(完整版)代数式求值(精选初一七年级上代数式求值32道题)
七年级数学《代数式》习题(含答案)

七年级数学《代数式》习题(含答案)一、耐心填一填:1、32x y 5-的系数是2、当x= __________时,的值为自然数;312-x 3、a 是13的倒数,b 是最小的质数,则21a b-= 。
4、三角形的面积为S,底为a,则高h= __________ 5、去括号:-2a 2 - [3a 3 - (a - 2)] = __________6、若-7x m+2y 与-3x 3y n 是同类项,则m n +=7、化简:3(4x -2)-3(-1+8x )= 8、y 与10的积的平方,用代数式表示为________9、当x=3时,代数式________132的值是--x x 10、当x=________时,|x|=16;当y=________时,y 2=16; 二、精心选一选: 1、 a 的2倍与b 的31的差的平方,用代数式表示应为( ) A 22312b a - B b a 3122- C 2312⎪⎭⎫ ⎝⎛-b a D 2312⎪⎭⎫⎝⎛-b a2、下列说法中错误的是( )A x 与y 平方的差是x 2-y 2B x 加上y 除以x 的商是x+xyC x 减去y 的2倍所得的差是x-2yD x 与y 和的平方的2倍是2(x+y)2 3、已知2x 6y 2和321,9m - 5mn -173m nx y -是同类项则的值是 ( ) A -1 B -2 C -3 D -44、已知a=3b, c=) (cb ac b a ,2a 的值为则-+++ A 、712D 611C 115B 511、、、5、已知:a<0, b>0,且|a|>|b|, 则|b+1|-|a-b|等于( )A 、2b-a+1 B.1+a C.a-1 D.-1-a6、上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为( ) Aa bx y++ Bax by ab + Cax by a b ++ D x y2+ 7、 小华的存款是x 元小林的存款比小华的一半还多2元,则小林的存款是( ) A)2(21+x B )2(21-x C 221+x D 221-x 8、m-[n-2m-(m-n)]等于( )A -2mB 2mC 4m-2nD 2m-2n 9、若k 为有理数,则|k|-k 一定是( )A 0B 负数C 正数D 非负数 10、已知长方形的周长是45㎝,一边长是a ㎝,则这个长方形的面积是( )A 、平方厘米、平方厘米245aB 2)45(a a -C 、平方厘米、平方厘米-a)-245a( D a)245(三、化简题1、2222(835)(223)a ab b a ab b ----+ 2、)231(34x xy xy -+-3、)(2)2(333c b a c b a b a ---+ 4、 ()⎪⎭⎫ ⎝⎛++-+--13431354b a b a5、2223[723()1]a a a a a ----+ 6、2222(876)[8()]x y xy xy xy x y y x -+---+四、化简求值1、523531411()[2()()][()()]2323x y x y x y x y x y +++-+-+-+,其中3x y +=2、2225[(53)6()]a a a a a a -+---,其中12a =-3、已知:2(2)10x y +++=,求222225{2[3(42)]}xy xy xy xy x y ----的值。
第3章 代数式(压轴必刷30题6种题型专项训练)(原卷版)-2024-2025学年七年级数学上册同步

第3章代数式(压轴必刷30题6种题型专项训练)一.列代数式(共7小题)1.(2022秋•盱眙县期中)如图,两摞规格完全相同的课本整齐叠放在讲台上.请根据图中所给出的数据信息,回答下列问题:(1)每本课本的厚度为cm;(2)若有一摞上述规格的课本x本,整齐叠放在讲台上,请用含x的代数式表示出这一摞数学课本的顶部距离地面的高度;(3)当x=56时,若从中取走14本,求余下的课本的顶部距离地面的高度.2.(2022秋•常州期中)李师傅下岗后,做起来小生意,第一次进货,他以每件a元的价格购进了30件甲种小商品,以每件b元的价格购进了40件乙种小商品,且a<b.(1)若李师傅将甲种商品提价40%,乙种商品提价30%全部出售,他获利多少元?(用含有a,b的式子表示结果)(2)若李师傅将两种商品都以元的价格全部出售,他这次买卖是赚钱还是亏本,请说明理由?3.(2022秋•灌南县期中)如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a、b、c,其中a、b是直角边.正方形的边长分别是a、b.(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图②).用两种不同的方法列代数式表示图②中的大正方形面积:方法一:;方法二:;(2)观察图②,试写出(a+b)2,a2,2ab,b2这四个代数式之间的等量关系:;(3)请利用(2)中等量关系解决问题:已知图①中一个三角形面积是6,图②的大正方形面积是49,求a2+b2的值;(4)求3.142+6.28×6.86+6.862的值.4.