二年级 奥数 数阵习题及参考答案
经典奥数数阵图问题例题

1.把1至6分别填入图18-1的各方格中,使得横行3个数的和与竖列4个数的和相等.[分析与解]记横行的中间一个数为a,则有1+2+3+…+6+a=21+a=2倍对应和,所以a 可以填奇数,即1,3,5,对应和为11,12,13,下面给出几种填法:其中的每个图形的横行左右可调换位置,每个竖列的后三个数字位置任意排列.2.把l0至20这11个数分别填入图18-2.的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法.请写出所有可能的填法.[分析与解]设中间圆圈内的数为a,有a被加了5次,而其他位置圆圈内的数字在计算5次和是都只被加了1次,所以有5个和=(10+11+…+19+20)+4a=165+4a,因为5个和,165都是5的倍数,所以4a也应该是5的倍数,则a应是5的倍数,所以a可取10,15,20.当a为10时,有5个和=165+4×10=205,所以每条线段上的和为205÷5=41,如下左图;当a=15时,有5个和=165+4×15=225,所以每条线段上的和为225÷5=45,如下中图;当a=20时,有5个和=165+4×20=245,所以每条线段上的和为245÷5=49,如下右图.3.请分别将l,2,4,6这4个数填在图18-3的各空白区域内,使得每个圆圈里4个数的和都等于15.[分析与解]在计算3个圆圈内的数字和时,已经填出的3个数字各计算了2次,中间的数字计算了3次,另外3个位置只计算了1次,中间的数字较另外3个位置多计算了2次.设中间那个数为a,有2a+2×(5+7+3)+(1+2+4+6)=15+15+15,即2a+43=45,有a=1.于是得到下图:4.在图18-4的7个圆内填入7个连续自然数,使得每两个相邻圆内所填数的和都等于连线上的已知数.那么标有*的圆内填的数是多少?[分析与解]我们知道在计算图中所有线段两端数字的和时,每个圆圈内的数字都被加了2次,于是有这7个连续自然数和的2倍为10+6+9+12+8+11+14=70,即这7个连续自然数的和为35,则中间数为35÷7=5,于是这7个数为2,3,4,5,6,7,8.能得到14的只有6+8,如果*填8那么和为14的线段另一端为6,则和为11的线段另一端为5,和为8的另一端为3,则和为12的线段另一端无法填出;所以,*只能填6,可以如上分析得到填完的下图:5.图18-5的6条线分别连接着9个圆圈,其中一个圆圈里的数是6.请你选9个连续自然数(包括6在内)填入圆圈内,使每条线上各数的和都等于23.[分析与解]当六条线上的数分别相加时,数6只加了1次,其余各数分别加了两次.又已知每条对角线上各数之和都等于23,所以这九个连续自然数之和应是(6×23+6)÷2=72.于是九个数的中间数是72÷9=8,由此可知这九个连续自然数是4,5,6,7,8,9,10,11,12.其中显然只有11+12=23,故x=11,y=12和x=12,y=11.首先考虑x=11,y=12的情况.注意7若不与x或y在一条线上,则23-7=16,只能表示成10+6,而过7的线段却有两条,所以必须f=7,于是c =4,d=5,再由a+b=23-6=17,可知a、b均不为10,e=10,a=8,b =9,于是得到下图:当x=12,y=11时,同理可得:6.将1,2,3,…,9,10这10个数分别填入图18-6中的圆圈内,使得每条线段两端的数相乘的积,除以13都余2.问这5个商数的和是多少?[分析与解]在2~90中被13除余2的数有2,15,28,41,54,67,80.其中可以被分解成1~10中两数乘积的有:2=1×2,15=3×5,28=4×7,54=6×9,80=8×10,正好1~10中每个数字出现了一次,因此可得如下的结果,当然将下图对称变换,旋转变换得到的图形仍然符合题意.有2×1÷13=0……2;3×5÷13=1……2;4×7÷13=2……2;6×9÷13=4……2;8×10÷13=6……2.这些商的和为0+1+2+4+6=13.7.在图18-7的中间圆圈内填一个数,计算每一线段两端的两数之差(大减小),然后算出这3个差数之和.那么这个差数之和的最小值是多少?