上三个○内数的和等于9。
例5、将2—9这八个数分别填入右图的○里,使每条边上的三个数之和都等于18。
例6、将1、2、3、4、5、6、7、8、9九个数字分别填入图中的小圆圈中,使三角形每边上四个数的和是17。
1、把2—6 这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于13。
2、在图中填入2—9,使每边3个数的和等于15。
3、将数字1—9分别填在图中的○内使每条线上五个○内数的和等于27。
4、把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条线上三个数的和等于30。
二年级奥数数阵图

专题五简单数阵图一、辐射型数阵图从一个中心出发,向外作若干条射线,在每条射线上安放同样多个数,使其和是一个不变的数。
突破关键:确定中心数,多算的次数,公共的和数和+中心数×重复次数=公共的和×线数数和:指所有要填的数字加起来的和中心数:指中间那数字,即重复计算那数字重复次数:中心数多算的次数,一般比线数少1公共的和:指每条直线上几个数的和线数:指算公共和的线条数例1、把1—5 这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
例2、把1—7这七个数分别填入图中的各○内,使每条线段上三个○内数的和等于10。
例3、在下图圆圈内分别填入数字1~9,使两条直线上五个数的和相等,和是多少?二、封闭型数阵图多边形的每条边放同样多的数,使它们的和都等于一个不变的数。
突破关键:确定顶点上的数字,公共的和数和+重叠数的和=公共的和×边数数和、公共的和跟辐射型数阵图一样的意思重叠数的和:指数阵图顶角重复算的数全加起来的和边数:指封闭图形的边数例4、把1~6这六个数分别填在下图中三角形三条边的六个○内,使每条边上三个○内数的和等于9。
例5、将2—9这八个数分别填入右图的○里,使每条边上的三个数之和都等于18。
例6、将1、2、3、4、5、6、7、8、9九个数字分别填入图中的小圆圈中,使三角形每边上四个数的和是17。
练习五1、把2—6 这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于13。
2、在图中填入2—9,使每边3个数的和等于15。
3、将数字1—9分别填在图中的○内使每条线上五个○内数的和等于27。
4、把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条线上三个数的和等于30。
小学数学奥赛5-1-3-2 数阵图(二).学生版

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题 .一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.复合型数阵图 【例 1】 由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________. 313233212223131211【例 2】 如图1,圆圈内分别填有1,2,……,7这7个数。
如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是 。
例题精讲知识点拨教学目标5-1-3-2.数阵图【例 3】如下图(1)所示,在每个小圆圈内填上一个数,使得每一条直线上的三个数的和都等于大圆圈上三个数的和.(1)17894【例 4】请你将数字1、2、3、4、5、6、7填在下面图(1)所示的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等.应怎样填?【例 5】在左下图的每个圆圈中填上一个数,各数互不相等,每个圆圈有3个相邻(即有线段相连的圆圈)的圆圈。
将左下图中每个圆圈中的数改为3个相邻圆圈所填数的平均值,便得到右下图。
如果左下图中已有一个数1,请填出左下图中的其它数,使得右下图中的数都是自然数。
二年级奥数:数阵图