(2022秋•海陵区校级月考)用字母表示数是数学发展史上的一个里程碑,利用字母表示数,可以简化计算,可以使数量之间的关系更加简明,且更具有普遍意义.(1)有理数的除法法则是“除以一个非零的数,等于乘以它的倒数”,请用字母表示这一法则:.(2)计算(++)﹣2×(﹣﹣﹣)﹣3×(++﹣)的结果是.(3)甲、乙两家商店都经营一种商品,一开始标价相同.甲先涨价20%,发现销量不好,接着降价20%出售;乙先降价20%,后来又涨价20%.设最后的实际售价分别是a甲和a乙,则a甲a乙.(填“>”“<”或者“=”)5.(2022秋•建邺区校级月考)在数轴上有A、B、M三点,点M与点A、B之间的距离相等.(1)若A、B两点表示的数分别为﹣12、8,则点M表示的数为;(2)已知点A、B的运动方式如下:点A沿着数轴从数字﹣12处以每秒3个单位长度的速度向右匀速运动,点B沿着数轴从数字8处以每秒2个单位长度的速度向左匀速运动.设运动时间为t(t≠4).①点M表示的数为;(用含t的代数式表示)②参照(2)中的描述方式,请直接写出点M的运动方式.6.(2022秋•秦淮区期中)(1)在下列横线上用含有a,b的代数式表示相应图形的面积.①②③④(2)请在图④画出拼图并通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表达:.(3)利用(2)的结论计算10.232+20.46×9.77+9.772的值.7.(2022秋•宝应县期中)如图,在长方形中挖去两个三角形.(1)用含a、b的式子表示图中阴影部分的面积;(2)当a=10,b=8时求图中阴影部分的面积.二.代数式求值(共6小题)8.(2022秋•启东市校级月考)a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3(1)试求(﹣2)※3的值(2)若1※x=3,求x的值(3)若(﹣2)※x=﹣2+x,求x的值.9.(2022秋•常州月考)现定义一种新运算:a⊗b=ab+a﹣b,如1⊗3=1×3+1﹣3=1.(1)求[(﹣2)⊗5]⊗(6)(2)新定义的运算满足交换律吗?试举例说明.10.(2022秋•江阴市校级月考)如果a,b互为相反数,c,d互为倒数,x的绝对值是1,y是数轴负半轴上到原点的距离为1的数,求代数式﹣cd+y2017的值.11.(2022秋•徐州期中)某校团委组织了有奖征文活动,并设立了一、二、三等奖,根据设奖情况买了50件奖品,其二等奖奖品的件数比一等奖奖品的件数的2倍少10,各种奖品的单价如下表所示:一等奖奖品二等奖奖品三等奖奖品单价/元12105数量/件x如果计划一等奖奖品买x件,买50件奖品的总价是y元.(1)先填表,再用含x的代数式表示y并化简;(2)若一等奖奖品买10件,则共花费多少?12.(2022秋•兴化市校级月考)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价48元,乒乓球每盒定价12元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球x盒(不小于5盒).问:(1)用代数式表示甲、乙两店购买所需的费用;(2)当需要40盒乒乓球时,通过计算,说明此时去哪家购买较为合算;(3)当需要40盒乒乓球时,你能给出一种更为省钱的方法吗?试写出你的购买方法和所需费用.13.(2022秋•兴化市校级期末)某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套.如果每套比原销售价降低10元销售,则每天可多销售100套.该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论.(每套西服的利润=每套西服的销售价﹣每套西服的进价).(1)按原销售价销售,每天可获利润元;(2)若每套降低10元销售,每天可获利润元;(3)如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套,按这种方式,若每套降低10x元(0≤x≤4,x为正整数)请列出每天所获利润的代数式;(4)计算x=2和x=3时,该商场每天获利润多少元?(5)根据以上的测算,如果你是该商场的经理,你将如何确定商场的销售方案?三.规律型:数字的变化类(共6小题)14.(2022秋•江阴市期中)式子“1+2+3+4+…+100”表示从1开始的连续100个正整数的和,由于上述式子比较长,书写不方便,为了简便起见,可以将上述式子表示为,这里“∑”是求和的符号.例如“1+3+5+7+…+99”用“∑”可以表示为,“13+23+33+…+103”用“∑”可以表示为.(1)把写成加法的形式是;(2)“2+4+6+8+…+100”用“∑”可以表示为;(3)计算:.15.(2022秋•宿城区期中)如表,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.6a b x﹣21…(1)可求得x=,第2019个格子中的数为;(2)判断:前m个格子中所填整数之和是否可能为2019?若能,求出m的值,若不可能,请说明理由;(3)如果x,y为前3格子中的任意两个数,那么所有的|x﹣y|的和可以通过计算|6﹣a|+|a﹣6|+|a﹣b|+|b ﹣a|+|6﹣b|+|b﹣6|得到.