[分析与解]中间数只要在19与65之间,19和65与它的差数(大数减小数)之和都是65-19=46,所以中间的数填48,三个差数之和最小.那么差数之和为65-48+48-48+48-19=65-19=46.8.请在图18-8中的7个小圆圈内各填入一个自然数,使得图中给出的每个数都是相邻两个圆圈中所填数的差(大数减小数),并且所填的7个数之和是1997.[分析与解]设1左边圈内的数为a,则从a开始顺时针依次对给出的七个差做加法或减法运算,最后结果仍等于a,也就是说,加上的数的和应等于减去的和.又1+2+3+4+5+6+7+8=28,于是给出的七个数应当分成和为14的两组.经分析可知仅有4种不同的分法:①7+6+1=2+3+4+5,②7+5+2=1+3+4+6,③7+4+3=1+2+5+6,④7+4+2+1=3+5+6.其中①又可以分为两种情况:☆加上2、3、4、5,减去7、6、1,这时七个数的总和时7a+32,★加上7、6、1,减去2、3、4、5,这时七个数的总和时7a-32.同样②③④也都分两种情况.②的第一种情况就是加上1、3、4、6,减去7、5、2,七个数的和时7a+16.因为1994=7×285+2,所以①的两种情况都无法使总和为1994,这是因为32-2与32+2都不是7的倍数,而②的第一种情况满足,此时a=283(1994=7×283+16),具体填法如下:9.图18-9是奥林匹克的五环标志,其中a,b,c,d,e,f,g,J,h,i 处分别填入整数l至9.如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?[分析与解]设每个圆内的数字之和为k,则五个圆圈内的数字之和时5k,它等于1~9的和即45,再加上两两重叠处的四个数之和.而两两重叠处的四个数之和最小是1+2+3+4=10,最大是6+7+8+9=30,所以,有5k在(45+10=)55~75(=45+30)之间的,那么k在11~15之间.验证,当k=11,13,14时对应有如下填法,当时当k=12,15时无解.所以,这个相等的和最大是14,最小为11.评注:这道题,同学往往只是计算到k在11~15之间,然后说最大为15,最小为11,但是没有进一步去验证是否存在这样的填法,导致错误,所以同学们以后在自己认为已经解决问题时,不妨验证一下,对于有些问题,不妨深究深究.[分析与解]10个连续自然数中,9是其中第三大的数,所以这10个连续自然数为2,3,4,5,6,7,8,9,10,11.图中三个2×2的正方形中四数之和相等,所以2+3+…+11再加上两个重复的数,和倍3整除.因为2+3+…+11=65,要使和数最小,两个重复数的和应最小,这两个数可以取2与5,或3与4.这和数是24.和数为24是可能的,如下两图:[分析与解]图中十个数点和为45,除去中心圆圈中的数后是3的倍数,因此中心圆圈只可能为0,3,6,9.当中心为0时,每个阴影三角形三顶点和为15.考虑包括中心圆圈的三个阴影三角形中,除0以外另两个数和为15.而0~9中这样的数组只有(6,9),(7,8)两组,因此中心为0时没有正确填图;当中心为9时,同理可知也不存在正确的填图;当中心为3时,阴影三角形三顶点和为14,含3的三个阴影三角形中另两个数和为11,这样的数组只有(2,9),(4,7),(5,6).简单尝试可知中心为3时也没有正确的填图;当中心填6时,经尝试有如下的结果:13.如图18-13,大三角形被分成了9个小三角形.试将1,2,3,4,5,6,7,8,9分别填入这9个小三角形内,每个小三角形内填一个数,要求靠近大三角形3条边的每5个数相加的和相等.问这5个数的和最大可能是多少?[分析与解]1~9和为45.设3个只属于一条边的数和为3k,则每条边上五个数字和为(45×2-3k)÷30=30-k.3k最小时,取3k=1+2+3=6,一条边上的和为30-6÷3=28;3k最大时,取3k=9+8+7=24,一条边上的和为30-24÷3=22.因此这个和最大为28,最小为22.