二年级奥数:数阵图渣渣兔摆棋子,它想让每行每列的三个数相加都等于 15。
现在摆了 4 个,剩下的应该摆哪几个数呢?数阵图——把数按照一定的规律要求排起来方法:找准要求和填数的突破口庆祝渣渣兔的生日,微微老师给它做了一个蛋糕。
现在往蛋糕上插上数字蜡烛,希望每条线上的三个数相加和都等于 12。
你来帮帮我!辐射型数阵图关键点:重叠数如果所填的数是连续数,可以尝试重叠数为最大的、最小的、中间数其余的:大手拉小手请把 1、2、3、4、5、6、7 这七个数分别填入圆圈里,使每条直线上的三个数相加的和都是 12。
请把 1~9 这九个数字分别填入圆圈内,使每条横线、竖线、斜线上的三个数相加的和都是12。
请你把 1、2、3、5、7、9、11 这 7 个数分别填入圆圈里,使每条直线上的三个数相加的和都是 14。
辐射型数阵图(一个重叠点)如果所填的数不是连续数,用拆数法,将总数拆成几个数相加的形式。
请你把 1、2、3、4、5、7 分别填入圆圈里,使每一个大椭圆上的四个数之和等于 13。
封闭型数阵图(多个重叠数)方法:有序的拆数(重复的数就是数阵图中的重叠数)数阵图,关键点是找出重叠数1、辐射型——连续的数:尝试法:头、尾、中间数;其余大手拉小手不连续的数:拆数法2、封闭型——拆数法【练习 1】在圆圈内填上适当的数,使每条线上的三个数之和都为 12。
你能做到吗?【练习 2】把 4~8 这 5 个数填入圆圈中(左下图),使两条直线上三个数之和等于 18。
【练习 3】将 1-7 这 7 个数填入右上图中,使每条线上的数之和都未 14。
【练习 4】请将 3、4、5、6、7、8、9 填入下面的圆圈里,并使每条直线上三个数字之和都相等。
(同一图片中不能出现相同的数;不同图片中数字可以重复使用。
)【练习 5】请你把 1、2、3、4、5、6 分别填入圆圈里,使每一个大椭圆上的四个数之和等于 14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题五简单数阵图
一、辐射型数阵图
从一个中心出发,向外作若干条射线,在每条射线上安放同样多个数,使其和是一个不变的数。
突破关键:确定中心数,多算的次数,公共的和
数和+中心数×重复次数=公共的和×线数
数和:指所有要填的数字加起来的和
中心数:指中间那数字,即重复计算那数字
重复次数:中心数多算的次数,一般比线数少1
公共的和:指每条直线上几个数的和
线数:指算公共和的线条数
例1、把1—5 这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
例2、把1—7这七个数分别填入图中的各○内,使每条线段上三个○内数的和等于10。
例3、在下图圆圈内分别填入数字1~9,使两条直线上五个数的和相等,和是多少?
二、封闭型数阵图
多边形的每条边放同样多的数,使它们的和都等于一个不变的数。
突破关键:确定顶点上的数字,公共的和
数和+重叠数的和=公共的和×边数
数和、公共的和跟辐射型数阵图一样的意思
重叠数的和:指数阵图顶角重复算的数全加起来的和
边数:指封闭图形的边数
例4、把1~6这六个数分别填在下图中三角形三条边的六个○内,使每条边上三个○内数的和等于9。
例5、将2—9这八个数分别填入右图的○里,使每条边上的三个数之和都等于18。
例6、将1、2、3、4、5、6、7、8、9九个数字分别填入图中的小圆圈中,使三角形每边上四个数的和是17。
练习五
1、把2—6 这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于13。
2、在图中填入2—9,使每边3个数的和等于15。
3、将数字1—9分别填在图中的○内使每条线上五个○内数的和等于27。
4、把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条线上三个数的和等于30。
数阵图
例3:在下列数阵图中填空,使三边上3个○内数的和为12
例4:在下列数阵图中填空,使每条线上三个○内的数和等于13例5:把10、20、30、40、50这五个数填○内,使每条线段上的三个相邻数的和相等
例6:把1、2、3、4、5、6、7这七个数填在数阵图中,使每条线上的3个数的和相等
例4、把1~6这六个数分别填在下图中三角形三条边的六个○内,使每条边上三个○内数的和等于9。
例5、将2—9这八个数分别填入右图的○里,使每条边上的三个数之和都等于18。
例6、将1、2、3、4、5、6、7、8、9九个数字分别填入图中的小圆圈中,使三角形每边上四个数的和是17。
练习五
1、把2—6 这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于13。
2、在图中填入2—9,使每边3个数的和等于15。
3、将数字1—9分别填在图中的○内使每条线上五个○内数的和等于27。
4、把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条线上三个数的和等于30。