若x,y为前20格子中的任意两个数,则所有的|x﹣y|的和为.16.(2022秋•锡山区校级月考)观察下列等式:第1个等式:a1==(1﹣)第2个等式:a2==(﹣)第3个等式:a3==(﹣)第4个等式:a4==(﹣)…请回答下列问题:(1)按上述等式的规律,列出第5个等式:a5==(2)用含n的式子表示第n个等式:a n==(3)求a1+a2+a3+a4+…+a100的值.17.(2022秋•广陵区校级月考)观察下列等式=1﹣,=,=将以上三个等式两边分别相加得:++=1﹣++=1﹣=(1)猜想并写出:=(2)直接写出下列各式的计算结果:①+++…+=②+++…+=(3)探究并计算:+++…+.18.(2022秋•苏州期末)分类讨论是重要的数学方法,如化简|x|,当x>0时,|x|=x;当x=0时,|x|=0;当x<0时,|x|=﹣x.求解下列问题:(1)当x=﹣3时,值为,当x=3时,的值为,当x为不等于0的有理数时,的值为;(2)已知x+y+z=0,xyz>0,求的值;(3)已知:x1,x2,…,x2021,x2022,x2023,这2023个数都是不等于0的有理数,若这2023个数中有n个正数,,则m的值为(请用含n的式子表示).19.(2022秋•靖江市月考)从2开始,连续的偶数相加,它们的和的情况如下:(1)按这个规律,当m=6时,和为;(2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为:.(3)应用上述公式计算:①2+4+6+…+200②202+204+206+ (300)四.规律型:图形的变化类(共4小题)20.(2022秋•大丰区校级月考)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10B.25=9+16C.36=15+21D.49=18+3121.(2022秋•海陵区校级月考)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A 向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是.22.(2022秋•灌云县期中)某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有n张桌子时,两种摆放方式各能坐多少人?(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?23.(2022秋•钟楼区校级月考)平移和翻折是初中数学两种重要的图形变换(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动4个单位长度,再向正方向移动1个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是.A.(+4)+(+1)=+5B.(+4)+(﹣1)=+3C.(﹣4)﹣(+1)=﹣5D.(﹣4)+(+1)=﹣3②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,…,依此规律跳,当它跳2022次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2022的点与表示的点重合;②若数轴上A、B两点之间的距离为2022(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示,B点表示.③一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣19、8,现以点C为折点,将数轴向右对折,若点A对应的点A'落在点B的右边,并且A'B=2,求点C表示的数.五.整式的加减(共4小题)24.(2022秋•海州区期中)已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)(1)若A与B的和中不含x2项,求a的值;(2)在(1)的条件下化简:B﹣2A.25.(2022秋•宿城区期中)已知多项式(2x2+ax﹣y+6)﹣(bx2﹣2x+5y﹣1)(1)若多项式的值与字母x的取值无关,求a、b的值;(2)在(1)的条件下,先化简多项式2(a2﹣ab+b2)﹣(a2+ab+2b2),再求它的值.26.(2022秋•泗洪县期中)已知代数式A=2x2+3xy+2y,B=x2﹣xy+x.(1)求A﹣2B;(2)若A﹣2B的值与x的取值无关,求y的值.27.(2022秋•锡山区期中)对于整数a,b,定义一种新的运算“⊙”:当a+b为偶数时,规定a⊙b=2|a+b|+|a﹣b|;当a+b为奇数时,规定a⊙b=2|a+b|﹣|a﹣b|.(1)当a=2,b=﹣4时,求a⊙b的值.(2)已知a>b>0,(a﹣b)⊙(a+b﹣1)=7,求式子(a﹣b)+(a+b﹣1)的值.(3)已知(a⊙a)⊙a=180﹣5a,求a的值.六.整式的加减—化简求值(共3小题)28.(2022秋•东海县期中)小华从课外书上抄写了这样一道练习题:已知x=3.求:6x2+4x﹣2(x2﹣1)﹣2(2x+x2)的值.粗心的小华把x=3抄成了x=﹣3,但计算的结果却是正确的.同学们你知道其中原因吗?29.(2022秋•东台市期中)阅读材料:对于任何数,我们规定符号的意义是=ad﹣bc.例如:=1×4﹣2×3=﹣2.(1)按照这个规定,请你计算|的值;(2)按照这个规定,请你计算(x﹣2)2+(y+)2=0时,值.30.(2022秋•海安市期中)阅读材料:对于任何数,我们规定符号的意义是=ad﹣bc.例如:=1×4﹣2×3=﹣2(1)按照这个规定,请你计算的值.(2)按照这个规定,请你计算当|m+3|+(n﹣1)2=0时,的值.。