以和为28为例,此时三边中间的小三角形内的数为1,2,3,有上方两个三角形和+1+左边两个三角形和=28;左边两个三角形和+3+右边两个三角形和=28;右边两个三角形和+2+上方两个三角形和=28;于是有2倍(上方两个三角形和+左边两个三角形和+右边两个三角形和)+1+3+2=28+28+28,即上方两个三角形和+左边两个三角形和+右边两个三角形和=39.可得上方两个三角形和为14,左边两个三角形和为13,右边两个三角形和为12.下面我们给出一种填法:每边和为22时,同理可得,我们给出一种填法:14.将1,2,3,4,5,6,7,8这8个数分别填入图l8-14的8个空格中,使四边正好组成加、减、乘、除4个正确的等式.[分析与解]除式只有4种可能:8÷4=2,6÷3=2,8÷2=4和6÷2=3,其中后两种情况乘法式子将无法满足,前两种情况对应着如下两种填法:15.图18-15包括6个加法算式,要在圆圈里填上不同的自然数,使6个算式都成立.那么最右边的圆圈中的数最少是多少?[分析与解]如下图所示,设最左边的四个数为a,b,c,d,则第一组数算式计算结果为a+b,c+d,a+c,b+d.而最右边圆圈内数为,a+b+c+d,也就是四个数的和,因此我们可以重新理解题目为找到四个自然数,使它们两两相加的四个和与它们自身全不相等,求它们和的最小值.最小的四个数(1,2,3,4)易知不符合题意,同样(1,2,3,5)也不成立,当这四个数为(1,2,3,6)时有正确填图如下,因此最右边的数最小为12.。
二年级奥数:巧妙填数数阵图练习题含答案

第二讲:数字游戏—填图与拆数【有话要说】填数是一种既有趣,又能锻炼头脑、发展智力的趣味活动。
它不仅可以提高你的运算能力,而且能促使你积极地去思考问题,解决问题。
填数这类题目的题型比较多,解答时除了口算要熟练外,更重要的是要会分析、推理。
有的题目答案不止一种,要多尝试,要尽量运用发散思维、求异思维,把各种可能的答案想出来。
【经典例题】例1:把1、3、5、7、9、11、13七个数填入右图中的七个圆圈内,使每条直线上三个数的和都等于21.思路导航:这道题可以这样想:1+3+5+7+9+11+13=49,21+21+21=63,63-49=14,由于计算三条直线上三个数时,中间圆圈里的数多算了两次,就多出了14,正好7+7=14,说明中间圆圈里应该填“7”,21-7=14,把另外六个数两个两个分组,使每组两个数的和都等于14; 1+13=3+11=5+9=14,也就是首尾配对。
例2:如图:在空格中填入不同的数,使每一横行、竖行、 斜行的三个数的和等于15.思路导航:因为每一横行、竖行、斜行三个数的和都等于15,我们可以先填一行中只有一个空格的数,如:4+(9)+2=15,竖行6+(7)+2=15,斜行6+(5)+4=15,根据填出的数再填只有一个空格的数。
6 42375645213解:例3:把1、2、3、4、5、6这六个数填入右图的圆内,使每个大圆的四个数的和都等于13。
思路导航:先确定图形中央的两个数分别填几,可以这样想,先求六个数的和与两个大圆上八个数的和:1+2+3+4+5+6=21,13+13=26,26-21=5,这个5就是中央两个圆的数的和,1+4=5,2+3=5,就是说中央两个小圆里可以填1和4,也可以填2和3,中央填1和4,13-5=8,左边填3和5,右边填2和6,中央填2和3行不行呢?剩下的数有1、4、5、6任意两个数的和都不是8,所以无法填出,因此,中央只能填1和4. 解:例4:由图中三个圆圈两两相交形成七个部分,分别填上1~7七个自然数,在一些部分中,自然数3、5、7三个数已填好,请填上其余各数,使每个圆圈中四个数的和都是15.思路导航:5462137524675381图中空着四个部分要填入四个数:1、2、4、6,可以看出中心部分属三个圆圈公共部分,关键要确定中心填哪个数,我们用拆数的方法来确定。
66666小学奥数专题之数阵图练习题例

小学奥数专题之——————数阵图数阵是由幻方演化出来的另一种数字图。
幻方一般均为正方形。
图中纵、横、对角线数字和相等。
数阵则不仅有正方形、长方形,还有三角形、圆、多边形、星形、花瓣形、十字形,甚至多种图形的组合。
变幻多姿,奇趣迷人。
一般按数字的组合形式,将其分为三类,即辐射型数阵、封闭型数阵、复合型数阵。
数阵的特点是:每一条直线段或由若干线段组成的封闭线上的数字和相等。