北师大版七年级上数学专题四代数式及求值

专题三:代数式及求值※1、代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式...。
注:单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※2、代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ;②数字与字母相乘时,数字应写在字母前面,如4a ; ③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如a ⨯312应写作a 37; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作44-a ; 注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米※3、代数式的系数:代数式中的数字中的数字因数叫做代数式的系数......。
如3x ,4y 的系数分别为3,4。
注意:①单个字母的系数是1,如a 的系数是1;②只含字母因数的代数式的系数是1或-1,如-ab 的系数是-1。
a 3b 的系数是1※4、代数式的项:代数式7262--x x 表示6x 2、-2x 、-7的和,6x 2、-2x 、-7是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。
5、求代数式的值的一般步骤:(1)代入。
将指定的字母数值代替代数式里的字母,代入数值时,必须将相应的字母换成数值,其他的运算符号,原来的数字都不能改变,对原来省略的乘号应还原。
(2)计算。
按照代数式指明的运算计算出结果,运算时应分清运算种类及运算的顺序,按照先乘除,后加减,有括号的先算括号的顺序进行。
初一上册整式化简求值60题(含答案)

整式化简求值:先化简再求值1.令狐采学2.)3(2)2132()83(3232--+-+-a a a a a a ,其中4-=a3.)45(2)45(332-+---+-x x x x ,其中2-=x4.求)3123()31(22122y x y x x +-+--的值,其中2-=x 32=y5.22221313()43223a b a b abc a c a c abc ⎡⎤------⎢⎥⎣⎦其中1-=a 3-=b 1=c 6.化简求值:若a=﹣3,b=4,c=﹣17,求{}222278[(2)]a bc a cb bca ab a bc --+-的值7.先化简后求值:2233[22()]2x y xy xy x y xy ---+,其中x=3,y=﹣138.化简求代数式:22(25)2(35)a a a a ---+的值,其中a=﹣1.9.先化简,再求值:2222115()(3),,23a b ab ab a b a b --+==其中 10.求代数式的值:2212(34)3(4)3,3xy x xy x x y +-+=-=,其中11.先化简,再求值:2(3a ﹣1)﹣3(2﹣5a ),其中a=﹣2.12.先化简,再求值:22212()[3()2]2xy x x xy y xy ----++,其中x=2,y=﹣1.13.先化简,再求值:222(341)3(23)1x x x x x -+---,其中x=﹣5.14.先化简,再求值:32x﹣[7x ﹣(4x ﹣3)﹣22x ];其中x=2.15.先化简,再求值:(﹣2x +5x+4)+(5x ﹣4+22x ),其中x=﹣2.16.先化简,再求值:3(x ﹣1)﹣(x ﹣5),其中x=2. 17.先化简,再求值:3(2x+1)+2(3﹣x ),其中x=﹣1.18.先化简,再求值:(32a﹣ab+7)﹣(5ab ﹣42a +7),其中a=2,b=13.19.化简求值:2111(428)(1),422x x x x -+---=-其中 20.先化简,再求值:(1)(52a +2a+1)﹣4(3﹣8a+22a )+(32a ﹣a ),其中13a =21.先化简再求值:222232(33)(53),35x x x x -+--+=-其中 22.先化简再求值:2(2xy+x 2y )﹣2(2x y ﹣x )﹣2x 2y ﹣2y的值,其中x=﹣2,y=2.23.先化简,再求值.4xy ﹣[2(2x+xy ﹣22y )﹣3(2x ﹣2xy+y2)],其中11,22x y =-=24.先化简,再求值:22x +(﹣2x +3xy+22y )﹣(2x ﹣xy+22y ),其中 x=12,y=3.25.先化简后求值:5(32xy ﹣x 2y )﹣(x 2y +32x y ),其中x=-12,y=2.26.先化简,再求值:22223()3x x x x ++-,其中x=-1227.(52x﹣32y )﹣3(2x ﹣2y )﹣(﹣2y ),其中x=5,y=﹣3.28.先化简再求值:(22x﹣5xy )﹣3(2x ﹣2y )+2x ﹣32y ,其中x=﹣3,13y =29.先化简再求值:(﹣2x +5x )﹣(x ﹣3)﹣4x ,其中x=﹣130.先化简,再求值:23)2(3)(2222==-+--y x x y y x x ,,其中, 31.223(2)[322()]x xy x y xy y ---++,其中1,32x y =-=-。
初中数学代数式求值综合测试卷(含答案)

初中数学代数式求值综合测试卷
一、单选题(共7道,每道10分)
1.化简的结果为( )
A. B.
C.9m-2
D.-9m-2
答案:D
试题难度:三颗星知识点:整式的加减
2.若关于x的多项式的值与x无关,则m2-2m2-2(2m-4)+4m的值为( )
A.-28
B.28
C.-32
D.44
答案:A
试题难度:三颗星知识点:整式的加减;化简求值
3.已知a-b=1,则代数式2a-2b-3的值是()
A.-1
B.1
C.-5
D.5
答案:A
试题难度:三颗星知识点:整体代入
4.已知代数式的值是8,那么代数式的值为()
A.1
B.2
C.3
D.4
答案:B
试题难度:三颗星知识点:整体代入
5.当x=2时,代数式ax3+bx+1的值为6,那么当x=-2时这个式子的值为()
A.-4
B.1
C.5
D.6
答案:A
试题难度:三颗星知识点:整体代入
6.一个三位数,中间的数字为a,个位上的数字比十位上的数字大2,百位上的数字比个位上的数字小3,用代数式表示这个三位数为()
A.3a+1
B.111a-98
C.111a+199
D.111a-298
答案:B
试题难度:三颗星知识点:数位表示
7.若a表示一个两位数,b也表示一个两位数,要把b放在a的右边,那么所组成的四位数应表示为()
A.100a+b
B.100a+10b
C.100b+a
D.1000b+10a
答案:A
试题难度:三颗星知识点:数位表示。
初一数学代数式的值练习题精选

初一数学代数式的值练习题精选1.化简代数式322(2x-1+x)-x-1,可以先将括号内的项合并得到322(3x-1)-x-1,再将常数项合并得到966x-325.2.代数式(a+b)2-(a-b)2可以展开得到4ab,代入a=-2、b=-3得到结果12.3.将2(x-y)2+3x-3y+1展开得到2x2-7xy+6y2+3x+1,代入x-y=3得到2y2+15.4.将x(2x-y+3z)展开得到2x3-xy+3xz的值,代入x=7、y=4、z=0得到126.5.将3a-a-a+1化简得到-a-1,代入a=-3得到结果2.6.将b-4ac代入a=2、b=-3、c=4得到-59.7.代数式(1/2-x-y)+5ab可以化简得到(5/2)-x-y+5ab,但没有给出具体的求值。
8.将3x-1+2y+3化简得到3x+2y+2,代入3x-2y得到-x+2.9.将2a+3a+1=6代入得到a=1,代入6a+9a+5得到35.10.将x=-2、y=-5代入得到-9/8,将x=2、y=5代入得到23/8.11.将x=2代入4x2-2xy+2y2得到20-4y+2y2,y的绝对值最小为0,代入得到20.12.将x+3=5-y化简得到y=2-x,代入a/b=b/a得到a=-1,b=-1,代入得到-5/2.13.将2x2+3x+5=6代入得到x=-1或x=5/2,代入6x2+9x-3得到33/2或-3/2.14.将2x-y=5化简得到y=2x-5,代入2y-4x+5得到-3x+5,没有给出具体的求值。
15.将x=11/2代入得到121/4.16.将a=4、b=12代入得到44.17.将x=1、y=-6代入得到(1)37,(2)49,(3)49.18.用代数式10a+(a+5)表示这个两位数,当a=3时得到35.19.用代数式100a+b表示这个四位数,没有给出具体的求值。
20.将x=1、y=-1代入得到-1/2.。
初一代数式计算题50道

初一代数式计算题50道一、整式的加减1.化简:3x + 2x - 5x。
2.化简:4y - 3y + 2y。
3.化简:2a + 3b - a + 2b。
4.化简:5m - 3n - 2m + 4n。
5.化简:3(x + 2y) - 2(x - y)。
6.化简:2(3a - 2b) + 3(2a + b)。
7.化简:-(2x - 3y) + 4(3x - 2y)。
8.化简:5(a - b) - 2(a + 3b)。
9.化简:3x² + 2x² - 4x²。
10.化简:4y² - 3y² + 2y²。
二、整式的乘法11.计算:2x·3x。
12.计算:-3a·2a²。
13.计算:4m·(-2m²n)。
14.计算:5xy·(-3x²y)。
15.计算:(2a²b)·(-3ab³)。
16.计算:(-3x²y³)·2xy²。
17.计算:(4m²n)·(-2m³n²)。
18.计算:(-5a²b³)·(3a³b²)。
19.计算:(2x + 3)(x - 1)。
20.计算:(3x - 2)(2x + 1)。
三、整式的除法21.计算:6x²÷2x。
22.计算:-12a³b²÷(-3ab²)。
23.计算:24m³n²÷(-8m²n)。
24.计算:30x³y²÷(-5x²y)。
25.计算:(15a³b⁴c)÷(-5a²b²c)。