它的表达形式多为给出一定数量的数字,要求填入指定的图中,使其具备数阵的特点。
解数阵问题的一般思路是:1.求出条件中若干已知数字的和。
2.根据“和相等”,列出关系式,找出关键数——重复使用的数。
3.确定重复用数后,对照“和相等”的条件,用尝试的方法,求出其他各数。
有时,因数字存在不同的组合方法,答案往往不是唯一的。
\1.10.5.2辐射型数阵例1 将1~5五个数字,分别填入下图的五个○中,使横、竖线上的三个数字和都是10。
解:已给出的五个数字和是:1+2+3+4+5=15题中要求横、竖每条线上数字和都是10,两条线合起来便是20了。
20-15=5,怎样才能增加5呢?因为中心的一个数是个重复使用数。
只有5连加两次才能使五个数字的和增加5,关键找到了,中心数必须填5。
确定中心数后,按余下的1、2、3、4,分别填在横、竖线的两端,使每条线上数的和是10便可。
例2将1~7七个数字,分别填入图中的各个○内,使每条线上的三个数和相等。
:解:图中共有3条线,若每条线数字和相等,三条线的数字总和必为3的倍数。
设中心数为a,则a被重复使用了2次。
即,1+2+3+4+5+6+7+2a=28+2a,28+2a应能被3整除。
(28+2a)÷3=28÷3+2a÷3其中28÷3=9…余1,所以2a÷3应余2。
由此,便可推得a只能是1、4、7三数。
当a=1时,28+2a=30 30÷3=10,其他两数的和是10-1=9,只要把余下的2、3、4、5、6、7,按和为9分成三组填入两端即可。
小学奥数:数阵图(一).专项练习

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格); 第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。
例题精讲知识点拨教学目标5-1-3-1.数阵图【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。
CBA【例 4】 将1至6这六个数字填入图中的六个圆圈中(每个数字只能使用一次),使每条边上的数字和相等.那么,每条边上的数字和是 .789fedcba 789【例 5】 将1到8这8个自然数分别填入如图数阵中的8个圆圈,使得数阵中各条直线上的三个数之和都相等,那么A 和B 两个圆圈中所填的数之差(大数减小数)是______.BA【例 6】如图所示,圆圈中分别填人0到9这10个数,且每个正方形顶点上的四个数之和都是18,则中间两个数A与B的和是________。
BA【例 7】把2~11这10个数填到右图的10个方格中,每格内填一个数,要求图中3个22的正方形中的4个数之和相等.那么,这个和数的最小值是多少?11109 8765432【例 8】下图中有五个正方形和12个圆圈,将1~12填入圆圈中,使得每个正方形四角上圆圈中的数字之和都相等.那么这个和是多少?861102912311457【例 9】如图,大、中、小三个正方形组成了8个三角形,现在把2、4、6、8四个数分别填在大正方形的四个顶点;再把2、4、6、8分别填在中正方形的四个顶点上;最后把2、4、6、8分别填在小正方形的四个顶点上.⑴能不能使8个三角形顶点上数字之和都相等?⑵能不能使8个三角形顶点上数字之和各不相同?如果能,请画图填上满足要求的数;如果不能,请说明理由.246824688642【例 10】将1~16分别填入下图(1)中圆圈内,要求每个扇形上四个数之和及中间正方形的四个数之和都为34,图中已填好八个数,请将其余的数填完.【例 11】一个3 3的方格表中,除中间一格无棋子外,其余梅格都有4枚一样的棋子,这样每边三个格子中都有12枚棋子,去掉4枚棋子,请你适当调整一下,使每边三格中任有12枚棋子,并且4个角上的棋子数仍然相等(画图表示)。
奥数试题 数阵图

为了便于学生学习,本资源对学生免费开放
二年级奥数题以及答案:数阵图
图是由八个小圆圈组成的,每个小圆圈都有直线与相邻的小圆圈相接连.请你把1、2、3、4、5、 6、7、8八个数字分别填在八个小圆圈内,但相邻的两个数不能填入有直线相连的两个小圆圈(例如,你在最上头的一个小圆圈中填了5,那么4和6就不能填在第二层三个小圆圈中了).