26.计算:(-24x⁴y⁵z²)÷(-8x²y³z)。
七年级上册数学代数式

七年级上册数学代数式一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为()A.﹣1B.1C.﹣2D.2【考点】代数式求值.【分析】把m、n的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知2﹣2﹣8=0,则32﹣6﹣18的值为()A.54B.6C.﹣10D.﹣18【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵2﹣2﹣8=0,即2﹣2=8,∴32﹣6﹣18=3(2﹣2)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0B.1C.﹣1D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把=4代入得:=2,把=2代入得:=1,本选项不合题意;B、把=2代入得:=1,把=1代入得:3+1=4,把=4代入得:=2,本选项不合题意;C、把=1代入得:3+1=4,把=4代入得:=2,把=2代入得:=1,本选项不合题意;D、把=2代入得:=1,把=1代入得:3+1=4,把=4代入得:=2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.5.当=1时,代数式4﹣3值是()A.1B.2C.3D.4【考点】代数式求值.【专题】计算题.【分析】把值代入原式计算即可得到结果.【解答】解:当=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知=1,y=2,则代数式﹣y的值为()A.1B.﹣1C.2D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把=1,y=2代入﹣y,求出代数式﹣y的值为多少即可.【解答】解:当=1,y=2时,﹣y=1﹣2=﹣1,即代数式﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知2﹣2﹣3=0,则22﹣4值为()A.﹣6B.6C.﹣2或6D.﹣2或30【考点】代数式求值.【专题】整体思想.【分析】方程两边同时乘以2,再化出22﹣4求值.【解答】解:2﹣2﹣3=02(2﹣2﹣3)=02(2﹣2)﹣6=022﹣4=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的22﹣4.8.按如图的运算程序,能使输出结果为3的,y的值是()A.=5,y=﹣2B.=3,y=﹣3C.=﹣4,y=2D.=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2﹣y=3,A、=5时,y=7,故A选项错误;B、=3时,y=3,故B选项错误;C、=﹣4时,y=﹣11,故C选项错误;D、=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3B.0C.1D.2【考点】代数式求值.【专题】整体思想.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.10.已知﹣2y=3,则代数式6﹣2+4y的值为()A.0B.﹣1C.﹣3D.3【考点】代数式求值.【分析】先把6﹣2+4y变形为6﹣2(﹣2y),然后把﹣2y=3整体代入计算即可.【解答】解:∵﹣2y=3,∴6﹣2+4y=6﹣2(﹣2y)=6﹣23=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.11.当=1时,代数式a3﹣3b+4的值是7,则当=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣7【考点】代数式求值.【专题】整体思想.【分析】把=1代入代数式求出a、b的关系式,再把=﹣1代入进行计算即可得解.【解答】解:=1时,a3﹣3b+4=a﹣3b+4=7,解得a﹣3b=3,当=﹣1时,a3﹣3b+4=﹣a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若开始输入值为81,则第2022次输出的结果为()A.3B.27C.9D.1【考点】代数式求值.【专题】图表型.【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,81=27,第2次,27=9,第3次,9=3,第4次,3=1,第5次,1+2=3,第6次,3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2022是偶数,∴第2022次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数式求值专题
1:已知:m=5
1
,n=-1,求代数式3(m 2n+mn)-2(m 2n-mn)-m 2n 的值
2:已知:x+x 1=3,求代数式(x+x 1)2+x+6+x
1
的值
3:已知当x=7时,代数式ax 5+bx-8=8,求x=7时,82
25++x b
x a 的值.