答案:解:答案如图9-14所示.中间的两个圈只能填1和8,是这样分析出来的:在1、2、3、4、5、6、 7、8这八个数字中,只有"1"和"8"这两个数,各有一个相邻的数,也就是有六个不相邻的数.中间的两个小圆圈,每个都有六条线连着六个小圆圈,每个小圆圈中恰好能填一个与它不相邻的数.其余的数每个都有两个相邻的数,如4有两个相邻的数2和3,所以在1至8这八个数中4只有五个不相邻的数,这样4就不能填到中间的小圆圈中了.。
小学奥数第23讲 数阵图(含解题思路)

23、数阵图【方阵】例1 将自然数1至9,分别填在图5.17的方格中,使得每行、每列以及两条对角线上的三个数之和都相等。
(长沙地区小学数学竞赛试题)讲析:中间一格所填的数,在计算时共算了4次,所以可先填中间一格的数。
(l+2+3+……+9)÷3=15,则符合要求的每三数之和为15。
显然,中间一数填“5”。
再将其它数字顺次填入,然后作对角线交换,再通过旋转(如图5.18),便得解答如下。
例2 从1至13这十三个数中挑出十二个数,填到图5.19的小方格中,使每一横行四个数之和相等,使每一竖列三个数之和又相等。
(“新苗杯”小学数学竞赛试题)讲析:据题意,所选的十二个数之和必须既能被 3整除,又能被 4整除,(三行四列)。
所以,能被12整除。
十三个数之和为91,91除以12,商7余7,因此,应去掉7。
每列为(91—7)÷4=21而1至13中,除7之外,共有六个奇数,它们的分布如图5.20所示。
三个奇数和为21的有两种:21=1+9+11=3+5+13。
经检验,三个奇数为3、5、13的不合要求,故不难得出答案,如图5.21所示。
例3 十个连续自然数中,9是第三大的数,把这十个数填到图5.22的十个方格中,每格填一个,要求图中三个2×2的正方形中四数之和相等。
那么,这个和数的最小值是______。
(1992年全国小学数学奥林匹克初赛试题)讲析:不难得出十个数为:2、3、4、5、6、7、8、9、10、11。
它们的和是65。
在三个2×2的正方形中,中间两个小正方形分别重复了两次。
设中间两个小正方形分别填上a和b,则(65+a+b)之和必须是 3的倍数。
所以,(a+b)之和至少是7。
故,和数的最小值是24。
【其他数阵】例1 如图5.23,横、竖各12个方格,每个方格都有一个数。
已知横行上任意三个相邻数之和为20,竖列上任意三个相邻数之和为21。
图中已填入3、5、8和“×”四个数,那么“×”代表的数是______。
小学奥数第23讲 数阵图(含解题思路)

23、数阵图【方阵】例1 将自然数1至9,分别填在图5.17的方格中,使得每行、每列以及两条对角线上的三个数之和都相等。
(长沙地区小学数学竞赛试题)讲析:中间一格所填的数,在计算时共算了4次,所以可先填中间一格的数。
(l+2+3+……+9)÷3=15,则符合要求的每三数之和为15。
显然,中间一数填“5”。
再将其它数字顺次填入,然后作对角线交换,再通过旋转(如图5.18),便得解答如下。
例2 从1至13这十三个数中挑出十二个数,填到图5.19的小方格中,使每一横行四个数之和相等,使每一竖列三个数之和又相等。
(“新苗杯”小学数学竞赛试题)讲析:据题意,所选的十二个数之和必须既能被 3整除,又能被 4整除,(三行四列)。
所以,能被12整除。
十三个数之和为91,91除以12,商7余7,因此,应去掉7。
每列为(91—7)÷4=21而1至13中,除7之外,共有六个奇数,它们的分布如图5.20所示。
三个奇数和为21的有两种:21=1+9+11=3+5+13。
经检验,三个奇数为3、5、13的不合要求,故不难得出答案,如图5.21所示。
例3 十个连续自然数中,9是第三大的数,把这十个数填到图5.22的十个方格中,每格填一个,要求图中三个2×2的正方形中四数之和相等。
那么,这个和数的最小值是______。
(1992年全国小学数学奥林匹克初赛试题)讲析:不难得出十个数为:2、3、4、5、6、7、8、9、10、11。
它们的和是65。
在三个2×2的正方形中,中间两个小正方形分别重复了两次。
设中间两个小正方形分别填上a和b,则(65+a+b)之和必须是 3的倍数。
所以,(a+b)之和至少是7。
故,和数的最小值是24。
【其他数阵】例1 如图5.23,横、竖各12个方格,每个方格都有一个数。
已知横行上任意三个相邻数之和为20,竖列上任意三个相邻数之和为21。
图中已填入3、5、8和“×”四个数,那么“×”代表的数是______。
小学奥数专题之数阵图练习题例

66666小学奥数专题之数阵图练习题例(总20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--小学奥数专题之——————数阵图数阵是由幻方演化出来的另一种数字图。
幻方一般均为正方形。
图中纵、横、对角线数字和相等。
数阵则不仅有正方形、长方形,还有三角形、圆、多边形、星形、花瓣形、十字形,甚至多种图形的组合。
变幻多姿,奇趣迷人。
一般按数字的组合形式,将其分为三类,即辐射型数阵、封闭型数阵、复合型数阵。
数阵的特点是:每一条直线段或由若干线段组成的封闭线上的数字和相等。
它的表达形式多为给出一定数量的数字,要求填入指定的图中,使其具备数阵的特点。
解数阵问题的一般思路是:1.求出条件中若干已知数字的和。
2.根据“和相等”,列出关系式,找出关键数——重复使用的数。
3.确定重复用数后,对照“和相等”的条件,用尝试的方法,求出其他各数。
有时,因数字存在不同的组合方法,答案往往不是唯一的。
辐射型数阵例1 将1~5五个数字,分别填入下图的五个○中,使横、竖线上的三个数字和都是10。
解:已给出的五个数字和是:1+2+3+4+5=15题中要求横、竖每条线上数字和都是10,两条线合起来便是20了。
20-15=5,怎样才能增加5呢?因为中心的一个数是个重复使用数。
只有5连加两次才能使五个数字的和增加5,关键找到了,中心数必须填5。
确定中心数后,按余下的1、2、3、4,分别填在横、竖线的两端,使每条线上数的和是10便可。
例2将1~7七个数字,分别填入图中的各个○内,使每条线上的三个数和相等。
解:图中共有3条线,若每条线数字和相等,三条线的数字总和必为3的倍数。
设中心数为a,则a被重复使用了2次。
即,1+2+3+4+5+6+7+2a=28+2a,28+2a应能被3整除。
(28+2a)÷3=28÷3+2a÷3其中28÷3=9…余1,所以2a÷3应余2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016春季数学集训二队每周习题(3)参考答案
星期一
1.将自然数1,2,3,……按下表的规律排列。
问:55应该出现在哪个字母所在的一列?如果1、2、3、4所在的那行称作第1行,那么它在第几行?