4:已知2x =3y =4
z
,则代数式yz yz xy z y x 3232+++-
5:已知a=3b,c=4a 求代数式
c
b a c
b a -++-65292的值
6:已知a,b 互为相反数,c,d 互为倒数,x 的绝对值等于1,求代数式a+b+x 2-cdx 的值
7:设a+b+c=0,abc >0,求a
c b ++b a c ++c b
a +的值
9:5a 2-4a 2+a -9a -3a 2-4+4a ,其中a=-1
2
;
10:5ab -92a 2b+12a 2b -11
4
ab -a 2b -5,其中a=1,b=-2;
11:(3a 2-ab+7)-(5ab -4a 2+7),其中a=2,b=1
3
;
12:12x -2(x -13y 2)+3(-12x+19y 2),其中x=-2,y=-23;
13:-5abc -{2a 2b -[3abc -2(2ab 2-1
2
a 2
b )]},其中a=-2,b=-1,c=3
14:证明多项式16+a -{8a -[a -9-3(1-2a )]}的值与字母a 的取值无关.
15:由于看错了符号,某学生把一个代数式减去x 2+6x -6误当成了加法计算,结果得到2x 2-2x+3,
正确的结果应该是多少?
16:当1
2,2
x y ==时,求代数式22112
x xy y +++的值。
17:已知x 是最大的负整数,y 是绝对值最小的有理数,求代数式322325315x x y xy y +--的值。
18:已知3
613211⎪⎭⎫ ⎝
⎛
⨯⨯÷-=x ,求代数式1199719981999+++++x x x x Λ的值。
19:已知25a b
a b
-=+,求代数式
()()2232a b a b a b a b -+++-的值。
20:当7x =时,代数式53-+bx ax 的值为7;当7x =-时,代数式35ax bx ++的值为多少?
21:已知当5=x 时,代数式52-+bx ax 的值是10,求5=x 时,代数式52++bx ax 的值。
22:若5
43z
y x ==,且1823=+-z y x ,求z y z 35-+的值;
23:若代数式7322++y y 的值是2,那么代数式9642-+y y 的值是
24: 已知2,2,2===x y z x y ,则代数式z y x ++的值为 ;
25:设012=-+m m ,则______1997223=++m m ;
26:当7=x 时,代数式885=-+bx ax ,求当7-=x 时,
82
25++x b
x a 的值 27:已知25.0,2=-=b a ,求代数式ab b a ab b a ab 773853922222--+++-的值。
28:若b a ,互为相反数,求b b b b b a a a a a 865429753+++++++++的值 .
29:若2112
a m n --和132
3b m b -是同类项,求b a 的值.
30:已知213-+b a y x 与252x 是同类项,求b a b a b a 2222
1
32-+的值。
31:已知3a b -=,2b c -=;求代数式()2
313a c a c -++-的值。
32:已知当2x =-时,代数式31ax bx ++的值为5.求2x =时,代数式31ax bx ++的值。
33:已知A= mx ²+ 2x- 1,B= 3x ²- nx+ 3,且多项式A- B 的值与m 、n 的取值无关,试确定m+n 的值.。