解:(提示:每个周期8个数,每个周期占两行) 55÷8=6……
7(是C 列) 行数:2×6+2=14(行) 答:55应该出现在C 字母所在的一列,它在第14行。
2.如果今年的3
月26日是星期三,那么今年的4月26日是星期几? 解:(3+31)÷7=4……6(星期六) 答:今年的4月26日是星期六。
3.如果今年的6月26日是星期三,那么今年的8月4日是星期几? 解:(3+30+31+4-26)÷7=6(日) 答:今年的8月4日是星期日。
星期二
4.将2、5、8、11、14【解题思路】:确定图中的公用数。
图中两条线上6个数的总和为:2×24=48,
已知5个数的总和为:(2+14)×5÷2=40或8×5=40, 或2+5+8+11+14=40
图中两条线的总和比已知数的总和多出了:48-40=8,
则公用数为8。
5.将2、4、6、8、10、12、14填入下图的○中,使每条线上三个数之和都等于24。
【解题思路】:确定图中的公用数。
图中三条线上9个数的总和为:3×24=72,
已知7个数的总和为:(2+14)×7÷2=56或8×7=56, 图中三条线的总和比已知数的总和多出了:72-56=16, 因为中间的公用数多用了2次,所以公用数为:16÷2=8
6.把1~7填入下图的圆圈中,使每条线上三个数之和都等于12。
【解题思路】:确定图中的公用数。
图中三条线上9个数的总和为:3×12=36,
已知7个数的总和为:(1+7)×7÷2=28或4×7=28, 图中三条线的总和比已知数的总和多出了:36-28=8, 因为中间的公用数多用了2次,所以公用数为:8÷2=4。
星期三
7.将2~10这九个数分别填入下图的方格内,使每行、每列及每条对角线上的三个数之和都为18。
【解题思路】:确定中间数。
因为每边之和是18,可以得到中间数是:18÷3=6, 最后填完整个九宫图。
8.把4~9填入下图的□内,使每条线上三个数的和都是18。
【解题思路】:确定图中三个公用数。
图中三条线上9个数的总和为:3×18=54, 已知6个数的总和为:(4+9)×6÷2=39,
图中三条线的总和比已知数的总和多出了:54-39=15则三个公用数之和为15。
又因15=4+5+6, 所以三个公用数分别是4、5、6。
9.将1~10填入下图的○中,使每个菱形的四个顶点上四个数之和都为20。
【解题思路】:确定图中两个公用数。
图中四个菱形上12个数的总和为:3×20=60已知10个数的总和为:(1+10)×10÷2=55图中四个菱形的总和比已知数的总和多出了:60-55=5,则两个公用数的和为5。
5=1+4=2+3。
(答案不唯一。
举其中一例,如右图所示)
星期四
10.把1~9
【解题思路】:确定图中三个公用数。
图中四个三角形上12个数的总和为:4×15=60, 已知9个数的总和为:(1+9)×9÷2=45,
图中四个三角形的总和比已知数的总和多出了:60-则三个公用数的和为15。
15=1+6+8,1+5+9,23+4+8,4+5+6等等。
(答案不唯一。
举其中一例,如右图所示)
11.将1~8分别填入下图四个圆相互分割成的八个部分中,使每个圆内三个数之和都为12。
【解题思路】:确定图中四个公用数。
图中四个圆内
12个数的总和为:4×12=48, 已知8个数的总和为:(1+8)×8÷2=36,
图中四个圆内的总和比已知数的总和多出了:48-36=12, 则四个公用数的和为12。
12=1+2+3+6。
12.将1~8这八个数分别填入○中,使每个五边形上五个数之和都等于21。
【解题思路】:确定图中两个个公用数。
图中两个五边形上8个圆的总和为:21×2=42
已知8个数的总和为:(1+8)×8÷2=36
图中两个五边形上8个圆的总和比已知数的总和多出了: 42-36=6,则公用数的和为6。
6=1+5,2+4 (答案不唯一。
举其中一例,如右图所示)
星期五
13.把1~11【解题思路】:确定图中的公用数。
图中五条虚线上11个数的总和为:5×18=90 已知11个数的总和为:(1+11)×11÷2=66
图中五条虚线上11个数的总和比已知数的总和多出了:90-66=24,因为中间的公用数重复使用了4数为:24÷4=6。
14.将2~9
【解题思路】:确定图中三个公用数。
图中三条边上12个数的总和为:3×20=60,已知9
为:(1+9)×9÷2=45,图中三条边的总和比已知数
的总和多出了:60-45=15,则三个公用数的和为15。
其中一个公用数为1,那么另外两个公用数的和为15-1=14
14=5+9或6+8。
(答案不唯一。
举其中一例,如右图所示)
15.将1~11这11个数分别填入图中的空格内,使每横行3个数之和、竖列上5个数之和都等于18。
【解题思路】:确定图中三个公用数。
图中三横行与一竖列上11个数的总和为:4×18=72
已知11个数的总和为:(1+11)×11÷2=66或6×11=66
图中三横行与一竖列上11个数的总和比已知数的总和多出了:72-66=6。
6=1+2+3。
1
2
3
10 7
11 5 9 6
4
8。